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INTRODUCTION
Advances in high-throughput sequencing technologies permit 
the generation of complex vector integration site (IS) datasets. 
Comparisons of IS datasets have identified differences in IS distribu-
tions attributable to viral origins of vectors used,1,2 promoter con-
figuration (e.g., wild-type compared to self-inactivating long terminal 
repeat (LTR) regions),3 transduced cell types, their gene expression 
and chromatin conformation,4 as well as the replicative characteristics 
of transduced cells.5 These comparisons have usually been performed 
by associating integration sites (ISs) with genomic and epigenetic fea-
tures, where datasets of higher complexity permitted the implemen-
tation of increasingly sophisticated analytical comparisons.2,6

We sought to develop a method to evaluate vector integra-
tion pattern differences, unconstrained by prior knowledge of the 
genomic or epigenetic contexts of ISs. To this end, we explored 
the application of binned point-process coherence analysis7–9 (CA) 
to detect differences between vector integration patterns. Once 
IS coordinates have been mapped (a prerequisite shared by all IS 

analyses), CA facilitates quick and easily implemented pair-wise 
comparison of IS datasets. A single metric is produced to ascertain 
the existence of IS pattern differences and thus lends itself to utili-
zation as a proximal screening tool, where the discovery of differ-
ences would warrant further investigation into the nature of these 
differences.

To explore the analytical utility of CA and concurrently begin to 
address a question of interest to the field of gene therapy, we asked 
whether this approach is sufficiently sensitive to detect differences 
in genome-wide γ-retroviral integration patterns in human CD34+ 
cells induced by the use of different clinical transduction conditions. 
Accordingly, we applied CA to IS datasets generated from human 
CD34+ cells transduced under the divergent culture conditions 
employed in the initial Paris and London SCID-X1 clinical trials. Of 
the 10 patients enrolled in the Paris trial,10–12 four developed T-cell 
acute lymphoblastic leukemia (T-ALL) as a consequence of vector-
mediated dysregulation of oncogenes near the site of integration,13 
while only 1 of 10 patients in the London trial developed T-ALL.14,15 

Received 23 December 2014; accepted 12 March 2015

2329-0501

15015

Molecular Therapy — Methods & Clinical Development

10.1038/mtm.2015.15

Article

29April2015

2

23December2014

12March2015

2015

© 2015 The American Society of Gene & Cell Therapy

Coherence analysis of vector integration patterns

CV Hallwirth et al.

Unequivocal demonstration of the therapeutic utility of γ-retroviral vectors for gene therapy applications targeting the hematopoietic 
system was accompanied by instances of insertional mutagenesis. These events stimulated the ongoing development of putatively 
safer integrating vector systems and analysis methods to characterize and compare integration site (IS) biosafety profiles. Continu-
ing advances in next-generation sequencing technologies are driving the generation of ever-more complex IS datasets. Available 
bioinformatic tools to compare such datasets focus on the association of integration sites (ISs) with selected genomic and epigenetic 
features, and the choice of these features determines the ability to discriminate between datasets. We describe the scalable applica-
tion of point-process coherence analysis (CA) to compare patterns produced by vector ISs across genomic intervals, uncoupled from 
association with genomic features. To explore the utility of CA in the context of an unresolved question, we asked whether the differ-
ing transduction conditions used in the initial Paris and London SCID-X1 gene therapy trials result in divergent genome-wide integra-
tion profiles. We tested a transduction carried out under each condition, and showed that CA could indeed resolve differences in IS 
distributions. Existence of these differences was confirmed by the application of established methods to compare integration datasets.
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Although the difference in the incidence of leukemia is not statis-
tically supported by Fisher’s exact test (P = 0.15) using such low 
patient numbers, it raises the question of whether the differing 
transduction protocols employed could induce distinct integration 
patterns and, in turn, different leukemogenic risk.

IS datasets were generated through the use of modifications to 
an established ligation-mediated PCR (LM-PCR) protocol,16 and by 
coupling this with Illumina next-generation sequencing technol-
ogy. CA was used to show that the two samples studied differed, 
supporting the hypothesis that different transduction conditions 
produce distinguishable patterns of vector integration. These dif-
ferences were confirmed by application of established methods 
to compare vector IS datasets, some of which are consistent with 
a higher leukemogenic risk associated with the Paris trial transduc-
tion conditions.

RESULTS
Differing clinical trial transduction conditions exert phenotypic 
effects on cultured human CD34+ cell populations
To compare the phenotypic effects of different transduction condi-
tions on transduced cells, human peripheral blood (PB) CD34+ cells 
were transduced with γ-retroviral vectors according to the trans-
duction protocols employed in the initial SCID-X1 clinical trials con-
ducted in Paris10,11 and London.14 Cells cultured under London (“L”) 
trial conditions showed relatively higher retention of CD34 expres-
sion at the completion of the transduction period, compared to a 
loss of CD34-positivity in about half the cells transduced under the 
Paris (“P”) trial conditions (Table 1). Paris conditions, on the other 
hand, promoted higher levels of both proliferation and transduc-
tion. The transduction conditions were shown to exert reproducible 
effects in terms of CD34+ retention (P < 0.0001) and proliferation for 
a total of two P and three L transductions (Supplementary Table S1), 
although the difference in proliferation does not reach statistical 
significance (P = 0.0553).

