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ABSTRACT

A primary challenge in the analysis of RNA-seq data
is to identify differentially expressed genes or tran-
scripts while controlling for technical biases. Ideally,
a statistical testing procedure should incorporate
the inherent uncertainty of the abundance estimates
arising from the quantification step. Most popular
methods for RNA-seq differential expression analy-
sis fit a parametric model to the counts for each gene
or transcript, and a subset of methods can incorpo-
rate uncertainty. Previous work has shown that non-
parametric models for RNA-seq differential expres-
sion may have better control of the false discovery
rate, and adapt well to new data types without re-
quiring reformulation of a parametric model. Existing
nonparametric models do not take into account in-
ferential uncertainty, leading to an inflated false dis-
covery rate, in particular at the transcript level. We
propose a nonparametric model for differential ex-
pression analysis using inferential replicate counts,
extending the existing SAMseq method to account
for inferential uncertainty. We compare our method,
Swish, with popular differential expression analysis
methods. Swish has improved control of the false
discovery rate, in particular for transcripts with high
inferential uncertainty. We apply Swish to a single-
cell RNA-seq dataset, assessing differential expres-
sion between sub-populations of cells, and compare
its performance to the Wilcoxon test.

INTRODUCTION

Quantification uncertainty in RNA-seq arises from frag-
ments that are consistent with expression of one or more
transcripts within a gene, or fragments which map to mul-
tiple genes. Abundance estimation algorithms probabilisti-
cally assign fragments to transcripts, and may simultane-

ously estimate technical bias parameters, providing a point
estimate of transcript abundance. Transcript abundance can
be compared across samples directly, or transcript abun-
dances can be summarized within a gene to provide gene-
level comparisons across samples. However, incorporating
the uncertainty of the quantification step into statistical
testing of abundance differences across samples is challeng-
ing, but nevertheless critical, as the inferential uncertainty is
not equal across transcripts or genes, but is higher for genes
with many similar transcripts (transcript-level uncertainty)
or genes that belong to large families with high level of se-
quence homology (gene-level uncertainty).

Methods designed for transcript-level differential expres-
sion (DE) analysis include BitSeq (1), EBSeq (2), Cuffdiff2
(3), IsoDE (4) and sleuth (5). BitSeq uses MCMC samples
from the posterior distribution during abundance estima-
tion of each sample, to build a model of technical noise
when comparing abundance across samples. A parametric
Bayesian model is specified with the distribution for the
abundance in a single sample being conjugate, such that the
posterior inference comparing across samples is exact. EB-
Seq takes into account the number of transcripts within a
gene when performing dispersion estimation, while Cuffd-
iff2 models biological variability across replicates through
over-dispersion, as well as the uncertainty of assigning
counts to transcripts within a gene, using the beta negative
binomial mixture distribution. IsoDE and sleuth leverage a
measurement of quantification uncertainty from bootstrap-
ping reads when performing DE analysis. These methods
therefore may offer better control of FDR for transcripts
or genes with high uncertainty of the abundance. BitSeq,
EBSeq, Cuffdiff2 and sleuth incorporate biological variance
and inferential uncertainty into a parametric model of gene
or transcript expression, while IsoDE focuses on compar-
isons of bootstrap distributions for two samples at a time,
aggregating over random pairs or all pairs of samples in two
groups in the case of biological replicates. Another method,
RATs (6), provides a test for differential transcript usage
(DTU). RATs takes inferential uncertainty into account by
repeating the statistical testing procedure across inferen-
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tial replicates (posterior samples or bootstrap replicates),
and then offers a filter on the fraction of replicate analy-
ses which achieved statistical significance. In this study, we
focus on differential transcript expression (DTE) and differ-
ential gene expression (DGE), the latter defined as a change
in the total expression of a gene across all of its transcripts.

BitSeq, EBSeq, Cuffdiff2 and sleuth rely on parametric
models of the transcript or gene abundance, assuming un-
derlying distributions for the data and sometimes also for
the parameters in the context of a Bayesian model. The dis-
tributions are typically chosen for being robust across many
experiments and for efficient inference. In a recent simula-
tion benchmark of DTE and DGE, EBSeq and sleuth did
have improved performance for detecting DTE compared to
methods designed for gene-level analysis, for EBSeq when
sample size was large (n ≥ 6) and for sleuth when the sam-
ple size was low to moderate (n ∈ [3, 6]) (7), lending support
for these models specialized for transcript-level inference.
In this simulation benchmark, EBSeq and sleuth performed
similarly to methods designed for detecting DGE, where un-
certainty in abundance estimation is greatly reduced as de-
scribed by Soneson et al. (8).

Previous studies have shown that nonparametric meth-
ods for differential expression analysis may be more robust
compared to parametric models when the data for certain
genes or transcripts deviates from distributional assump-
tions of the model (9). Li and Tibshirani (9) proposed SAM-
seq, which has high sensitivity and good control of FDR at
the gene-level, when the sample size is 4 per group or higher
(7,10,11). SAMseq uses a multiple re-sampling procedure
to account for differences in library size across samples, and
then averages a rank-based test statistic over the re-sampled
datasets to produce a single score per gene. We considered
whether the SAMseq model could be extended to account
for inferential uncertainty during abundance estimation, as
well as batch effects and sample pairing.

Further, we investigated whether a nonparametric
method for comparison of counts, which accounts for
inferential uncertainty, would provide benefit for new types
of data exhibiting different distributions compared to bulk
RNA-seq experiments. Single cell RNA-seq (scRNA-seq)
provides researchers with high-dimensional transcriptomic
profiles of single cells (12), revealing inter-cell heterogene-
ity and in particular sub-populations of cells that may
be obscured in bulk datasets. Due to the limited amount
of RNA material in a single cell and the low capture
efficiency, all current protocols for scRNA-seq experiments
use amplification techniques. To reduce the amplification
bias, it is common to use Unique Molecular Identifiers
(UMIs), short random sequences that are attached to the
cDNA molecules per cell (13). Ideally, by counting the
total number of distinct UMIs per gene and per cell, one
obtains a direct count of cDNA molecules, reducing bias
from amplification.

