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Abstract: Trimethoprim (TMP) is a dihydrofolate reductase (DHFR) inhibitor which 

prevents the conversion of dihydrofolic acid into tetrahydrofolic acid, resulting in the 

depletion of the latter and leading to bacterial death. Oral bioavailability of TMP is 

hindered by both its low solubility and low permeability. This study aims to prepare novel 

salts of TMP using anionic amino acids; aspartic and glutamic acid as counter ions in order 

to improve solubility and dissolution. TMP salts were prepared by lyophilisation and 

characterized using FT-IR spectroscopy, proton nuclear magnetic resonance (1HNMR), 

Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Both the 

amino acids formed salts with TMP in a 1:1 molar ratio and showed a 280 fold 

improvement in solubility. Investigation of the microbiological activity of the prepared 

salts against TMP sensitive Escherichia coli showed that the new salts not only retained 

antibacterial activity but also exhibited higher zone of inhibition which was attributed to 

improved physicochemical characters such as higher solubility and dissolution. The results 

are an important finding that could potentially impact on faster onset of antibacterial 

activity and reduced therapeutic dose when administered to patients. Studies are underway 

investigating the effect of ion-pairing TMP with amino acids on the permeability profile of 

the drug. 

Keywords: trimethoprim; salt formation; fourier transform infrared; 1H nuclear magnetic 

resonance; thermogrametric analysis; Pseudomonas aeruginosa; minimum inhibitory 

concentration studies 
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1. Introduction 

Trimethoprim (Figure 1) [2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine], is a synthetic 

antibacterial agent belonging to a group of compounds known as diaminopyrimidines. It was first 

synthesized as a dihydrofolate reductase inhibitor (DHFR) and used mainly in combination with 

sulfonamides to treat pneumonia and urinary tract infections. TMP is administered through various 

routes including intramuscular, intravenous and oral and has high gastro-intestinal tolerability and low 

side effects. However, low aqueous solubility of TMP [1] reduces the bioavailability from oral 

formulations. In order to improve TMP dissolution profile, a study conducted by Li et al. utilized  

β-cyclodextrin to form a complex with TMP [2]. The study concluded that the high surface area of 

contact between TMP and the cyclodextrin along with reduction in drug crystalinity were responsible 

for improvement in TMP solubility [2]. Nevertheless, the solubility improvement achieved by this 

study was 2.2 fold. Besides, high doses of β-cyclodextrin are not recommended and can cause diarrhea 

and bloating as they are degraded and fermented by bacteria in the colon [3]. Therefore, investigation 

of alternative approaches to improve the solubility of TMP would have a high impact on oral 

administration of the drug. 

Interestingly, TMP has a basic nature (pKa 7.3) and a soluble derivative of the antibiotic can be 

obtained by reacting TMP with acids resulting in salt formation. Around 50% of the prepared salts of 

basic drugs are hydrochloride salts. Yet, hydrochloride salts salt out easily and in turn reduce the 

optimal solubility. Furthermore, hydrochloride salts usually cause high acidity in the formulations and 

high risk of corrosion [4], while the loss of volatile HCl could affect the stability of weak bases 

especially over the long-term [5]. Due to the limitations of hydrochloride salts, alternative counter ions 

that have been explored include citric acid, acetic acid, fumaric acid and maleic acid [5–7]. Another 

class of counter ions that can potentially address the solubility of basic drugs includes acidic amino 

acids. Fabrizio & Vetere utilized aspartic acid to prepare a water soluble salt of erythromycin. The 

obtained salt was used to prepare parenteral formulations of erythromycin and was found to be highly 

tolerable and less toxic [8]. Glutamic acid was used to prepare water soluble salts of chitosan and the 

glutamate salt was found to improve the apparent permeability of many drugs such as naproxen [9] and 

rokitamycin [10] when compared to chitosan alone.  

The present study aims to improve the solubility of TMP through salt formation with anionic amino 

acids, namely glutamic acid and aspartic acid and characterize the prepared salts using FT-IR 

spectroscopy, proton nuclear magnetic resonance (1HNMR), differential scanning calorimetry (DSC) 

and thermogravimetric analysis (TGA). The study also investigates the effect of different amino acid 

isomers on the salt characteristics and evaluates the inhibitory effect of the amino acids salts on 

intrinsically resistant bacteria. 