CA distinguishes integration patterns resulting from different 
transduction conditions
Having observed that the P and L transduction conditions con-
sistently lead to phenotypic differences in transduced cells, 
we next wished to test whether these populations harbored 
recognizably different vector integration patterns. IS datasets 
were generated from P and L cells, yielding 250,215 and 54,424  
nonredundant, uniquely mapped ISs, respectively. To begin 
exploring whether distinguishable patterns are detectable within 
these IS datasets using point-process CA9 an initial baseline com-
parison of independent, nonredundant samples of ISs derived 

from P was performed (Figure 1a). See Methods, associated ref-
erences and supplementary material for procedural details of CA. 
This comparison constitutes a baseline because it is to be expected 
that patterns characteristic of a particular IS dataset should be 
retained within subsamples of such a dataset. In accordance with 
this expectation, this comparison yielded high IS pattern coher-
ence, confirming that the embedded IS patterns within these sub-
samples are similar. A comparison of P ISs with matched random 
control (MRC) sites, on the other hand, showed low coherence 
(Figure 1a), since matched random data would not be expected 
to contain appreciable patterns. Furthermore, the sensitivity of CA 
to detect genome-wide IS pattern differences was investigated in 
a series of semi-quantitative comparisons entailing the deliber-
ate “contamination” of P with random sites. MRC site substitutions 
of 30, 20, and even 10% could be visually distinguished in terms 
of coherence (Figure 1a). Next, genome-wide patterns of P and L 
integration were compared, yielding lower coherence than sub-
samples of P alone (Figure 1b). This demonstrates the capacity of 
CA to resolve subtle IS pattern differences in two samples resulting 
from the use of different transduction conditions. This observation 
was extended by applying CA to shorter genomic intervals con-
taining lower total numbers of ISs. Consistent with genome-wide 
CA, P and L pattern differences across a small chromosome could 
be discerned using a comparatively lower number of ISs associ-
ated with this individual chromosome (Figure 1c).

Established methods validate integration pattern differences 
detected by CA
CA was shown to be sufficiently sensitive to detect subtle differ-
ences in integration patterns associated with different cell cul-
ture conditions employed during transduction in one replicate 
of each. To investigate the underlying biological nature of these 
differences, the IS distributions of P and L datasets were compared 
with respect to selected genomic features. Relative to chance dis-
tribution, both datasets displayed the known bias of γ-retroviral 
vectors17,18 towards integration in transcription start site (TSS)-
proximal regions (Figure 2). The tightness of TSS-clustering, how-
ever, was less pronounced in L compared with P (Figure 2a). This 
finding is also statistically supported by comparisons of the rela-
tive proportions of TSS-proximal, intra- and intergenic integration 
(Figure 2b). In addition to these classifications into three catego-
ries relating to coding genes, IS datasets were compared vis-a-vis 
their distributions relative to a selection of annotated genomic 
features, and in different interval sizes around several of these fea-
tures (Figure 2c). The direction of the trends towards either over- 
or underrepresentation at individual features was largely the same 
for the two transduction datasets. However, the magnitude of the 
effects of proximity to most annotated features differed markedly 
between P and L ISs. IS overrepresentation relative to chance dis-
tribution was compared in the P and L datasets at all known coding 
genes, divided into three categories (Figure 3a). Consistent with 
clustering near TSSs, integration is, on average, overrepresented 
in all coding genes for both datasets. This is most pronounced at 
hematological oncogenes and less so at other oncogenes, yet still 
to a higher degree than at coding genes not associated with neo-
plasia. When comparing the two datasets, overrepresentation is 
higher for P than for L integration in all categories, although the 
difference does not reach statistical significance for hematological 
oncogenes.

The high complexity of the P and L datasets facilitated statisti-
cal comparison of IS counts at individual coding gene loci, using 

Table 1  Transduction performance under Paris and London 
SCID-X1 trial conditions

Transduction
Paris (“P”) 
conditions

London (“L”) 
conditions

Pretransduction CD34+   98.60%

Final CD34+ 49.30% 96.41%

Transgene+ 64.85% 16.64%

Transgene+ CD34+ 28.81% 15.98%

Proliferation 2.16× 1.74×
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different window sizes around TSSs for counting. This direct com-
parison of IS counts between the two datasets (as opposed to the 
consideration of relative overrepresentation in each dataset com-
pared to chance distribution used earlier) identified genes that 
are differentially targeted by vector integration under each of the 
two transduction conditions (Figure 3b). The number of genes at 
which integration is statistically more prevalent under P transduc-
tion conditions is considerably larger than that for L conditions. 
Furthermore, this direct comparison of IS counts at coding genes 
in P versus L shows that counts across all hematological oncogene 
loci (taken together) are statistically more prevalent in P than in L, 
irrespective of the chosen window size around TSSs (P = 0.00241 at 
±100 kb; P = 0.01749 at ±5 kb). Integration is also more prevalent in 
P compared to L when considering other oncogenes and other cod-
ing genes (as gene sets), with statistically greater levels of signifi-
cance achieved in either window size (data not shown). Wang et al.19 
previously reported that the size of chosen intervals around anno-
tated genomic features can affect the magnitude of observed IS 
clustering. Consistent with this, IS counts at some genes statistically 
discriminate between P and L only in smaller intervals around the 
respective TSSs. For instance, IS counts near LMO2 are statistically 

greater in P than in L for the TSS ±5 kb interval (P = 0.0157), but not 
for the ±100 kb interval (P = 0.2755; Figure 3c).