Among the multiple different types of assays available
for UMI-tagged scRNA-seq, droplet-based protocols have
been of particular importance because of their relatively low
cost, higher capture rate, robustness and accuracy in gene-
count estimation. However, current dscRNA-seq (droplet-
based single-cell RNA sequencing) protocols are limited
in their resolution, as they only sequence the 3′ end of

the mRNA molecule. This complicates full transcript-level
quantification, and in fact such quantification is not possi-
ble for collections of transcripts that are not disambiguated
within a sequenced fragment’s length of the 3′ end. More-
over, since dscRNA-seq protocols typically rely on con-
siderable amplification of genomic material, the UMI se-
quences designed to help identify duplicate fragments are
often subject to errors during amplification and sequencing.
Most dscRNA-seq quantification pipelines (14–17) thus in-
clude some method for de-duplicating similar UMIs (i.e.
UMIs within some small edit distance) attached to reads
that align to the same gene. These dscRNA-seq quantifi-
cation pipelines (14–17) simplify the problem of gene-level
count estimation by discarding the gene-ambiguous reads,
which represent a considerable portion of the data (12-23%
as reported by Srivastava et al. (18)). Alevin (18) is the first
tool to propose a method to account for sequencing and
amplification errors in cellular barcodes (CB) and UMIs
while also taking into account gene multi-mapping reads
during quantification. To resolve gene ambiguity, Alevin
first uses the Parsimonious UMI Graph (PUG) resolu-
tion algorithm. In the case that parsimony fails to distin-
guish a single best gene, abundance is estimated by utilizing
the proportion of uniquely-mapping reads per gene to dis-
tribute ambiguous counts by an expectation-maximization
procedure. Alevin also can produce inferential replicates
in the form of multiple matrices of estimated counts, via
bootstrapping of the counts in their PUG model. We as-
sessed how incorporation of this inferential uncertainty us-
ing Swish resulted in different sets of DE genes compared
to those called by a rank-based test ignoring uncertainty, in
the context of calling DE genes between sub-populations of
cells detected in scRNA-seq.

We describe a nonparametric method for gene- or
transcript-level differential expression analysis, ‘SAMseq
With Inferential Samples Helps’, or Swish, that propagates
quantification uncertainty from Gibbs posterior samples
generated by the Salmon (19) method for transcript quan-
tification. In addition to the incorporation of uncertainty in
the counts, Swish also extends the two group comparison in
SAMseq by handling experiments with discrete batches or
sample pairing. We show through simulation studies that
the proposed method has better control of FDR and bet-
ter sensitivity for DTE, compared to existing methods de-
signed for transcript-level or gene-level analysis. For DGE,
Swish tends to perform as well as existing methods de-
signed for gene-level analysis, with better control of FDR
than SAMseq for genes with high inferential uncertainty.
We also compare Swish, leveraging estimation uncertainty,
with a Wilcoxon test on gene expression in scRNA-seq sub-
populations of cells in the developing mouse brain. Swish is
available within the fishpondR/Bioconductor (20) pack-
age: https://bioconductor.org/packages/fishpond.

MATERIALS AND METHODS

Median-ratio scaled counts

In order to apply nonparametric rank-based methods to es-
timated counts per gene or transcript, we first remove bi-
ases on the counts due to library size differences or changes

https://bioconductor.org/packages/fishpond
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in the effective length of the gene or transcript across sam-
ples (19). For 3′-tagged datasets, where we do not expect
counts to be proportional to length, we correct only for li-
brary size but not for effective length, which is not com-
puted. scaledTPM counts are generated which are roughly
on the scale of original estimated counts, but are adjusted
to account for technical biases with respect to effective tran-
script or gene length (8). We perform median-ratio normal-
ization (21) of the scaledTPM, to remove any residual dif-
ferences in scaledTPM across samples due to library size
differences. The resulting scaled counts can then be directly
compared across samples.

Suppose a matrix Y0 of estimated counts from Salmon.
The rows of the matrix represents genes or transcripts, (g
= 1, . . . , G), and columns represent samples, (i = 1, . . . , m).
Let Y0

gi denote the count of RNA-seq fragments assigned to
gene g in sample i. The estimated counts Y0

gi are divided by a
bias term accounting for the sample-specific effective length
of the gene or transcript, denoted as lgi (8,22). We first scale
the lgi by the geometric mean over i, giving a bias correction
term bgi centered around 1:

bgi = lgi/
( m∏

j=1

lg j
) 1

m .

Then we divide the bgi from the estimated counts:

Y∗
gi = Y0

gi

bgi
.

Again, for 3′-tagged data, we set lgi = bgi = 1 in the above.
The Y∗

gi are scaled to the geometric mean of sequencing
depth, by

Y∗∗
gi = Y∗

gi∑G
g=1 Y∗

gi

× ( m∏

j=1

G∑

g=1

Y0
g j

) 1
m .

For each sample i a median-ratio size factor is computed as

ŝi = mediang
Y∗∗

gi
( ∏m

j=1 Y∗∗
g j

) 1
m

, (1)

where the median is taken over g where the numerator and
denominator are both greater than zero. For scRNA-seq
data, an alternative size factor estimate is used, as described
in a later section. Lastly, the scaled count used for nonpara-
metric methods is given by:

Ygi = Y∗∗
gi

ŝi
. (2)

After scaling, we filter features (genes or transcripts) with
low scaled counts and therefore low power: for bulk RNA-
seq, we recommend keeping features with an estimated
count of at least 10 across a minimal number of samples,
and here we set the minimal number of samples to 3. For
UMI de-duplicated scRNA-seq data, we lowered the mini-
mum count to 3 and require at least 5 cells, as described in
a later section.

We scale all of Salmon’s Gibbs sampled estimated count
matrices using the above procedure. For posterior sampling,

Salmon adopts a similar approach to MMSEQ (23) to per-
form Gibbs sampling on abundance estimates, alternating
between (i) Multinomial sampling of fragment allocation to
equivalence classes of transcripts and (ii) conditioning on
these fragment allocations, Gamma sampling of the tran-
script abundance, as described in further detail in the Sup-
plementary Note 2 of Patro et al. (19). The Gibbs samples
are thinned every 16th iteration to reduce auto-correlation
(Salmon’s default setting), and 20 thinned Gibbs samples
are used as the posterior samples in the following methods.