Figure 1. Trimethoprim chemical structure. 
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2. Materials and methods 

2.1. Materials 

Trimethoprim 98% TLC, L-glutamic acid, L-aspartic acid, D-aspartic acid (99%), D-glutamic acid 

(minimum 99% TLC) and Potassium bromide (99% FT-IR grade) were purchased from Sigma 

Aldrich, UK.  

D2O (99.9% min) was purchased from Coss scientific instrument Ltd. DMSO-D6 (98.8% min) was 

purchased from MERCK (Darmstadt, Germany). Tryptone Soya Broth (TSB) and Muller Hinton Broth 

(MHB) were purchased from Oxoid Ltd, Hampshire, England. 

2.2. Methods 

2.2.1. Analytical Technique 

The amount of Trimethoprim (TMP) dissolved in the solution samples was quantified using the 

HPLC (Dionex 1100 system) method reported by Gallego and Arroyo [11]. HPLC was operated at  

25 °C on RP-C18, (Phenomenex 110A, 150 × 4.6 mm, 5 µm) column using acetonitrile-NaH2PO4 

buffer (10 mM) (70:30, v/v) (pH 3) as mobile phase which was pumped at 1.0 mL/min flow rate using 

gradient pump (GP50). UV detector (UVD 170U) was used and the analysis was monitored at  

230 nm. The retention time was 1.74 ± 0.037 min and a rectilinear calibration curve was established at 

concentrations ranging between 10–500 µg/mL (R2 of 0.99). LOD and LOQ were calculated using 

standard deviation of response and slope and were found to be 0.109 and 0.364 respectively.  

2.2.2. Phase Solubility Diagram 

Phase solubility diagram was established by measuring the saturated solubility of TMP free base 

with various concentrations of acidic amino acid (L-aspartic acid and L-glutamic acid). Excess TMP 

was added into screw-capped tubes containing serial dilutions of the amino acid solutions and agitated 

at room temperature (Stuart SB 162 stirrer) for 24 h. After equilibrium, the supernatant was filtered 

through 0.45 µm filters and analysed by HPLC to determine TMP concentration. The pH of amino acid 

solutions was monitored using Xisherbrand Hydrus 500 pH meter. 

2.2.3. Salt Preparation 

Equimolar amounts of TMP and the free amino acids (L-aspartic acid and L-glutamic acid) were 

solubilized in water and the solutions were mixed and stirred until equilibration was achieved. The 

filtrate was transferred into vials and freeze dried for 48 h using a Modulyo freeze dryer at −40 °C 

shelf temperature and under vacuum. The samples were collected and kept in 40 °C oven for 4h using 

a Gallenkamp vacuum oven. 

Despite the low yield with freeze drying, it is a preferred technique unlike organic solvent methods 

adapted by Anderson & Conradi [12], as lyophilized products have a high degree of purity and are 

devoid of the formation of any solvates.  
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2.2.4. Thermogravimetric Analysis (TGA) 

A thermogravimetric analyzer (Pyris 1 TGA, Perkin Elmer) was used in this study to measure the 

moisture content and decomposition temperature of TMP and its prepared salts. 5–10 mg of samples 

were loaded on to an open pan and analyzed between temperature range 30–300 °C at 10 °C/min 

scanning rate and under nitrogen stream. Pyris Manager Software (version 5.00.02) was used to 

analyze the resultant thermograms. 

2.2.5. Differential Scanning Calorimetry 

Differential scanning calorimeter (Pyris Diamond DSC) was used to explore thermal events of TMP 

and its salts. Approximately 2–5 mg of the samples were weighted and transferred to an aluminum 

sample pan (50 µL capacity). Intra cooler 2P system was used to initially cool the samples to 50 °C 

and then sample heated to 300 °C at a rate of 10 °C/min. Nitrogen was used as a purge gas at a flow 

rate of 20 mL/min. Indium and Zinc were used to calibrate the heat flow and melting point onset 

(156.6 °C for Indium and 419.47 °C for Zinc). The obtained thermograms were analyzed using Pyris 

Manager Software (version 5.00.02). The experiment was performed in triplicate and an empty 

aluminum pan was used as a reference cell for all the measurements. 