Comparison of bulk transduced CD34+ cell- and patient-derived IS 
patterns
To investigate integration pattern differences of transduced cells 
in vitro and in vivo, IS data from PB mononuclear cells (PBMCs) recov-
ered from patients treated in the Paris and London SCID-X1 trials19,20 
(hereafter referred to as “SCID1_Paris” and “SCID1_London”) were 
compared to one another and with the P and L data. The two patient 
datasets display more coherent patterns than the comparison 
between P and L (Figure 4a,b); the coherence values are even higher, 
in fact, than for intra-dataset comparisons using subsamples of either 
the P or the L dataset (Figure 4b). Wang et al.19 previously reported 
that less than 1% of cells infused in the Paris trial had long-term 
repopulating potential. Such cells would presumably have given rise 
to the PBMC IS datasets, and be distinguished from the bulk trans-
duced CD34+ cells by displaying a distinctive immunophenotype. 
The greater pattern coherence between IS datasets derived from 
the two different clinical trials implies that the immunophenotypic 

Figure 1   Use of coherence analysis to represent differences in integration site (IS) patterns independently of genomic features. Higher coherence values 
indicate greater pattern similarity. All dataset subsamples are size-matched for the L dataset (54,424 ISs). (a) Coherence values for ISs spanning the 
entire genome are plotted against an x-axis indicating the range of sampling size windows used in the computation of coherence values. Coherence 
comparisons are shown for two subsamples of P, as well as modifications of one of these subsamples wherein 10%, 20%, 30% or all of the ISs were 
randomly substituted for matched random control (MRC) sites. (b) Coherence values for ISs spanning the entire genome are shown for a comparison 
of two subsamples of P and for a subsample of P compared to L. (c) Coherence values for the same dataset comparisons as panel (b), using only those 
ISs on chromosome 19 (1,607 for the subsample of P and 1,342 for L). ****P < 0.0001 for comparison of median coherence values by Wilcoxon matched-
pairs signed rank test.
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subset of CD34+ cells being transduced has a greater influence on 
the resulting integration patterns than the differences imparted 
by use of P versus L transduction conditions. Consistent with this, 
the intra-dataset comparison of SCID1_Paris ISs exhibits the high-
est coherence amongst all the comparisons conducted (Figure 4b). 
Inter-dataset coherence between patient datasets and either P or L 

is lower than the comparison of P and L. Amongst these latter com-
parisons, both P and L patterns are more coherent with those of 
SCID1_London than SCID1_Paris (Figure 4b; P < 0.0001).

Statistical analysis of relative proportions of TSS-proximal, intra- and 
intergenic integration (Supplementary Table S2) revealed intragenic 
integrations to be more abundant in the two CD34+ cell datasets 

Figure 2  Distribution of γ-retroviral vector integration sites (ISs) relative to genomic features. (a) Distances from ISs to the nearest “UCSC Known Gene” 
transcription start site (TSS) were computed, binned in 10-bp windows, converted to proportions relative to the total number of sites in the respective 
datasets, and are plotted for those sites falling within 2.5 kb either side of the nearest TSS. MRCs, matched random control sites. (b) Integration site 
distributions relative to coding genes. Percentages of sites within each genic category are shown in the columns, and the total number of sites per 
dataset is indicated below. Comparison of IS distributions between P and L datasets shows very strong statistical evidence of differences (χ2 = 473,  
df = 2, P < 0.0001). The proportions of intragenic integration do not differ between the two datasets (two-tailed Fisher’s exact test on IS counts, P = 0.26). 
The P values for all comparisons within genic categories are presented in Supplementary Tables S3–S5. (c) The extent of association between annotated 
genomic features and vector ISs is summarized in the form of heat maps. Columns are labeled with IS dataset names and rows with analyzed genomic 
features. The colored receiver operating characteristic (ROC) curve area scale to the right of the panel shows increased integration (relative to MRC sites) 
near the indicated feature in red, decreased integration in blue, with the intensity of shading correlating with the degree of departure from random 
integration. Detailed comparisons of relative integration abundance associated with individual genomic features are available as “Supplementary 
report - Association of Genomic Features with Integration”.
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compared to ISs recovered from patient PBMCs. When IS distributions 
are compared at selected genomic features, the PBMC datasets, on 
average, display greater deviation from random integration than the 
CD34+ cell datasets (Supplementary Figure S1). Similarly, integrations 
are more highly overrepresented in SCID1_Paris than in either P or L 
within 100 kb of the TSS of hematological oncogenes and other onco-
genes, and to a lesser extent, other coding genes (Supplementary 
Figure S2). The SCID1_London dataset is not sufficiently complex 
to be included in this analysis. When proportions of ISs at individual 
hematological oncogenes are directly compared to one another 
(as opposed to being expressed as overrepresentation relative to 
random sites), all IS datasets display a wider range of proportional 
integration than MRCs, indicating that some hematological onco-
gene loci are more prone to vector integration than others (Figure 5). 
Amongst the IS datasets, SCID1_Paris exhibits higher proportional 
integration at most hematological oncogenes, while IS proportions in 
P and L are nearly equivalent. Again, the SCID1_London dataset is not 
sufficiently complex to be included in this analysis. In summary, the 
measurable behavior of ISs relative to coding genes and other anno-
tated genomic features are more pronounced in PBMCs recovered 
from patients than in bulk populations of transduced CD34+ cells.

