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Abstract 
The relation between recently established asymmetry in Asymmetric Detrended Fluctuation Analysis (ADFA) and 
Heart Rate Asymmetry is studied. It is found that the ADFA asymmetric exponents are related both to the overall vari-
ability and to its asymmetric components at all studied time scales. We find that the asymmetry in scaling exponents, 
i.e., 𝛼+

< 𝛼
− is associated with both variance-based and runs-based types of asymmetry. This observation suggests 

that the physiological mechanisms of both types are similar, even though their origins and mathematical methods 
are very different.

Keywords HRV · HRA · ADFA · Asymmetry · RR intervals

1 Introduction

Asymmetry in the RR intervals time series has recently 
found interest in the heart rate variability research [1–5]. 
Starting from the most generic approaches to time-irre-
versibility, which in fact spans an enormous number 

of physiological phenomena and heart rate variability 
(HRV) measures [5–7] through specialized predictive 
methods like Phase Rectified Signal Averaging (PRSA) 
[8, 9] or Heart Rate Turbulence (HRT) [10–12] down 
to phenomena like Heart Rate Asymmetry (HRA) along 
with its mathematical tooling.

A recent addition to the literature is the Asymmetric 
Detrended Fluctuation Analysis, which was developed mainly 
for studying asymmetric correlations in economic time series 
[13, 14], but when applied to the RR intervals time series, 
revealed an asymmetric physiological effect [15, 16].

HRA includes asymmetric effects defined and estab-
lished in the variance of the RR intervals time series, in its 
structure and complexity. In all of these areas asymmetry is 
prevalent, consistent and unidirectional [1, 2, 17–20]. Thus, 
we hypothesize that HRA and the above-mentioned ADFA 
results should be connected, and our aim in this paper is to 
relate the 𝛼+

< 𝛼
− asymmetric effect established in ADFA 

to HRA.

1.1  Asymmetric detrended fluctuation analysis

Detrended fluctuation analysis is one of the most often 
used methods for analyzing the time series of RR inter-
vals. The main information it provides is the scaling 
properties of noise left over after detrending the time 
series. The details of the method may be found in 
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[21–23], and they will be reviewed below very quickly 
so as to establish the notation.

Let us define the RR intervals time series as the distance 
between successive R-waves in an electrocardiogram [24, 
25] in the following way:

Let us also define a derivative, summed and mean-subtracted 
time series:

where RR stands for the mean of the whole time series and 
y(k) defines the so-called box of length n within which a 
trend is found and subtracted. Since our aim is to identify 
rising and falling trends we only use first order (linear) 
polynomials

where yn(k) is a line fit with slope an and intercept bn to the 
specific box and �k is the error term we are interested in 
studying. A mean-square root function is defined as:

and calculated over all the scales which are available in 
the studied time series — in practice n changes from 4 to 
N/4, where N is the length of the time series. The values of 
log10(F(n)) are plotted against log10(n) and if the resulting 
plot follows a straight line, the existence of power law is con-
cluded in the scaling of the mean-square root function, i.e.,

where � is the scaling exponent. The values of this expo-
nent are interpreted as signifying the presence of negative 
long-range correlations ( 0 < 𝛼 < 0.5 ), white noise ( � = 0.5 ), 
positive long-range correlation ( 0.5 < 𝛼 < 1 ), 1/f noise 
( � = 1 ), long-range correlations not following the power law 
( 1 < 𝛼 < 1.5 ) or the consistency of the detrended time series 
with random walk ( � = 1.5 ) [21–23].

The fact that local trends in the boxes can be linear makes 
it possible to define two different mean-square root func-
tions, depending on the sign of the tangent of the fitted line.

Defining M as the overall number of segments and M+
n
 as 

the number of segments in which the trend is increasing (or, 
using Eq. (3), an > 0 ) we define:

(1)�� = (RR1,RR2,… ,RRN).

(2)y(k) =

k
∑

i=1

RRi − RR,

(3)y(k) = yn(k) + �k,

(4)F(n) =

√

√

√

√
1

N

N
∑

k=1

(

y(k) − yn(k)
)2
,

(5)F(n) ∼ n� ,

(6)

F+(n) =

√

√

√

√

√

1

M+
n
n

M
∑

j=1

�+(j)

n
∑

k=1

(

y((j − 1) ⋅ n + k) − yn ((j − 1) ⋅ n + k)
)2
,

and correspondingly for the decreasing trends:

where the outer summation (over j) goes over all boxes, �(±) 
selects boxes with increasing (Eq. (6)) or decreasing trends 
(Eq. (7)) exclusively (compare [14, 16]).