Inferential relative variance

For each gene (or transcript) from each sample, S Gibbs
sampled estimated counts are generated using Salmon. Es-
timated counts are then scaled and filtered as described
above.

We define the inferential relative variance (InfRV), per
gene and per sample, as

InfRV = max(s2 − μ, 0)
μ

,

where s2 is the sample variance of scaled counts over Gibbs
samples, and � is the mean scaled count over Gibbs sam-
ples. In practice, we also add a pseudocount of 5 to the
denominator and add 0.01 overall, in order to stabilize the
statistic and make it strictly positive for log transformation.
InfRV is therefore a measure of the uncertainty of the esti-
mated counts, which is roughly stabilized with respect to �
(Supplementary Figure S1). The larger the InfRV, the higher
the uncertainty in quantification for that gene or transcript
in that sample relative to other genes with the same mean.
Note that InfRV is not used in the Swish statistical testing
procedure, but only used in this work for visualization pur-
poses, to categorize genes or transcripts by their inferen-
tial uncertainty, in a way that is roughly independent of the
range of counts for the feature.

Test statistic over Gibbs samples

In Swish, we consider experiments with samples across two
conditions of interest. We additionally allow for two or
more batches to be adjusted for, or comparisons of paired
data, described below. We first consider an experiment with
two conditions and no batches. Let mk denote the sample
size in condition k, k = 1, 2, and m1 + m2 = m. Let Ck de-
note the collection of samples that are from condition k.

For the following, consider a single matrix Ys
gi of scaled

counts from one of the Gibbs samples, (s = 1, ···, S). For
gene g, the scaled counts Ys

gi estimated from (2) are ranked
over i. To break ties in Ys

gi over the m biological samples, a
small random value is draw from Uniform(0, 0.1) and added
before computing the ranks, as in Li and Tibshirani (9). Let
Rs

gi denote the rank of sample i among m biological samples
for gene g. As in Li and Tibshirani (9), for a two group com-
parison we use the Mann–Whitney Wilcoxon test statistic
(24) for gene g:

Ws
g =

∑

i∈C2

Rs
gi − m2(m + 1)

2
. (3)
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Under the null hypothesis that gene g is not differentially
expressed, Ws

g has expectation zero.
For every gene g = 1, ···, G, we calculate Ws

g for all Gibbs
sampled scaled count matrices (s = 1, ···, S). As in Li and
Tibshirani (9), we compute the mean over imputed count
matrices as the final test statistic for gene g:

Tg = 1
S

S∑

s=1

Ws
g . (4)

The main difference between Swish and SAMseq is the
use of inferential replicate count matrices from an upstream
quantification method as input to the Mann–Whitney
Wilcoxon test, as opposed to Poisson down-sampled count
matrices. Additionally, Swish extends SAMseq for various
other experimental designs, described below.

Stratified test statistic

In experiments with two or more batches, the above test
statistic can be generalized to a stratified test statistic as de-
scribed in van Elteren (25). We use the following to produce
a summarized test statistic:

1. Stratify the samples by the nuisance covariate (e.g.
batch). Suppose we have J strata. In stratum j the sam-
ple size for condition k is mj, k and the total sample size
is mj, i.e. mj, 1 + mj, 2 = mj.

2. For stratum j, compute the test statistic T j
g .

3. The final test statistic is calculated as the weighted com-
bination of T j

g over J strata

Tstrat
g =

J∑

j=1

ω j T j
g , (5)

where ω j = 1
m j + 1

is the weight assigned to strata j.

When the difference in expression for gene g is consis-
tent across batches, the weighted test statistic maximizes the
power of test (26).

Signed-rank statistic for paired data

In experiments with paired samples, e.g. before and after
treatment, we use a Wilcoxon signed-rank test statistic (24)
in (4) in lieu of the Mann-Whitney Wilcoxon statistic (3).
For pair index p = 1, . . . , m/2:

Ws
g =

∑

p

sign(�s
gp)Rs

gp (6)

where �s
gp is the difference in Ys

gi for the two samples in pair
p, and Rs

gp is the rank over pairs of |�s
gp|.

Unlike the Mann–Whitney Wilcoxon and stratified ver-
sion described previously, the signed-rank statistic is not
necessarily identical after transformation of the data by a
monotonic function, e.g. by the square root or shifted log-
arithm. We choose to keep the data as scaled counts when
computing the signed-rank statistic, and not to perform the
square root or other transformation, so as to promote the

association of higher ranks to matched samples with higher
scaled counts for a given gene or transcript.

Mann–Whitney Wilcoxon for differences across two groups

In experiments with two groups of paired samples, e.g.
before and after treatment, with pairs of samples divided
across two treatments, one may be interested in testing if the
effect of treatment is the same across the two groups. Here,
we use a Mann–Whitney Wilcoxon test statistic on the log
fold changes computed on the pairs, again taking the mean
of this statistic over inferential replicates. This test will reject
the null hypothesis for genes or transcripts where the multi-
plicative effect on counts differs across the two treatments,
while controlling for any differences at baseline. It is analo-
gous to testing an interaction term in linear model. The log
fold change is chosen here, as opposed to the difference in
count for the signed-rank statistic chosen above, as the lat-
ter would be sensitive to differences of the baseline counts
across the two treatments, which is not desired.

Permutation for estimation of FDR

Under the null hypothesis that gene g is not differentially
expressed, the distribution of test statistic Tg in (4)-(6) is
not known. Instead, following the approach in SAMseq (9)
we use permutation tests to construct the null distribution
for Tg (by default 30 permutations). In the case of stratified
data, we perform permutations independently within strata
and calculate a weighted test statistic as in (5). For paired
data, we randomly permute condition labels within pairs.
Finally we use the permutation plug-in method (27) to esti-
mate the q-value for each gene g, leveraging functions in the
R package qvalue (27). We provide the option to estimate
�0, the proportion of nulls, from the observed test statis-
tics and the permutation null distribution, but by default
we set π̂0 = 1, which reduces to the method of Benjamini–
Hochberg (28) for FDR control. In practice, 4 samples per
group is sufficient for the permutation method to have sen-
sitivity to detect differential expression (9,11).