2.2.6. FT-Infrared (IR) Spectroscopy 

FTIR absorbance spectra of TMP and its salts were obtained with Nicolet IR 200 spectrometer 

(Thermo electron corporation) using KBr discs. Crystalline KBr was dried at 65 °C over night before 

use. Samples were prepared by mixing TMP or its salts with dry KBr at 1:100 (w/w) ratio and pressed 

at 8 tons for 5 minutes (using Specac tablet presser) to form KBr discs. 64 scans were done over 

wavelength range of 4000–400 cm−1 for each sample. EZ OMNNIC 7.0 software was used to interpret 

the IR spectrum. 

2.2.7. 1HNMR 

Samples were studied with Bruker Avance DPX-250 NMR (at 250.1 MHz) and Bruker Topspin 

software was used to analyze the data. Approximately, 1–2 mg of the salts was dissolved in 1 mL of 

deuterated water (D2O) and placed in sample capillary vial. Sample vials were placed into the NMR 

machine and analyzed for the presence of hydrogen atoms (1H-NMR) 

2.2.8. pH Solubility Profile 

pH solubility studies were determined by using the Ledwidge & Carrigan method [13]. Saturated 

solution of the salts and acids were prepared by dissolving excess of the drug in deionized water. The 

solutions were agitated constantly using a stirrer (Stuart SB 162) at ambient temperature. pH was 

adjusted by adding NaOH or the appropriate acid (L-aspartic acid or L-glutamic acid). After 2 hour 

interval an aliquot was withdrawn and filtered through 0.45 µm filter, then analyzed using HPLC  

(see Section 2.2.1) 
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2.2.9. Solubility and Dissolution Studies 

Solubility studies were carried out using Hugchi and Connor’s method [14]. An excess amount of 

TMP or its salts was added to capped tubes with 5 mL of deionized water and stirred for 24 hours at 

room temperature until equilibrium was reached. Subsequently, the suspension was filtered through 

0.45 μm syringe filters and suitably diluted and the concentration was measured by HPLC. 

Hard gelatin capsules were filled with 200 mg of TMP or equivalent amounts of the prepared salts 

for dissolution studies. USP II paddle method (ERWEKA DT-600) was used to perform the in-vitro 

dissolution studies. The prepared capsules were placed into dissolution vessels containing 900 mL of 

distilled water (pH 7.2) and the dissolution media was maintained at 37 °C ± 0.5 °C and stirred at  

50 rpm. 5 mL of samples were collected at a predetermined time intervals (1, 5, 10, 20, 25, 30, 45 and 

60 min) then filtered through 0.45 μm Millipore filters. The dissolution media was replaced by 5 mL of 

fresh dissolution media in order to maintain a constant volume. After proper dilution samples were 

analyzed by HPLC as mentioned above. 

2.2.10. Microbiological Studies 

Two Gram-negative bacterial strains; Escherichia coli NCTC 10418 and Pseudomonas aeruginosa 

ATCC 9027 were used for this study. Freshly inoculated bacteria agar plate was prepared one day 

before the experiment by spreading colony suspension on Trypticase-soy agar plate and incubating for 

18 to 24 h.  

Zone of inhibition study was performed using Agar plates prepared using Trypticase-soy agar 

plates. Loopful of bacteria was spread gently on the surface of the agar plates. Six small holes were 

perforated on the agar plates and filled with 20 µL of 0.5 mM TMP or equivalent concentration of 

TMP salts. In order to evaluate any inhibitory effect of the amino acids on the bacterial growth, free 

amino acids were used as controls for this study. 

The bacterial minimum inhibitory concentration (MIC) of TMP and its prepared salts against the 

same two species of gram negative bacteria were performed using micro-dilution method and 

following the national committee for clinical laboratory standards (NCCLS) specifications. 

The bacteria inoculum was established by direct colony suspension method from 18 to 24 h 

Trypticase-soy agar plates, standardized and counted by Pharmacia spectrophotometer (Pharmacia 

LKB, Novaspec II). Around 5 × 106 CFU/mL was suspended in Tryptone Soya Broth and used in  

our study. 

50 µL of the bacterial inoculum was transferred to 100 µL of Muller Hinton Broth (MHB) at final 

concentration ranging between 0.5–0.00024 mM prepared by two fold dilution. 

Inoculated plates were incubated at 37 °C for 18–24 h. The lowest concentration of the antibacterial 

agent that inhibits the growth of bacteria was determined by visual turbidity when compared  

against control.  