DISCUSSION
The generation of high-complexity datasets to study viral integra-
tion behavior is becoming increasingly more attainable, and as 

such, the need for quick and simple comparisons of such datasets is 
likely to increase. To this end, we transitioned the use of CA, rooted 
in the work done on time series and point processes by Brillinger in 
the 1970s,7 from neuroinformatics into the genomic paradigm, and 
introduce CA as a tool to compare genomic IS distribution patterns 
resulting from the transduction of cells with integrating vectors. 
Because CA directly compares patterns, it requires no prior knowl-
edge of the association of ISs with genomic or epigenetic features. 
Established methodologies are sometimes constrained, to a degree, 
by the need to conduct numerous sequential analytical compari-
sons on a considerable diversity of features, or a range of intervals 
surrounding static genomic features, before identifying individual 
parameters that distinguish IS datasets. CA, on the other hand, 
produces single metrics that can be visually interpreted and their 
differences statistically validated by comparison of median coher-
ence values. For this reason, and because datasets are directly com-
pared without the often time-consuming generation of MRCs (as 
is required to produce heat maps), CA is more economical of both 
operator and computing time and thus lends itself to utilization as 
a proximal screening tool, where the detection of differences would 
warrant further investigation to elucidate the nature and origins of 
such differences, using more specific methods.

CA can be scaled to accommodate published (often smaller) as 
well as future, larger datasets. Although the lower limit of usable 
dataset sizes was not empirically determined as part of this study, 

Figure 3  Over-representation of γ-retroviral vector integration sites (ISs) at coding genes. (a) Overrepresentation values relative to random sites were 
calculated for proportions of ISs falling within ±100 kb of the transcription start site (TSS) of each known coding gene. A subset of oncogenes was 
extracted from this list of genes, leaving “other coding genes” (n = 17,822). Oncogenes associated with hematological malignancies were designated 
“hematological oncogenes” (n = 89), leaving “other oncogenes” (n = 1,852). All comparisons of mean overrepresentation values showed statistical 
support of differences (independent t-tests, P < 0.05), except where indicated. Error bars indicate the standard errors of the means. (b) Genes exhibiting 
higher integration frequency under either P or L transduction conditions. Numbers of genes where IS counts within TSS ±100 kb in one dataset 
statistically outnumber counts in the other dataset (one-sided Fisher’s exact test, P < 0.05) are shown in the internal circles. (c) Coordinates of P(54k) 
(size-matched for L) and L ISs falling within 100 kb of the LMO2 TSS are shown (http://genome.ucsc.edu). The region within 5 kb of the LMO2 TSS is boxed.
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size-matched datasets of 3,870 ISs distributed across the whole 
genome were compared to yield statistically validated observations 
(Figure 4). In a smaller genomic interval, such as a single chromo-
some, fewer than 1,700 ISs sufficed to confirm pattern differences 
observed at the genome-wide scale. It is likely that the magnitude 
of pattern differences would affect the minimum number of ISs 

required in order to detect such differences. CA accommodates 
the comparison of differently sized datasets and corrects for size 
differences. We did observe, however, that the use of larger IS 
samples from our datasets yielded higher coherence values (data 
not shown). More complex datasets represent a larger sample of 
an IS “population”, and are thus more accurate in resolving the true 
underlying IS pattern in any given sample. The sensitivity of CA 
was established by demonstrating that the contamination of an IS 
dataset with as few as 10% random sites was detectable. Although 
contamination with 30% random sites yields coherence values that 
are higher than those obtained when comparing Paris to London 
transduction conditions (cf. Figure 1a,b), it is to be borne in mind 
that differences between independently generated IS datasets are 
likely to be systematic rather than random and it would likely be 
incorrect to infer that patterns resulting from Paris versus London 
transduction conditions differ by >30%. Pattern deviations result-
ing from contribution of random sites are unsuitable as measures 
of calibration to gauge the extent of observed pattern differences 
between datasets.

As an exemplar of the potential analytical utility of CA, it was 
shown to be sufficiently sensitive to distinguish differences 
between IS patterns in a pair of samples differing only by the trans-
duction conditions used. Specifically, phenotypic differences were 
noted between cells transduced under either the Paris or London 
SCID-X1 clinical trial conditions. The phenotypic characteristics were 