Simulation of bulk RNA-seq

In order to evaluate Swish and other methods, we make
use of a previously published simulated RNA-seq dataset
(7), which we briefly describe here. polyester (29) was used
to simulate paired-end RNA-seq reads across four groups
of samples: two condition groups with various differential
expression patterns described below, which were balanced
across two batches. One batch demonstrated realistic frag-
ment GC bias, and one batch demonstrated approximately
uniform coverage. The fragment GC bias was derived via
alpine (30) from GEUVADIS samples (31). Likewise, the
baseline transcript expression was derived from a GEU-
VADIS sample. Each condition group had 12 samples in
total, equally split among the two batches, giving 24 sam-
ples in all. Fragments were simulated from 46 933 expressed
transcripts belonging to 15 017 genes (Gencode (32) release
28 human reference transcripts).

70% of the genes were simulated with no differential ex-
pression across condition, while 10% of the genes had all of
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their transcripts differentially expressed with the same fold
change, 10% of the genes had a single transcript differen-
tially expressed, and 10% of the genes had shifts in expres-
sion among two of their transcript isoforms which resulted
in no change in total expression. For the purpose of gene-
level differential expression, 20% of the genes were non-null
due to changes in total expression. For transcript-level dif-
ferential expression, all transcripts expressed in the first cat-
egory were differentially expressed, as well as one transcript
per gene from the second category, and two transcripts per
gene from the third category.

Transcripts were quantified using Salmon v0.11.3 and
kallisto (33) v0.44.0, with bias correction enabled for both
methods, and generating 20 Gibbs samples for Salmon and
20 bootstrap samples for kallisto. The scripts used to gen-
erate the simulation are provided in the Code Availability
section, and links to the raw reads and quantification files
are listed in the Data Availability section.

Simulation evaluation

We evaluated methods across four settings:

1. DGE analysis with one batch of samples (fragment GC
bias), six samples in each of the two conditions,

2. DGE analysis with two balanced batches of samples, 12
samples in each of the two conditions,

3. DTE analysis with one batch of samples (fragment GC
bias), six samples in each of the two conditions,

4. DTE analysis with two balanced batches of samples, 12
samples in each of the two conditions.

To evaluate the performance of methods on DGE and
DTE, we use the iCOBRA package (34) to construct plots
of the true positive rate (TPR) over the false discovery
rate (FDR) at three nominal FDR thresholds: 1%, 5% and
10%. The methods compared include Swish, DESeq2 (11),
EBSeq (2), limma with voom transformation (35), SAM-
seq (9), and sleuth (5). We chose a set a methods to repre-
sent popular choices among classes of approaches. We note
that edgeR (36) and edgeR with quasi-likelihood (37) per-
formed well in a previous benchmark of this dataset (7),
with both performing similarly to limma. EBSeq and sleuth
are designed for DTE or DGE analysis taking the inferen-
tial uncertainty of quantification into account, while SAM-
seq, DESeq2, and limma are designed for gene-level analy-
sis, but have been shown nevertheless to be able to recover
DTE when supplied with transcript-level estimated counts
(7). We provided minimal filtering across all methods, re-
moving transcript or genes without an estimated count of
10 or more across at least 3 samples. We also used the
default recommended filtering functions filterByExpr
and sleuth prep for limma and sleuth, respectively.

For DESeq2, EBSeq, limma and SAMseq, we provided
the methods with counts on the gene- or transcript-level
generated by the tximport package (8), using the length-
ScaledTPM method. For the two balanced batches exper-
iment, we provided all methods with the batch variable, ex-
cept EBSeq and SAMseq which do not have such an op-
tion. For EBSeq andSAMseq, for the two batch experiment,
we first adjusted the counts using the known batch variable

and the removeBatchEffect function in the limma (38)
package, which improved the two methods’ performance.
For sleuth we directly provided kallisto quantification files
to the method, and for detection of DGE, changes in the
total expression of all the transcripts of a gene across con-
dition, we used the count summarization option.

Nonparametric methods have the advantage of being ro-
bust to outliers in sequencing data. To evaluate the robust-
ness of our method, we introduced outliers into the counts
of three randomly chosen transcripts that were not differ-
entially expressed in the simulation. For each of these tran-
scripts, we randomly selected one sample among the 12 to-
tal samples, and multiplied the estimated counts and the
Gibbs samples by 1000. We compared the q-values or ad-
justed P-values of these three transcripts from Swish, limma,
DESeq2 and EBSeq (Swish, compared to three parametric
methods that can take as input the modified count matri-
ces). For DESeq2, we turned off the Cook’s-distance-based
filtering procedure, to demonstrate the sensitivity of the un-
filtered test results to outliers.

Highly replicated RNA-seq datasets

To assess the performance of Swish on real bulk RNA-seq
datasets, in particular its control of the target FDR, we
downloaded two datasets that contain a large number of bi-
ological replicates, which make them useful for benchmark-
ing statistical methods for differential expression analysis.
The first dataset includes 43 high quality biological repli-
cates of wild type Saccharomyces cerevisiae (39). Random
sets of 10, 20, 30 and 40 samples were chosen from the to-
tal of 43 samples, and randomly split into two groups to
form test datasets. For each sample size, we repeat the re-
sampling process 100 times. The second dataset includes 16
high quality biological replicates of wild type Arabidopsis
thaliana (40). Again, random sets of 10 samples, or the en-
tire dataset of 16 samples was chosen, and randomly split
into two groups. Partitions of the data were chosen to bal-
ance the number of samples from batch 1, as we found this
batch to separate from batches 2 and 3 in exploratory data
analysis (Supplementary Figure S2). Again for each sam-
ple size, we repeated the resampling process 100 times. For
the yeast dataset, we focused on gene expression, while for
the Arabidopsis dataset, we investigated both gene and tran-
script expression. As the samples in all cases were from the
same experimental condition, and were chosen to balance
with respect to technical variation when present, we do not
expect any genes or transcripts to be reported as differen-
tially expressed. We focused on Swish, SAMseq and limma
for this analysis, as limma had strong control of the FDR
in many cases in the simulated data, and because Swish is
an extension of the SAMseq method. For each method, on
each random null dataset we recorded the proportion of
genes or transcripts reported in an FDR set for a 5% tar-
get, which can be interpreted as a false positive rate (FPR).