2.2.11. Statistical Analysis 

Graph Pad Instat® software was used for the statistical analysis study. Data groups were compared 

using one way analysis of variance (ANOVA) and pair-wise multiple comparisons method (Tukey 
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test). Standard deviation (SD) was used to report the error in the figures and texts. Probability values of 

95% (P < 0.05) were used to determine the significant difference. 

3. Results and Discussion 

3.1. Phase Solubility Diagram 

Prior to preparing TMP salts, a solubility phase diagram was first constructed between TMP and 

two acidic amino acids; aspartic acid and glutamic acid as previously discussed by ElShaer et al. [15]. 

Figure 2 shows that increasing the anionic amino acid concentrations results in lowering of the solution 

pH and in turn improving the solubility of TMP. Aspartic acid has an acidic (–COOH) side chain with 

pKa of 1.88 which is 5 units lower than the pKa of TMP (pka 7.3). Therefore TMP could potentially 

act as a strong base in aspartic acid solution capable of deprotonating the –COOH acidic group. 

Interestingly, a linear relationship (R2 = 0.928) between TMP solubility and aspartic acid concentration 

was observed which suggests that complete ionization of TMP in aspartic acid solution was achieved 

suggesting the feasibility of salt formation. 

On the other hand, despite the slightly higher pka of the acidic side chain (-COOH) of glutamic acid 

(pKa = 2.19) a similar trend in solubility improvement was achieved possibly due to the ionization of 

TMP in solution. These results suggest that both glutamic and aspartic acid can be used in preparing 

novel salts of TMP. 

Figure 2. Phase solubility diagram of Trimethoprim (TMP) in the presence of different 

concentrations of glutamic acid and aspartic acid at different pH (n = 3). 
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3.2. Characterisation of Salt Form  

In order to evaluate the effect of isomer form on the salt characteristics, D and L isomers of 

glutamic and aspartic acid were used to prepare TMP salts. The prepared salts were further 

characterized by Fourier transform infra-red, differential scanning calorimetry, thermo-gravimetric 

analysis and 1H nuclear magnetic resonance. 
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3.2.1. Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR was performed in order to assess any possible interaction between TMP and the acidic amino 

acids during salt formation and to investigate any possible changes that could occur due to the use of 

different isomeric forms of amino acids. 

The FT-IR spectra of TMP, TMP L-aspartate and TMP D-aspartate are shown in Figure 3. TMP has 

characteristic bands at 1634.3 and 1594.7 cm−1 which account for deformation of NH2 group and 

stretching of aromation ring respectively. Deformation of C9H2 group appeared at 1458.7 cm−1, while 

the vibration of C6=N of the aromatic primary appeared at 1263.71 cm−1. –OCH3 aromatic groups had 

characteristic bands at 1128.68 cm−1, as reported by Garnero et al. [16]. 

Assessment of TMP L-aspartate salt showed that TMP bands corresponding to NH2 and C-H 

aromatic stretching vibration were difficult to analyse due to overlapping with NH2 and CH aliphatic 

of the amino acid (Figure 3A). Interestingly, the C=N in the amine aromatic primary became very 

weak and a new band appeared at 1664.53 cm−1 corresponding to νC=O stretching which confirms that 

the cationic nitrogen has interacted with the carboxylic group of aspartic acid. In contrast, OCH3 

aromatic groups did not show any changes in the formed salt. 

Upon comparing the FT-IR spectra of the L-aspartate and D-aspartate salt, no difference was spotted 

between the two isomers (Figure 3A & B). 

Figure 3. FTIR spectra of (A) trimethoprim D-aspartate, (B) trimethoprim L-aspartate and 

(C) trimethoprim. 
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Figure 4 shows the FT-IR for TMP L-glutamate and TMP D-glutamate. Similar to the results 

obtained for aspartate salts, a new band appeared at 1656.87 cm-1 and 1654.74 cm-1 for TMP  

L-glutamate and TMP D-glutamate respectively. This band corresponds to the νC=O of the amino acid 

carboxylic group which when deprotonated potentially interacts electro-statically with the protonated 
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amino group of TMP prymidine ring. Both the L and D salts had similar FT-IR spectra and no 

significant difference was observed. 