Figure 4  Coherence analysis comparisons of integration site (IS) patterns 
in transduced CD34+ cells and peripheral blood mononuclear cells from 
patients treated for SCID-X1. Integration site datasets were randomly 
subsampled to match the size of the SCID1_London dataset (3,870 ISs). 
(a) Whole-genome coherence values are plotted for comparisons of IS 
patterns between the P, L, SCID1_Paris and SCID1_London datasets. 
(b) The distributions of coherence values representing the individually 
plotted values in panel (a) and additional intra-dataset comparisons 
are represented as Tukey box plots:36 lower and upper bounds of boxes 
depict the first and third quartiles, respectively; the horizontal lines in the 
boxes indicate the median coherence values; bottom and top whiskers 
represent values corresponding to 1.5× the interquartile range of the 
lower and upper quartiles, respectively; and outliers and extreme values 
are not shown. Whole-genome comparisons comprise 8,191 data points. 
****P < 0.0001 for comparison of median coherence values by Wilcoxon 
matched-pairs signed rank test (only shown for two selected statistical 
comparisons referred to in Results).
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Figure 5  Integration at hematological oncogenes. Proportions of 
integration sites in P, L, SCID1_Paris and matched random controls (MRCs) 
located within 100 kb of the transcription start sites of genes associated 
with hematological malignancies are plotted relative to one another by 
dataset. Individual hematological oncogenes are represented by closed 
diamonds. The open circle on each plot represents the proportion of 
counts across all these genes, relative to the size of the respective dataset. 
The diagonal line in each plot represents equal proportions, with genes 
falling on the side of higher proportional representation. The axes are 
labeled with the exponents of log10 proportions. Both over- and under-
representation relative to MRCs at individual loci can be calculated for 
P and L (right column), while only overrepresentation can be ascertained 
at individual loci for SCID1_Paris, wherein even a single IS within a 200-kb 
interval constitutes overrepresentation relative to MRCs (bottom right 
panel).
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consistent between three independent transductions performed 
under London conditions (Supplementary Table S1), whereas high 
proliferation and loss of CD34-positivity in cells transduced under 
Paris conditions were consistent with cells transduced under the 
same conditions as part of our treatment of a SCID-X1 patient.12 
Essentially, Paris conditions likely led to greater immunopheno-
typic heterogeneity at the end of the transduction protocol. The 
transduction conditions employed in this study differed principally 
with regard to the absence or presence of serum during vector pro-
duction and transduction, and the concentration of IL-3. The two 
trials also used packaging cell lines expressing different envelope 
proteins. This confounding factor was absent in the current study, 
where all vectors were GALV-pseudotyped.

We explored a lingering question pertaining to possible conse-
quences of the different transduction conditions employed in the 
Paris and London SCID-X1 trials by determining whether the phe-
notypic differences imparted by these conditions are recapitulated 
at the level of vector IS distributions. In recognition of the fact that 
junction fragment library construction was not replicated, consis-
tency of IS pattern coherence was first established within each of 
the IS datasets generated. The primary aim was to ascertain the 
capacity of CA to detect potentially very small pattern differences 
between independent IS datasets. In fulfillment thereof, CA was 
used to detect differences in IS patterns in cells transduced with the 
same vectors, but using either the Paris or London culture condi-
tions during transduction. Such differences are expected to be more 
subtle than those attributable to the use of γ-retro- versus lentiviral 
vectors, or transduction of different cell types, although the use of 
the two transduction conditions in this study did lead to different 
immunophenotypic distributions. We assayed only a single sample 
from each condition, so within-condition variation is uncharacter-
ized and represents an alternative explanation for the difference 
detected. CA revealed that integration patterns are most coherent 
amongst PBMCs recovered from patients treated in the Paris and 
London SCID-X1 trials, as opposed to patterns from transduced 
CD34+ cells being compared to these clinical datasets. This obser-
vation is likely attributable to the fact that bulk transduced CD34+ 
cells characterized by heterogeneous immunophenotypes were 
compared to cells that arose from the expansion of transduced true 
hematopoietic progenitor cells (HPCs) characterized by narrowly 
defined immunophenotypes. Furthermore, integration events in 
bulk transduced cells are recoverable irrespective of whether or 
not they are located favorably for transgene expression, whereas 
only cells whose progenitors harbored productive integrations are 
expected among PBMCs of treated patients. Furthermore, both bulk 
transduced integration patterns were more coherent with PBMC 
patterns from London patients than with Paris patients (Figure 4b). 
This could conceivably be attributed to the use of an amphotropic 
envelope in the Paris trial, compared to a GALV envelope in the 
London trial as well as both of our CD34+ cell transductions.

The integrity of the CA findings was confirmed by investigating 
the specific underlying differences in integration behavior in the 
two samples transduced under the Paris and London transduction 
conditions. This entailed the use of established analytical meth-
odologies to compare IS datasets, relying upon associations of IS 
distributions with selected genomic features. Implementation of 
methodological strategies to improve recovery of junction frag-
ments led to datasets of such high complexity that they facilitated 
statistical comparison of IS counts at every known coding gene in 
the genome. These comparisons revealed that up to 7.5% of all cod-
ing genes display a statistically higher frequency of integration in 
one transduction dataset compared to another, though again we 