If the above functions are presented on a doubly logarith-
mic scale with n, two scaling exponents:

may be defined, provided that the dependence is linear.
In [13] the local version of ADFA was developed in 

which the scaling exponents �± are calculated in a window 
moving along the analyzed time series.

In [15] we applied the local version of ADFA to the time 
series of RR intervals (moving window length 100) and 
the result was that there is a highly statistically significant 
asymmetric effect with 𝛼+

< 𝛼
− . In [16] we systematically 

analyzed this effect and found that it was present in both 
global and local versions of ADFA with the use of windows 
of length 100 through 1000 in 30-min ECG recordings, but 
it was much weaker in the global version.

1.2  Variance‑based heart rate variability 
descriptors

The variance of the time series (1) is defined in the following 
way [1, 24, 26]:

where N is the length of the time series.
Variance SDNN2 can be partitioned into short-term and 

long-term variability in the following way [1, 24, 26, 27]:

The reasons for calling SD12 and SD22 the short-term and 
long-term variability and the details on their calculations are 
explained in detail in [1, 24, 26].

1.3  Variance‑based heart rate asymmetry 
descriptors

The source of variance-based HRA descriptors is the 
decomposition of variance-based HRV descriptors, such 
as SDNN2 , SD12 and SD22 into parts which only depend 
on decelerations or accelerations.

(7)

F−(n) =

√

√

√

√

√

1

M−
n
n

M
∑

j=1

�−(j)

n
∑

k=1

(

y((j − 1) ⋅ n + k) − yn ((j − 1) ⋅ n + k)
)2
,

(8)F±(n) ∼ n�
±

,

(9)SDNN2 =
1

N

N
∑

i=1

(RRi − RR)2,

(10)SDNN2 =
SD12 + SD22

2
.
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In [1] it was shown that SD12 can be partitioned into 
two parts dependent separately on decelerations and accel-
erations in the following way:

In [17] it was demonstrated that long-term variability may 
be partitioned in the following way:

and the full variance may be partitioned in the following 
way:

For numerical and algorithmic details of the above see [1, 
17].

The respective parts of variance can be normalized in 
order to minimize interpersonal variability [1, 17]. For 
short-term variance:

and there is:

For long-term variance:

where:

And finally, for total variance;

where:

The above descriptors, when applied to the RR intervals time 
series, reveal a strong asymmetry of this object. First of all, 
the contribution of heart rate decelerations to short-term vari-
ability is greater than that of accelerations, i.e., SD12

d
> SD12

a
 . 

In long-term variability this is reversed with SD22
d
< SD22

a
 , 

and this is also true in the case of total variability with 
SDNN2

d
< SDNN2

a
 . If the normalized contributions defined 

above (14), (16), (19) are taken into account, the asymmetry 
in short-term, long-term and total variability may be respec-
tively expressed as C1d > 0.5 , C2d < 0.5 and Cd < 0.5.

(11)SD12 = SD12
d
+ SD12

a
.

(12)SD22 = SD22
d
+ SD22

a
,

(13)SDNN2 = SDNN2
d
+ SDNN2

a
.

(14)C1d =
SD12

d

SD12
, C1a =

SD12
a

SD12
,

(15)C1d + C1a = 1.

(16)C2d =
SD22

d

SD22
, C2a =

SD22
a

SD22
,

(17)C2d + C2a = 1.

(18)Cd + Ca = 1,

(19)Cd =
SDNN2

d

SDNN2
, Ca =

SDNN2
a

SDNN2
.

1.4  The runs method

A run is an uninterrupted sequence of RR intervals which con-
stantly shortens (heart rate accelerates) or constantly length-
ens (heart rate decelerates) or constantly does not change, and 
which is preceded and followed by a different type of run. Fig-
ure 1 shows the partitioning of a segment of an RR intervals 
time series into disjoint accelerating and decelerating runs. It 
can be easily noted that this partitioning is unambiguous [2]. 
A detailed definition of runs may be found in [2].

1.5  Runs‑based descriptors

1.5.1  Number of runs

The most natural descriptor is the number of runs of a spe-
cific type. So, by DRi we will denote the number of decel-
eration runs of length i, and ARi will mean the number of 
acceleration runs of length i.

1.5.2  Entropic descriptors of runs of decelerations 
and accelerations

In [2] the Shannon entropy [28] associated with the distribution 
of decelerating and accelerating runs was partitioned into parts 
depending only on decelerations or only on accelerations in the 
following way (dropping the device-dependent neutral runs):

The mathematical details of the above formulas may be 
found in [2].