Figure 4. FTIR spectra of (A) trimethoprim D-glutamate, (B) trimethoprim L-glutamate 

and (C) trimethoprim. 
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3.2.2. Differential Scanning Calorimetry and Thermogravimetric Analysis 

Figure 5 shows the TGA and DSC scans for TMP and L-glutamic acid. TMP had one single 

endothermic peak at 204.22 °C with an enthalpy of fusion of 166.7 J/g. TGA data revealed that TMP 

starts to degrade after around 30 °C of its melting. 

TMP L-glutamate salt was found to be in the crystalline form as no crystallization exotherm was 

observed in the DSC scans (Figure 6). At around 130 °C, TMP L-glutamate had an endothermic peak 

which could possibly correspond to moisture loss. Two endothermic peaks appeared at 197.22 °C  

(ΔH = 20.22 J/g) and 233.47 °C (ΔH = 150.02 J/g). This data suggests the presence of two 

enantiotrophs or monotrophs. A second scan was carried out after cooling and the results showed that 

the first thermal event was irreversible which suggests the presence of monotrophs rather than 

enantiotrophs. Interestingly, coupling the DSC scans with TGA showed a weight loss (4.03%) at  

196 °C which indicates that the thermal event is not a phase transition as polymorphic transitions are 

not associated with weight loss. In addition, 1HNMR data (discussed in details in Section 3.3.3) shows 

the absence of any impurities which provides further evidence that the weight loss is due to associated 

water molecules within the crystalline structure of the salt [17].” TGA was carried out to further 

validate DSC results as mass loss (which is routinely studied with TGA) indicates the presence of 

moisture [17]. 
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Figure 5. Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry 

(DSC) scans for L-glutamic acid and TMP free base. 

 

Figure 6. DSC and TGA scans for TMP D-glutamate and TMP L-glutamate salts. 2–5 mg 

of the sample was heated to 300 °C at rate of 10 °C/min (n = 3). 

 

On the other hand, TMP D-glutamate salt is partially crystalline and the amorphous portion of the 

salt starts to crystallize at 140 °C. Moisture loss appeared as endothermic hump at around 80 °C 

corresponding to 1.62%. Similar to TMP L-glutamate, TMP D-glutamate showed hydrate loss at  
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197.22 °C (ΔH = 18.16 J/g) appeared as small peak reflecting the small amount of the hydrate crystals 

formed during the freeze drying while the rest of the salt was in the amorphous state and crystallizes at 

140 °C as discussed before. After dehydration, the salt started to melt at 231.74 °C (Figure 6) similar 

results were suggested by [18]. 

The thermal events of TMP L-aspartate and TMP D-aspartate were studied using TGA and DSC 

(Figure 7). TMP L-aspartate showed an up drafted base line between 100–150 °C which corresponds to 

moisture loss and the salt converted from the amorphous form to the crystalline form at 160 °C 

followed by crystal melt at 184.22 °C. 

Figure 7. DSC and TGA scans for TMP D-aspartate and TMP L-aspartate. 2–5 mg of the 

sample was heated to 300 °C at rate of 10 °C/min (n=3). 

 

3.2.3. 1HNMR Studies 

The electronic and chemical environment of protons are affected during salt formation which could 

be reflected by the changes in δ. 1HNMR is considered a powerful tool in studying salt formation as it 

provides insight in to the ratio of molar interaction between the two moieties.  

Figure 8 shows the 1HNMR of TMP free base (solubilized in DMSO). At 7.53 ppm frequency one 

proton of TMP heterocyclic ring C4H appeared as singlet and the two protons on the aromatic ring 

C10H and C14H appeared at 6.56 ppm. The nine hydrogens of OCH3 groups appeared as two different 

peaks; (6H) appeared as a singlet at 3.73 ppm as they have the same surrounding environment, while 

the other (3H) appeared as a singlet at 3.63 ppm. The two hydrogens of aliphatic (C8H2) appeared as 

singlet at 3.54 ppm while two singlet bands appeared at 5.7 and 6.2 which correspond to N5H2 and 

N7H2 respectively. The total integrated H count for TMP was 18 (Figure 8). 

TMP L-aspartate salt (solubilized in D2O) showed new (3H) assignment at 2.6 corresponding to 

(C27H2) and a highly deshielded C25H group at 3.75 ppm, which represents the aliphatic chain of  

L-aspartic acid. As D2O was used as a solvent for TMP salts, NH2 groups were masked and the total 

integration of TMP aspartate salt was 17 instead of 21. These results confirm that one mole of  

L-aspartic acid interacts with 1 mole of TMP to form the salt (i.e, 1:1 ratio) as shown in Figure 9. 
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On the other hand, TMP L-glutamate had 5 new protons representing the aliphatic chain of the 

amino acid. (C28H2, C27H2) appeared at 1.96 and 2.2 ppm, while the third C25H group appeared at 

around 3.6 ppm due to the deshielding by NH2 group. The total integration also shows that 1 mole of 

L-glutamic acid interacts with 1 mole of TMP (Figure 10). 