note that the variation among replicates for a single condition has 
not been studied. The number of discriminatory genes is consid-
erably larger for the Paris transduction conditions, most probably 
as a consequence of the greater phenotypic diversity among this 
transduced cell population. The oncogene LMO2, dysregulation of 
which was linked to the development of leukemia in four of the five 
patients in the SCID-X1 trials, was amongst the loci displaying statis-
tically higher levels of integration under Paris compared to London 
transduction conditions, but only in a narrow interval around the 
TSS. This is consonant with the tighter IS clustering around TSSs 
resulting from the Paris conditions, when averaged for all genes. 
It is noteworthy that two of the three clonal LMO2 integrations 
amongst the patients that developed leukemia in the Paris SCID-X1 
trial were within 5 kb of the LMO2 TSS (the third was at a distance of 
10.6 kb), whereas the LMO2 integration in the London trial leuke-
mia case was 35 kb from the TSS. Direct comparison of integration 
counts revealed a statistically supported bias in favor of Paris over 
London transduction conditions near hematological oncogenes. 
The level of significance achieved for oncogenes not specifically 
associated with hematological malignancies (collectively, as a gene 
set) was much greater than for hematological oncogenes, given the 
considerably larger numbers of loci comprising this gene set. Again, 
this is consistent with the tighter TSS-proximal IS clustering under 
Paris conditions. Overall, the observed dissimilarities would support 
a hypothesis of Paris transduction conditions imparting a higher 
oncogenic risk than the London conditions, consistent with the 
observed incidence of leukemia in the two trials. However, defini-
tive conclusions will require analysis of multiple replicates under 
each condition and the characterization of integration profiles 
amongst subpopulations of transduced cells specifically represent-
ing uncommitted HPCs.

The pronounced clustering effects resulting from Paris com-
pared to London transduction conditions are despite the greater 
phenotypic heterogeneity amongst the former transduced cell 
population. Such phenotypic variance would dilute the observ-
able integration patterns, since phenotypically different cells 
are likely to exhibit different IS patterns.4 This suggests that the 
actual effects of the Paris trial transduction protocol on true 
HPCs might be more accentuated than the observable effects in 
a bulk population of transduced cells. This is supported by the 
even more pronounced effects seen in the Paris patient PBMC 
dataset (Figure 5 and Supplementary Figure S1). The PBMCs from 
which this dataset was derived would have originated from a nar-
rowly defined set of HPCs, and the differences seen between bulk 
CD34+ cells transduced under Paris conditions and PBMCs from 
Paris patients are probably accounted for by phenotypic hetero-
geneity and homogeneity, respectively. An immediately apparent 
interpretation of the higher proportion of integration at hema-
tological oncogenes in patient-derived cells compared to bulk 
transduced CD34+ cells would be that all such integration events 
individually imparted a survival advantage, consistent with non-
malignant clonal expansions of transduced cells.21 Alternatively, 
the integration profile observed in patient cells could reflect the 
specific subtype of CD34+ cells, at the time of transduction, with 
long-term repopulating potential. More of the genes involved in 
hematopoietic development and regulation would be active and 
accessible to integration in these cells than in a bulk population 
of CD34+ cells, only a small proportion of which represents true 
HPCs. These two explanations could be conceptually linked if a 
pronounced loss of true HPCs under Paris conditions leads to 
increased proliferative pressure on the remaining HPCs, result-
ing in selection of clones with integrations near hematological 
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oncogenes. A further comparison of ISs in transduced CD34+ cells 
versus PBMCs recovered from treated patients yields potential 
insight into the impact of vector integration on gene function at 
different stages of cellular differentiation. Intragenic integrations 
were more abundant in both our bulk transduced cell datasets 
than in patient PBMCs (Supplementary Table S2). This contrasts 
with the reported lack of difference in intragenic integration fre-
quency in transduced PB T-cells pre- and post-transfusion,22 yet 
is in agreement with higher abundance of intragenic integration 
in CD34+ cells pre-gene therapy compared to CD3+ and CD15+ 
cells post-gene therapy.4 These apparently discrepant findings 
could be reconciled by consideration of the following postulate: 
A larger proportion of progenitor cells is rendered nonviable by 
integrations within transcriptional units of genes required during 
hematopoietic development and differentiation, compared to 
the proportion of already differentiated T-cells harboring integra-
tions in such genes.

In conclusion, we introduce CA as a tool that can sensitively detect 
subtle differences in vector IS patterns, uncoupled from their associ-
ation with specific genomic or epigenetic features. We showed that 
CA can distinguish IS patterns induced by the different cell culture 
conditions employed during transduction as part of the Paris and 
London SCID-X1 trials in one replicate of each. These pattern differ-
ences were validated by application of established methodologies 
to compare IS datasets, which warrant further investigation of the 
hypothesis that Paris transduction conditions could engender IS 
distributions carrying a higher risk of oncogenesis than the London 
trial conditions.

MATERIALS AND METHODS
Cells and transduction conditions
Hematopoietic stem cells mobilized in a 7-year-old male pediatric oncol-
ogy patient using G-CSF and chemotherapy were CD34-selected using an 
Isolex 300i device (Baxter, Old Toongabbie, Australia) and cryopreserved. 
All cell stocks used in this study were no longer required for clinical appli-
cation, and available for research under a Human Research Ethics approval 
at the Children’s Hospital at Westmead. CD34+ cells were transduced with 
independent batches of MGMT-encoding MFG-based γ-retroviral vectors 
collected from the supernatant of PG13 producer cells. Vector stocks for the 
London conditions were serum-free, containing 1% human serum albumin 
(Albumex 20, CSL, Parkville, Australia). Vector stocks for the Paris condi-
tions contained 4% FCS (v/v, Invitrogen, Mulgrave, Australia). One trans-
duction was carried out under conditions employed in the Paris SCID-X1 
trial10,11 and three under the London SCID-X1 trial14 conditions (Table 1 and 
Supplementary Table S1). Detailed transduction protocols are provided as 
Supplementary Methods. It is to be noted that this study did not attempt to 
copy the clinical trial conditions in their entirety (e.g., cell selection proce-
dures and transgenes differed from the trials), such that the results do not 
translate directly to the clinical trials. A one-tailed unpaired t-test was used 
to compare fold-proliferation values (Supplementary Table S1). Percentage 
retention of CD34-positivity (not final CD34-positivity; Supplementary 
Table S1) was compared using a two-tailed t-test. The CD34+ retention of 
the L condition replicate wherein CD34-positivity increased during the 
transduction protocol was taken as 100%.