Single cell RNA-seq simulation

In order to assess the ability of Swish to make use of un-
certainty information contained in inferential replicates for
single cell RNA-seq, we constructed a simulation com-
bining the splatter (41) and polyester (29) Bioconductor
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packages. We used the human reference cDNA transcripts
from Ensembl release 95, and simulated gene expression for
35 583 genes. Read counts were simulated for 40 cells in
two groups using splatter with DE factor location of 3 on
the log2 scale, and DE factor scale of 1 on the log2 scale.
10% of genes were chosen to be differentially expressed.
Stranded single-end reads of length 100 bp were generated
using polyester, drawing from the 400 bp closest to the 3′ end
of one of the transcripts per gene, unless the transcript was
shorter than 400 bp in which fragments were drawn from
the entire transcript. This aspect of the simulation was cho-
sen to best reflect 3′-tagged scRNA-seq data, in which there
is more uncertainty in assigning reads to genes, compared
to full-length RNA-seq data. Gene-level expression was es-
timated by running Salmon using the Ensembl full length
cDNA reference transcripts as the index, without length
correction (as recommended for 3′-tagged reads) and sum-
marizing counts to the gene level with tximport.

Single cell RNA-seq of mouse neurons

We downloaded a dataset of scRNA-seq of the develop-
ing mouse brain in order to evaluate the performance of
Swish on RNA-seq counts with a different distribution
and with more gene-level inferential uncertainty than bulk
RNA-seq. In this dataset, cells from the cortex, hippocam-
pus and ventricular zone of a embryonic (E18) mouse were
dissociated and sequenced on the 10x chromium pipeline.
scRNA-seq data was quantified by Alevin (18) v0.13.0
with the default command line parameters along with --
numCellBootstraps 30 to generate 30 bootstrap esti-
mated count matrices. The total number of cells was 931,
and the number of genes was 52,325 (Gencode (32) release
M16 mouse reference transcripts).

In a comprehensive benchmark, Soneson and Robinson
(42) compared DE methods designed for both scRNA-seq
and bulk RNA-seq, and found that the Mann–Whitney
Wilcoxon test (24) had favorable performance compared to
numerous other methods in detection of DE genes across
cells. However, the Wilcoxon test was listed as having the
downside of not accommodating complex designs (e.g. co-
variate control, sample pairing or interaction terms). We
therefore compared Swish to the Wilcoxon test statistic in
detection of genes differentially expressed across clusters.

Seurat (43) was used to cluster the cells in the dataset.
First, cells with low quality were removed, based on quality
control plots (Supplementary Figure S3). Those cells having
<1500 or >6500 genes expressed were removed based on the
quality control plots. Additionally, those cells with >4% of
mitochondrial genes detected were removed. These filters
resulted in 835 cells remaining in the dataset. For Seurat
clustering, gene counts were then normalized by their total
count, multiplied by 10 000, and the shifted logarithm was
applied, with a shift of 1 to preserve zeros.

Only highly variable genes were used for clustering by
Seurat, which was determined by calculating the mean ex-
pression of scaled counts and dispersion for each gene, bin-
ning genes by mean expression into 20 bins, and calculat-
ing z-scores for s2/�, (the sample variance over the sam-
ple mean) within each bin. The highly variable genes were
defined as those with mean expression between 0.0125 and

3 on the natural log scale and z-score of 0.5 or larger. A
linear model was fit to the log scaled counts, to further re-
move any technical artifacts associated with the total num-
ber of UMIs detected per cell and with the percent of mito-
chondrial genes detected. The top 10 principal components
of residuals of highly variable genes were used to cluster
the cells, using Seurat’s graph-based unsupervised cluster-
ing method.

After defining clusters using the highly variable genes, we
returned to the matrix of estimated counts and attempted
to find genes which were differentially expressed across two
specific clusters. The clusters were chosen based on expres-
sion of neural differentiation marker genes reported by a
previous study (44). We applied both Swish and a standard
two-sample Wilcoxon test to the scaled counts of cells in
the two clusters. We scaled the counts using size factors esti-
mated with the setting type = ’poscounts’ in the DE-
Seq2 package (11), as recommended for scRNA-seq differ-
ential expression analysis (45). Genes without a count of
three or more in five or more cells were removed prior to
the DE analysis across clusters. Swish produces a q-value,
while the P-values from the Wilcoxon test were adjusted us-
ing the Benjamini-Hochberg (28) method to produce nom-
inal FDR bounded sets.

To assess the performance of Swish compared to the two-
sample Wilcoxon test on real scRNA-seq data, we sought
an independent dataset that we could regard as a pseudo-
gold-standard. As scRNA-seq may have its own systematic
biases, we focused for validation on a bulk RNA-seq dataset
also of embryonic (E14.5) mouse brain, which employed
laser-capture microdissection in order to isolate various re-
gions of the brain (46). We downloaded and quantified five
samples from the ventricular zone (VZ) and five samples
of the cortical plate (CP) using Salmon, and then analyzed
the bulk RNA-seq data on the gene-level using tximport fol-
lowed by DESeq2.

RESULTS

Simulation of bulk RNA-seq

We evaluated the InfRV in the simulated bulk RNA-seq
dataset at the gene and transcript level. At the transcript
level, there are two main sources of abundance uncertainty:
(i) among different transcripts within a gene and (ii) due
to homologous sequence of transcripts across genes. At the
gene level, we observed substantially less abundance uncer-
tainty, as expected (Figure 1). At the gene level, the uncer-
tainty among transcripts within a gene has been collapsed,
and only the latter source of uncertainty remains, also noted
by Soneson et al. (8).