Figure 8. 1HNMR spectra of trimethoprim free base solubilized in DMSO. 
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Figure 9. 1HNMR spectra of trimethoprim L-aspartate solubilized in D2O. 
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Figure 10. 1HNMR spectra of trimethoprim L-glutamate solubilized in D2O. 
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1HNMR studies of TMP D-aspartate and TMP D-glutamate salts did not reveal any difference in the 

spectra between the L and D isomers (Figure A&B Appendix 1). The high similarity of the salts 

formed despite using different isomers suggest that water used to solubilize the amino acids during the 

preparation step might provide free space for the rotation of the molecules and potentially catalyze 

racemisation as suggested by [19]. 

3.2.4. Aqueous Solubility and Dissolution Studies 

TMP is usually used in combination with sulfonamides in various formulations such as suspension, 

tablets and solution dosage forms. Therefore TMP solubility and dissolution are important 

determinants for its bioavailability.  

Solubility studies in our laboratory have found that the saturation solubility of TMP free base was 

0.217 mg/mL in water. Using acidic amino acids counter ions improved the solubility of the drug by 

around 280 fold when compared against the free drug. The solubility of the prepared salts was around 

55 mg/mL with no significant difference between the L and D isomers for both the counter ions 

(Figure 11). 

The dissolution profile of TMP and its different salts was also studied (Figure 12). Dissolution 

studies show a significant improvement of the salt form when compared to the free base. Around 70% 

of the TMP was released from aspartate and glutamate salt form after only 10 minutes of the 

dissolution experiment while only 10% release was seen from TMP free form (Figure 12). Such 

changes in the dissolution profile could be attributed to the ability of TMP salts to exert a  
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self-buffering action, which yield different pH values at the dissolving surface in the diffusion  

layer [20]. No significant difference was observed between the two salts, which suggest that both salts 

might have similar buffering capacity and hence similar pH at the diffusion layer. 

Figure 11. Solubility of trimethoprim and its prepared L & D aspartate and glutamate salts 

mean ± SD (n = 3). 
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Figure 12. Dissolution profile for TMP free base and its salts in deionized water. Data are 

mean ± SD (n = 3). 
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Table 1. pH measurements during solubility and dissolution studies. 

  Formulation 

pH 
measurement 

 TMP free base TMP Aspartate TMP glutamate 
Solubility study 
(Equilibrium) 

7.7 ± 0.05 5.075 ± 0.06 5.2 ± 0.11 

End of dissolution study 8.6 ± 0.07 5.37 ± 0.08 5.88 ± 0.05 
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3.2.5. pH-Solubility Profile 

TMP pka and intrinsic solubility are 7.3 and 0.19 mg/mL respectively. Figure13 shows the pH 

solubility profile of TMP when TMP glutamate salt and TMP free base were used as starting materials 

for determination of solubilities. The intrinsic solubility (Bs) was first determined by increasing the pH 

of TMP solution to 11.28 using NaOH and Bs was found to be 0.266 mg/mL. When TMP was used as 

a starting material the solubility was found to increase exponentially upon titrating with glutamic acid 

(Figure 13). TMP solubility increased from 0.37 mg/mL at pH 7.7 (point a) to 13.8 mg/mL at pH 4.23.  

Figure 13. pH solubility profile of TMP and TMP-glutamate salt at ambient conditions 

using free acid (circles) and TMP-glutamate salt (squares) as starting materials. Points b 

and a represent the saturation solubility of the salt and TMP free base respectively.  

[Bs] = 266.35µg/mL and pKa = 7.3. 
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On the other hand, when TMP glutamate salt was used as a starting point, the solubility started to 

decrease upon titrating with NaOH. TMP glutamate solubility was 53.6 mg/mL at pH 5 and decreased 

to 0.194 mg/mL at pH 11.9. A similar trend was observed upon titrating TMP with aspartic acid (data 

not shown). Generally, a good agreement was observed between the experimental values (squares and 

circles) and the theoretical predicted values (dotted line) see Table (2). Theoretical calculations were 

carried out using Kramer and Flynn [21] (Equation 1). 