Junction fragment library construction
Genomic DNA from transduced cells was extracted using a Puregene Blood 
and Cell Culture DNA Kit (Qiagen, Chadstone Centre, Australia), according to 
the manufacturer’s protocol for cultured cells. DNA, eluted in DNA Hydration 
Solution, was stored at −20 °C until use. A previously described LM-PCR 
method16 was employed to selectively amplify junction fragments compris-
ing LTR-derived proviral DNA and adjoining host DNA sequences, as detailed 
in Supplementary Methods. Apart from primer design specific to the use of 
an Illumina NGS platform, the method was adapted to improve linker liga-
tion efficiency via partial filling of 5’ overhangs after gDNA digestion with 
Tsp509I (New England Biolabs, Genesearch, Arundel, Australia) and the liga-
tion of adapters compatible with the partially filled ends. This approach 

prevents religation of restricted gDNA. Furthermore, to accommodate input 
fragment length limitations pertaining to library sequencing on the Illumina 
Genome Analyzer IIx (GAIIx) platform, LM-PCR amplicons >400 bp were 
reprocessed using two additional restriction endonucleases (REs) with four-
base recognition sequences: MboI (New England Biolabs) and Csp6I (Thermo 
Fisher Scientific, Scoresby, Australia). This ensured that LM-PCR amplicons 
that would otherwise have been too large to facilitate efficient bridge ampli-
fication could be sequenced, thus increasing the recovery of ISs. While the 
choice of the RE for methods utilizing RE digestion is known to bias IS recov-
ery,23,24 the ascertainment biases apply equally to both junction fragment 
libraries in this study.

Fragment library sequencing and mapping of ISs
Synchronous sequence homogeneity in the first 32 positions of all reads 
(arising from the vector LTR) was accommodated by applying the spectral 
calibration parameters of an adjacent flow cell lane containing balanced 
heterogeneous nucleotide distributions from another library, thereby facili-
tating correct base calling. Relevant reads from P and L libraries were identi-
fied using Bowtie25 by searching for the 28-base LTR sequence contributed 
to the amplicons by the primer MLVN1 (Supplementary Methods), allow-
ing two mismatches or 5’ truncations. Reads were also required to contain 
the sequence TTCA in positions 29–32, derived from amplification primed 
specifically off the LTR. A custom Perl script was used to trim MLVN1- and 
LTR-derived proximal sequences. Potential distal adapter sequences were 
identified using Bowtie and trimmed using another custom Perl script. 
The approach was to screen reads for distal adapter sequences of 26 bases; 
the remainder for 25 bases; and iteratively down to only a single base (G). 
The search allowed up to two mismatches for distal adapter sequences 
of 26-20 bases, one mismatch for 19-10 bases, and no mismatch below 
10 bases. A further condition for recognition of putative distal adapter 
sequences was that they were preceded by the recognition sequences of 
Tsp509I, MboI, or Csp6I. After trimming of distal adapter sequences, reads 
were pooled with those not found to contain any sequence contributions 
from the distal adapter. The reads ranged in length from 44 bases to 18 bases 
(if the maximum 26-base distal adapter contribution was trimmed). Reads 
≥20 bases were mapped to human reference sequences hg19/GRCh37 and 
to hg18/NCBI36 using Bowtie, allowing no mismatches and disregarding 
any reads that mapped to more than one location under these conditions. 
Reads mapped with zero mismatches were mapped again, this time allow-
ing two mismatches. Any reads that mapped to more than one location 
under these conditions were disregarded. This strategy was implemented to 
reduce false-positive mapping of any reads having been generated on the 
GAIIx platform with one or two base position errors. The output from Bowtie 
was set to SAM format,26 which was further translated into BED format using 
BEDtools27 to obtain the coordinates of ISs in the human genome. The base 
pair prior to the first position of every mapped forward orientation read was 
taken to denote the position of the respective integration event. Similarly, 
the last base pair of every reverse orientation read was taken as the position 
of integration.

Generation of matched random control sites
A set of MRC sites was computationally generated for statistical comparison 
with the different IS datasets. These MRCs were selected based on the use of 
the Tsp509I RE during junction fragment library generation, and the size selec-
tion of the LM-PCR amplicons. All genomic positions greater than 18 bp and 
less than 360 bp from Tsp509I sites were identified using a custom Perl script, 
yielding 1,453,022,637 and 1,454,239,958 unique locations for hg18 and hg19, 
respectively, wherein true integration events could theoretically be detected 
by the junction fragment recovery method employed. MRC site sets of differ-
ent sizes were obtained using the random number generator function in Perl 
to suit individual analysis needs, as used in similar applications previously.2,28 
After identification, randomly selected positions were mapped back to chro-
mosomes in proportions reflective of the relative chromosome sizes.