At the gene level, where there was less quantification un-
certainty, Swish had similar performance as DGE methods
overall (Figure 2). For the experiment with a single batch,
Swish had similar TPR and FDR to EBSeq, limma, SAM-
seq and sleuth, and better control of FDR compared to DE-
Seq2. Swish had improved FDR control compared to SAM-
seq, but only slightly so, and this minor performance differ-
ence was expected as there was relatively low InfRV com-
pared to transcript-level analysis. For the experiment with
two batches, Swish, limma, and EBSeq showed the best per-
formance, with good sensitivity and control of FDR. Swish
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Figure 1. Mean of InfRV over samples for genes and transcripts in the simulation studies (log10 scale). InfRV is binned by increments of 0.1, so that 10
bins span an order of magnitude. (A) Gene level for the single batch experiment. (B) Transcript level for the single batch experiment.

Figure 2. True positive rate (y-axis) over false discovery rate (x-axis) for DGE analysis with only one batch of samples, with six samples in each of the two
conditions. The first panel depicts overall performance, while the subsequent three panels depict the genes stratified into thirds by InfRV averaged over
samples. For this and all following iCOBRA plots, the three circles per method indicate performance at nominal FDR cutoffs of 1%, 5% and 10%, with
the x-axis providing the observed FDR and the three FDR cutoffs indicated with black vertical dashed lines. A filled circle indicates observed FDR less
than or equal to nominal FDR, while an open circle indicates greater than nominal FDR.

had tight control of FDR for the 5% and 10% target while
SAMseq had observed FDR of 10% for the 5% target, and
observed FDR of 18% for the 10% target (Supplementary
Figure S4). sleuth exhibited loss of control of the FDR for
the 5% and 10% target in the two batch experiment (Sup-
plementary Figure S5).

At the transcript level, Swish had consistently high sen-
sitivity and good control of FDR, where other methods ei-
ther had low sensitivity or loss of FDR control in some set-
ting. Swish controlled FDR for all nominal FDR targets
(1%, 5%, and 10%), while SAMseq tended to exceed the 5%
and 10% target for transcripts with medium-to-high InfRV,

both for the single batch experiment (Figure 3), and the two
batch experiment (Supplementary Figure S6). As opposed
to gene-level analysis where there is relatively low InfRV,
at the transcript level the performance difference between
Swish and SAMseq is most obvious for the transcripts with
the most quantification uncertainty, as expected. This can
be seen in the bottom right panels of Figure 3 and Supple-
mentary Figure S6, which show the top third of transcripts
in the dataset by InfRV. limma had reduced sensitivity for
all InfRV categories, for both experiments, due to filtering
of DTE transcripts by filterByExpr (47). With a less
stringent filtering rule, limma showed improved sensitivity
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Figure 3. True positive rate (y-axis) over false discovery rate (x-axis) for DTE analysis with only one batch of samples, with six samples in each of the
two conditions. As in Figure 2, the first panel depicts overall performance, while the subsequent three panels depict the transcripts stratified into thirds by
InfRV averaged over samples.

compared to its default settings, but still >10% below the
sensitivity of other methods controlling the target FDR in-
cluding Swish (Supplementary Figure S7). EBSeq had high
sensitivity but loss of FDR control for the transcripts with
high InfRV. sleuth performed well in the single batch exper-
iment, but lost control of FDR for the 5% and 10% target
in the two batch experiment (Supplementary Figure S8).

We assessed the Mann–Whitney–Wilcoxon test on scaled
counts, with linear-model-based removal of batch effect for
the two batch experiment, followed by multiple test cor-
rection with the method of Benjamini–Hochberg (28) to
control FDR. In the gene-level and transcript-level exper-
iments, for both one and two batch experiments, use of
the Mann–Whitney–Wilcoxon test performed similarly to
SAMseq (Supplementary Figures S9–S12).

We examined how the methods performed on the sim-
ulation across a finer grid of sample sizes. We focused on
transcript-level analysis, and on the one batch experiment,
and varied the per-group sample size over the range, n ∈ {3,
4, 5, 9, 12, 15, 18, 20}. At sample sizes 3 and 4, Swish re-
turned the same set of transcripts for the 1%, 5% and 10%
target FDR, which controlled at 10% FDR for n=3, and
controlled at 1%, 5% and 10% for n = 4 (Supplementary
Figures S13 and S14). In contrast, SAMseq returned no
transcripts for any target FDR at n=3, and no transcripts
for the 1% target FDR at n=4. The n=5 experiment (Sup-
plementary Figure S15) had similar results to n = 6 (Figure
3), but with lower sensitivity for SAMseq for the 1% target.
In the experiments from n = 9 to n = 20, the top third tran-
scripts by InfRV revealed a difference between Swish and

SAMseq, where the latter exceeds the 5% and 10% FDR tar-
gets. In these higher sample size experiments, sleuth did not
control FDR for the 5% and 10% target, or the 1% target
for n starting at 15 (Supplementary Figures S16-S25).

When the count for a single sample for a null transcript
was modified to be an extreme outlier, Swish did not call
this transcript as differentially expressed, with q-value close
to one, as did limma with its adjusted P-values (Supplemen-
tary Table S1). DESeq2 with its outlier flagging procedure
turned off and EBSeq with default settings returned very
small adjusted P-values for these genes with inserted out-
liers. This case demonstrated another benefit of nonpara-
metric models in their robustness to model mis-specification
or outliers, also demonstrated by Li and Tibshirani (9).

Overall, Swish performed well at the gene level, out-
performing the method SAMseq, which it is based upon, in
the two batch experiment in terms of FDR control. Swish
out-performed other methods at the transcript level, both
for the single and two batch experiments, where other meth-
ods either had reduced sensitivity or loss of FDR in some
setting.