][

]][[ 3
+

+

=
BH

OHB
Ka  

)1()( 3
max

a
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OH
BpHpHbaseS

+

==> )101( pHPka
sB −+=      (1) 

Where St is the total solubility at given pH, [Bs] is the intrinsic solubility of the free base and Ka is 

the acid dissociation constant. 

b

a



Pharmaceutics 2012, 4            

 

 

193

Table 2. Theoretical calculations of pH solubility profile using (Equation 1).  

[Bs] = 266.35µg/mL and pKa =7.3. 

pH Solubility (µg/mL) 
11.28 266.35 
7.7 372.35 
6.3 2929.63 
6.1 4487.37 
5.7 10869.11 
4.9 67165.4 

3.2.6. Microbiology Studies 

After having significantly improved both the solubility as well as the dissolution characteristics 

using the salt forms of TMP, the next stage of the work was to evaluate microbiological properties to 

study if the therapeutic effect of the drug was still retained upon preparation of the different salts.  

Interestingly, zone of inhibition studies showed that use of amino acid salts not only retained the 

anti-bacterial activity against TMP sensitive species; Escherichia coli but also had a significant 

increase in the total area of inhibition (Table 3). To rule out the possible effects of amino acids alone 

on bacterial growth inhibition, control experiments with the amino acids were performed which 

resulted in no inhibition of bacterial growth on the plates. Therefore, the higher zone of inhibition can 

be attributed to the significant improvement in solubility which potentially results in higher 

permeability across the agar plates resulting in larger zone of inhibition. This could possibly translate 

into a faster therapeutic effect along with reduced therapeutic dose in a clinical setting. 

On the other hand, neither the drug nor the salts showed any activity against TMP resistance species 

Pseudomonas aeruginosa. This is probably due to the complex structure of Pseudomonas aeruginosa 

membrane as it is intrinsically resistant to TMP and prevents the entry of both the drug and amino  

acid salts. 

Table 3. Zone of inhibition studies of TMP and its prepared salts against Escherichia coli 

and Pseudomonas aeruginosa. 

 Escherichia coli Pseudomonas aeruginosa 
Area (cm2) % compare 

to the total 
plate area 

 

TMP 4.03 ± 0.2 18.7 **** 
TMP aspartate 4.6 ± 0.2 21.4 **** 
TMP glutamate 4.65 ± 0.2 21.6 **** 

Bacterial minimum inhibitory concentration was carried out as well in order to accurately determine 

the MIC of the TMP and its salts. Two species were used in this study; Escherichia coli and the 

intrinsically resistant organism, Pseudomonas aeruginosa. The MIC of TMP on E. coli was 0.00048 

mM and TMP aspartate and glutamate salt had similar MIC values which confirm our previous finding 

that salt preparation did not impair the pharmacological function of TMP (Table 4).  
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Table 4. MICs of TMP and its prepared salts against Escherichia coli and Pseudomonas 

aeruginosa. 

 Escherichia coli Pseudomonas aeruginosa 
TMP 0.00048 mM. >0.5 mM 

TMP aspartate 0.00048 mM >0.5 mM 
TMP glutamate 0.00048 mM >0.5 mM 

4. Conclusion  

TMP is a basic synthetic antibacterial agent which is poorly water soluble [1, 2]. In order to 

improve its solubility, the ability of TMP to form new salts with L and D isomers of acidic amino acids 

was investigated in this study. The study has demonstrated that TMP solubility increased significantly 

upon coupling with aspartic and glutamic acid and this increase was attributed to the novel salt 

formation which has self-buffering capacity yielding favorable pH for salt solubility during 

dissolution. Moreover, the antibacterial activity of these new salts was investigated and no change was 

seen in their MIC when compared against TMP free base. Using different isomers; L- and D- forms did 

not show any significant difference in the salt characteristics. Our future work will investigate the 

effect of amino acids salts on the absorption characteristics of TMP across intestinal membrane using 

Caco-2 cells. 
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Appendix  

Figure A. 1HNMR spectra of trimethoprim D-glutamate solubilized in D2O. 
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Figure B. 1HNMR spectra of trimethoprim D-aspartate solubilized in D2O. 
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