Coherence analysis
CA assesses the association between a pair of point processes, and does so 
in the frequency (Fourier) domain. In our case, the point processes are col-
lections of ISs on the human genome, and frequency f can be thought of as 
a reciprocal of genomic window size w:

f w~ /1� (1)
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The coherence Cxy of two point processes x and y, for a given frequency f, 
is defined as

C f
G f

G f G fxy
xy

xx yy
( )

( )

( ). ( )
=

2

� (2)

where Gxx(f) and Gyy(f) are the spectral densities of the two processes and 
Gxy(f) is the cross-spectral density. The spectral density of a point process is 
the Fourier transform of its autocovariance density, while the cross-spectral 
density of two point processes is the Fourier transform of the cross-covari-
ance density.29 Cxy(f) can be interpreted as the degree to which the two point 
processes are in phase with each other at frequency f. For every IS dataset 
included in CA, IS coordinates across all chromosomes were concatenated 
into a single-vector sequence, essentially converting the human genome 
into a single chromosome for computational purposes. Coherence values 
were computed using chronux (http://chronux.org/),30 an open-source soft-
ware package developed for analysis of neurobiological time series data 
implemented in MATLAB (MATLAB, Statistics and Signal Processing Toolbox 
Release 2012b, MathWorks, Sydney, Australia). All single-vector IS coordi-
nates were rescaled by a divide factor d, proportional to the full range of 
coordinates being considered for any genomic interval tested (parameter: 
delay_times; see Supplementary Table S6). This is necessary to ensure com-
putational feasibility when dealing with large numerical ranges of point pro-
cesses, in this instance coordinates pertaining to the human genome. After 
the coherence values were plotted across the frequency domain F, the corre-
sponding nucleotide window sizes (Figure 1, x-axis labels) w were obtained 
using w = d/F. After ascertaining that the chronux coherencypt() function 
produces the same comparative results as the coherencypb() function for 
subgenomic intervals ≤1 Mb, coherencypt() was used for comparative analy-
ses of larger intervals, owing to the prohibitively high memory utilization 
of coherencypb() in the context of our particular application. Coherencypt() 
(parameters: Fs, fpass, err, Pad and tapers) was used to compute coher-
ence values for all pair-wise comparisons of IS datasets. CA was performed 
across a range of genomic interval sizes (Figure 1; see Supplementary Table 
S6 for details of parameter choices), with analysis of shorter genomic inter-
vals computationally facilitating the sampling of datasets down to 20-kb 
windows. All subsamples of IS datasets were randomly sampled without 
replacement to avoid identical IS coordinates in different samples. Median 
coherence values were compared using Wilcoxon matched-pairs signed 
rank test, where the pairing of data refers to matched coherence values for 
the same frequency values.

Analysis and annotation of γ-retroviral ISs
Individual ISs were mapped to the closest University of California Santa Cruz 
(UCSC) known genes31 (UCSC Known Genes database: February 2012) TSSs 
using BEDtools. IS frequencies were counted in window sizes of 10 bp. For all 
genomic feature mapping applications, numbers of MRCs suitable for use 
as controls were randomly selected. ISs of all datasets were also classified 
as TSS-proximal, intragenic and intergenic relative to UCSC known genes, 
defined as follows: (i) transcription start site (TSS)-proximal when located 
within 2.5 kb upstream or downstream of a TSS; (ii) intragenic when located 
between the TSS and transcription end site (except for those sites that fulfil 
the criterion of being TSS-proximal); and (iii) all remaining sites are regarded 
as intergenic.2 For the generation of IS heat maps relative to annotated 
genomic features, over- and underrepresentation was calculated by statisti-
cal comparison against MRC sites using the receiver operating characteristic 
(ROC) curve area method.6,32

Statistical analysis of IS counts across defined gene intervals
ISs were counted in intervals of TSS ±100 kb (the distance at which strong 
LTR-encoded enhancer/promoter elements can still upregulate gene expres-
sion bidirectionally33) and ±5 kb at 19,885 coding gene loci across the human 
genome. All coding genes were divided into three discrete categories by 
extracting a subset of oncogenes, leaving “other coding genes” (n = 17,822), 
and from within the oncogenes, those associated with hematological malig-
nancies (“hematological oncogenes”, n = 89), leaving “other oncogenes” (n 
= 1,852). Oncogenes were defined as all coding genes in the “allOnco” list 
at http://www.bushmanlab.org/links/genelists. Hematological oncogenes 
comprise nonredundant genes, combining lists “humanLymph” from the 
same URL and the “Leukemia Gene Database” (www.bioinformatics.org). 
Interval counts were expressed as proportions of the total number of sites 
in the respective datasets. Over-representation ratios were computed based 

on IS proportions divided by MRC proportions for the same intervals. This 
calculation cannot be done where the MRC count is zero (as was the case at 
one locus) and is unstable where the MRC count is less than 20. For these rea-
sons, 122 genes were omitted from this analysis. Mean over-representation 
scores pertaining to counts in the TSS ±100 kb intervals for the three gene 
categories were compared within and between datasets, using independent 
t-tests (Figure 3a). To identify genes at which integration frequencies statis-
tically discriminate between the P and L datasets, one-sided Fisher’s exact 
tests for 2 × 2 contingency tables34 were performed using the IS counts in TSS 
±100 kb and ±5 kb intervals of all coding genes. ISs near LMO2 were plotted 
using the UCSC Genome Browser.35
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