Highly replicated RNA-seq datasets

In the two highly replicated bulk RNA-seq datasets Swish
had lower false positive rate compared to SAMseq, and
similar to limma. In both datasets, in which no features
should be detected as differentially expressed by construc-
tion, Swish in particular had fewer random partitions in
which >5% of the features were called differentially ex-
pressed. In the yeast dataset Swish rarely called >5% of the
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features as differentially expressed, while SAMseq had more
such iterations where >5% or even up to 40% of the fea-
tures would be called differentially expressed (Supplemen-
tary Figures S26-S29). Overall limma tended to call very
few genes as differentially expressed in the null comparisons.
Similar relative performance could be seen in the Arabidop-
sis dataset, though overall there were fewer iterations with
high rates of false positive calls for any method, compared
to the yeast dataset. At the transcript level, there were rarely
any false positive calls for any method (Supplementary Fig-
ure S30 and S31). At the gene level, there were still few calls,
but SAMseq tended to have more iterations with nonzero
false positive rate, compared to the other two methods (Sup-
plementary Figure S32 and S33).

scRNA-seq simulation

The global performance of Swish and the Wilcoxon test was
similar on the splatter-polyester simulation. Still, we identi-
fied a number of individual null genes in which the Wilcoxon
test followed by Benjamini-Hochberg adjustment resulted
in a very low adjusted P-value, while Swish did not detect
these genes at a 5% nominal FDR target. After simulating
scRNA-seq counts for two groups of 20 cells each, and test-
ing at a target 5% FDR, Swish had 91.7% sensitivity and an
observed FDR of 5.3%, while the Wilcoxon test had 92.4%
sensitivity and an observed FDR of 5.7%. However, we de-
tected a number of null genes with spurious expression val-
ues in an MA-plot of the dataset (Supplementary Figure
S34). These null genes were assigned non-zero estimates of
expression––and differentially so across the two simulated
groups of cells –– due to sequence homology with other
genes which were simulated as differentially expressed. We
focused on 14 genes that could be identified in this MA plot,
which had a total count across cells >5, had a t-statistic >5,
and had InfRV >0.2. For all of these 14 genes, Swish gave a
greatly increased q-value (less significant) compared to the
adjusted P-value from the Wilcoxon test (Supplementary
Figure S35), such that 9 of the genes were not detected in
a 5% nominal FDR set. Plotting the inferential replicates
for all of the 40 cells for these genes revealed that there was
extensive inferential uncertainty for the non-zero counts for
these genes (Supplementary Figure S36). While examining
only a point estimate of the expression may lead a method
to infer differential expression for such null genes, taking
the inferential uncertainty into account during the statisti-
cal testing lead to more correct results for these genes, while
not affecting the overall sensitivity of the method for truly
differentially expressed genes.

scRNA-seq of mouse neurons

We evaluated the extent to which inclusion of uncertainty in
the gene-level abundance would affect differential expres-
sion in an scRNA-seq dataset. As described in the Mate-
rials and Methods, Seurat was used to identify clusters in
a dataset of 835 cells from embryonic mouse brain. Seurat
identified a total of nine clusters, visualized in Supplemen-
tary Figure S37. Expression level of known cell-type mark-
ers for developing mouse brain, as reported by Loo et al.
(44), was overlaid on the t-Distributed Stochastic Neigh-
bor Embedding (tSNE) (48) plot. Eomes, a gene expressed

in neural progenitor cells, was highly expressed in clus-
ter 7, while Neurod2, a marker of differentiated neurons,
was highly expressed in cluster 5 (Supplementary Figure
S38). We compared the test results of a two-sample Mann-
Whitney Wilcoxon (24) test to Swish across groups of cells
from cluster 5 and cluster 7. We defined sets of genes which
were called by Swish or the Wilcoxon test at a 5% threshold.

We used an independent bulk RNA-seq dataset as a
pseudo-gold-standard, to validate the calls of Swish and the
Wilcoxon test (46). This dataset contains bulk RNA-seq of
five samples from the ventricular zone (VZ) and five sam-
ples from the cortical plate (CP) of mice embryos of a simi-
lar age (E14.5) to the mice embryos in the scRNA-seq data
(E18). The brain regions were isolated using laser-capture
microdissection. We chose the VZ and CP regions from the
Fietz et al. (46) dataset to have highest correlation with clus-
ters 7 and 5 from the scRNA-seq dataset: the VZ is en-
riched with progenitor cells marked by Eomes, while the CP
is enriched with differentiated neurons marked by Neurod2.
We refer to the bulk RNA-seq dataset as a ‘pseudo-gold-
standard’, as the regions produced by microdissection con-
tain various cell types, and so the comparison of bulk with in
silico sorted single cells is not exact. Nevertheless, a Pearson
correlation of 0.61 was obtained when comparing the log2
fold changes from the scRNA-seq, cluster 7 versus cluster
5, with the log2 fold changes from the bulk RNA-seq, VZ
versus CP, so the pseudo-gold-standard should therefore be
useful for assessing method performance.

Comparing random subsets of 20 cells each (40 cells to-
tal) from cluster 7 and cluster 5 did not reveal large dif-
ferences in performance between Swish and Wilcoxon on
this particular dataset, in contrast to the clear enrichment
of false positives seen in the splatter-polyester scRNA-seq
simulation. However, when randomly selecting subsets of 10
cells each (20 cells total) from the two clusters, Swish had
a clear advantage over Wilcoxon tests in terms of number
of genes recovered at the same observed FDR level (Sup-
plementary Figure S39). For the 5% and 10% target FDR,
Swish was able to call 50 more genes than the Wilcoxon
test, at comparable observed FDR, increasing the number
of reported genes by more than half at 5% target FDR and
by more than one third at 10% target FDR. Both Swish
and Wilcoxon test were close to hitting their 5% and 10%
FDR targets on the dataset of 20 cells total, while they both
tended to exceed the targets on the dataset with 40 cells to-
tal. Some excess may be attributable to the fact that the VZ
and CP brain regions comprise more than the individual cell
populations isolated in clusters 7 and 5 from the scRNA-seq
analysis.

DISCUSSION

Many parametric models have been proposed to include
quantification uncertainty into statistical testing procedures
when evaluating differential transcript or gene expression.
We extended an existing nonparametric framework, SAM-
seq, through the incorporation of inferential replicate count
matrices, so that the test statistic better reflects the uncer-
tainty of the estimated counts. We show that this extension
recovers control of FDR in particular for transcripts with
high inferential relative variance. We used posterior samples
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generated by a Gibbs sampler with thinning to reduce au-
tocorrelation, although bootstrapping of reads to generate
inferential replicates is also compatible with our proposed
method. Swish additionally extends SAMseq by allowing
for control of discrete batches using the stratified Wilcoxon
test, and allowing for analysis of paired samples using the
Wilcoxon signed-rank test. We note that Swish makes use
of inferential replicates that provide information about un-
certainty due to the assignment of reads. Other sources of
uncertainty, such as experimental uncertainty, may not be
captured by the inferential replicates. A simple example is
the uncertainty of expression for genes which receive no
reads from a lowly sequenced sample. Nevertheless, previ-
ous work has shown that in some cases, correct quantifi-
cation can be recovered despite missing fragments due to
common technical biases in sequencing data, to the degree
that the bias can be modeled (19,30).

Swish has the greatest advantage over other competing
methods at the transcript level, while it performs similarly
to other methods at the gene level. We additionally demon-
strated the use of Swish on scRNA-seq counts generated
by the Alevin method, making use of bootstrap inferential
replicates at the gene level. On simulated scRNA-seq data,
we found clear evidence of false positives which would be
called by a standard rank-based method, which are appro-
priately not called as differentially expressed by Swish due
to its reliance on inferential replicates in the testing proce-
dure. On the mouse neurons dataset, we found that Swish
outperformed the Wilcoxon test for comparisons of small
numbers of cells (e.g. 20 cells total), but performed similar
for larger sets of cells, at least in so far as we could detect
using a pseudo-gold-standard dataset for validation.

We note that, although we assessed the method on a real
dataset from the 10x chromium pipeline, Alevin followed by
Swish on inferential replicates could likewise be performed
on other platforms such as Fluidigm––though Alevin’s bias
model could be further optimized for alternate platforms.
We anticipate that taking into account uncertainty from
inferential replicates for scRNA-seq will be equally valu-
able for gene-level differential expression for any 3′-tagged
protocol, and for transcript-level differential expression for
any full length protocol. In this scRNA-seq analysis, we did
not take into account that we first clustered the data based
on highly variable genes, and then performed differential
analysis using those and other genes, which may generate
anti-conservative inference as noted recently by Zhang et al.
(49). We are interested in extensions which may alleviate this
problem and in general help to avoid comparisons across
unstable clusters (50–53).

Some of the limitations of our proposed work include the
types of experiments that it can be used to analyze. Because
it relies on permutation of samples to generate a null dis-
tribution over all transcripts or genes, SAMseq and Swish
in practice do not necessarily have sufficient power to de-
tect differential expression when the sample size is <4 per
group. Additionally, certain terms which can be included
in linear models, such as controlling for continuous vari-
ables, cannot be easily incorporated into the nonparametric
framework. We focused on inference across a discrete nui-
sance covariate, for example sample preparation batches,
which motivated the stratified test statistic, as well as in-

ference across a discrete secondary covariate of interest,
for example a secondary treatment, which motivated the
difference-across-two-groups method. However, we cannot
yet accommodate more continuous measures of batch, such
as those estimated by RUVSeq (54) or svaseq (55), unless
such factors of unwanted variation could be discretized
without substantial loss of information. Currently, Swish
supports two group comparisons, with discrete covariate
correction, sample pairing, and comparison of condition
effects across a secondary covariate, although we could ex-
tend to other analysis types already supported by SAMseq,
including multi-group comparisons via the Kruskal-Wallis
statistic, quantitative association via the Spearman correla-
tion, or survival analysis via the Cox proportional hazards
model.

CODE AVAILABILITY

The swish function is available in the fishpond
R/Bioconductor (20) package at https://bioconductor.
org/packages/fishpond. The implementation is efficient,
with vectorized code for row-wise ranking calculation via
the matrixStats package. The software runs in comparable
or faster time to DESeq2, taking 1-2 s per 1000 genes for
small datasets, e.g. total n ∈ [10−20]. For larger datasets
(total n > 100), Swish scales better than DESeq2 (Supple-
mentary Figure S40). The default number of inferential
replicate samples (20) and permutations (30) was used for
timing.

The package contains a detailed vignette with live code
examples, showing how to import Salmon quantification
files using the tximeta package, perform differential tran-
script or gene expression analysis with swish, and visual-
ize results for each transcript or gene. The package vignette
includes an example of a paired RNA-seq analysis, both a
two group example and a differences across groups exam-
ple. The software vignette leverages a subset of the RNA-
seq data from a recent publication on human macrophage
immune response (56) (Supplementary Figure S41).

The scripts used to generate the Love et al. (7) simula-
tion data are available at the following link: https://dx.doi.
org/10.5281/zenodo.1410443. The scripts used in evaluating
the methods here, and in analyzing the scRNA-seq dataset
have been posted at the following link: https://github.com/
azhu513/swishPaper.

The versions of software used in the paper are: fish-
pond (Swish method): 0.99.32, samr (SAMseq method):
2.0, qvalue: 2.14.1, Salmon: 0.11.3, Alevin: 0.13.0, tximport:
1.10.1, kallisto: 0.44.0, sleuth: 0.30.0, DESeq2: 1.22.2, EB-
Seq: 1.22.1, limma: 3.38.3, Seurat: 2.3.4

DATA AVAILABILITY

The simulated data used to evaluate the meth-
ods is published in Love et al. (7). The raw read
files can be accessed at the following links: https:
//doi.org/10.5281/zenodo.1291375, https://doi.org/10.5281/
zenodo.1291404, https://doi.org/10.5281/zenodo.2564176,
https://doi.org/10.5281/zenodo.2564261. The processed
simulation quantification files can be accessed at the
following link: https://doi.org/10.5281/zenodo.2564115.

https://bioconductor.org/packages/fishpond
https://dx.doi.org/10.5281/zenodo.1410443
https://github.com/azhu513/swishPaper
https://doi.org/10.5281/zenodo.1291375
https://doi.org/10.5281/zenodo.1291404
https://doi.org/10.5281/zenodo.2564176
https://doi.org/10.5281/zenodo.2564261
https://doi.org/10.5281/zenodo.2564115
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The mouse neurons scRNA-seq dataset is available under
the heading Chromium Demonstration (v2 Chemistry)
>Cell Ranger 2.1.0 >1k Brain Cells from an E18 Mouse,
from https://support.10xgenomics.com/single-cell-gene-
expression/datasets. The mouse brain isolated bulk tissue
RNA-seq data are available from the Gene Expression
Omnibus with the accession number GSE38805.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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