In [2, 18] it was found that the runs of accelerations 
are longer in terms of the number of beats than the runs 
of decelerations. In [2] it was found that HDR < HAR . Both 
these effects are highly statistically significant.

The runs method turned out to have a significant predic-
tive value for long-term survival in patients after myocardial 
infarction [18] and in patients who underwent clinically indi-
cated exercise test [19].

Runs have also been found to be very useful in study-
ing and predicting sleep apnea [20, 29] as well as selecting 
patients who will respond to the proper treatment of obstruc-
tive sleep apnea. It has also been applied to the diagnosis of 
late sepsis in neonates [30].

2  Methods

We used 388 stationary 30-min ECG recordings from 
healthy young subjects, age range 20–40 years, 233 
women. The study was performed at rest in the supine 

HR = HDR + HAR.
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position, and the subjects were kept quiet in a neutral 
environment. The subjects were allowed to breathe spon-
taneously during the whole study. The 30-min recording 
was taken after a preceding 15-min period used for car-
diovascular adaptation. The ECG curves were sampled 
at 1600 Hz with the use of the analog-digital converter 
(Porti 5, TMSI, Holland). The libRASCH/RASCHlab 
(v. 0.6.1, www. libra sh. org, Raphael Schneider, Ger-
many) [31] software was used for post-processing and 
automatic classification into beats of sinus, ventricular 
and supraventricular origin as well as artifacts. The auto-
matic classification was reviewed by a trained technician 
who corrected any wrong classifications of the beats. 
To obtain the asymmetric descriptors from the annotated 
RR intervals time series we used in-house, free GPL3 
software written in Python, HRAexplorer, which can be 
reviewed and downloaded at https:// github. com/ jarop 
is/ HRAEx plorer. An interactive online version of this 
software in the R programming language may be found 
at https:// hraex plorer. com/. The RR intervals time series 
were carefully filtered for each technique — the specifics 
of dealing with ectopic beats are described in [25] and 
[2]. The above-mentioned software uses all these filter-
ing techniques.

Since both theory and the Shapiro-Wilk test reject the 
normality of all HRA descriptors, the non-parametric paired 
Wilcoxon test was used to establish asymmetric relations. 
The binomial test was used to establish the departure from 
0.5 of recordings exhibiting HRA, which would be the case 
in symmetric (e.g., shuffled) data.

In the present paper we used the local version of ADFA 
with jumping window of length 100 beats, since in a pre-
vious study [16] it was the shortest window in which 
asymmetry was clear and consistent with longer windows. 
By jumping windows we mean disjoint windows of length 
100 fully covering the analyzed recording. This can be 
contrasted with a sliding window which means a window 

sliding along the recording, moving by either one beat or 
by a time unit — for details see [16, 32]. To calculate �+ 
and �− in-house, free, GPL3 software written in Python 
with the use of Cython (https:// github. com/ kosmo 76/ adfa) 
was used. Any ectopic beats were linearly interpolated 
according to [33].

The time series of �+ and �− obtained for each record-
ing were summarized by medians for the purpose of com-
parisons. Since the mean values of �+ and �− did not have 
normal distribution (Shapiro-Wilk test), the non-parametric 
paired Wilcoxon test was used for their comparison.

The association analyses between ADFA asymmetric 
exponents and the descriptors of HRA were carried out with 
the use of the non-parametric Spearman correlation test. To 
check whether HRA entails 𝛼+

< 𝛼
− we built the univari-

ate logistic regression models for 2 × 2 contingency tables 
tabulating the existence of HRA and 𝛼+

< 𝛼
−.

All statistical calculations were carried out with the use 
of the R statistical language and its libraries.

3  Results

3.1  Presence of asymmetry in the studied signals

3.1.1  Presence of asymmetry in ADFA

The median values of the scaling exponents were �+ = 0.951 
(IQR (0.825, 1.052)), �− = 0.993 (IQR (0.885, 1.099)), the p 
value is < 0.0001 . These results should be analyzed in view 
of the possible values that �± may take (see discussion after 
formula (5)). If the median values above were different by a 
larger amount, this would mean a total flip in the properties 
of the noise after detrending.

The 𝛼+
< 𝛼

− was present in 278 cases, which is 74% of 
the entire group, the binomial test for this value to be con-
sistent with 50% gives the p-value < 0.0001

Fig. 1  An example of the partitioning of an RR intervals time series 
into monotonic runs. The runs are marked as DRn (Deceleration Run 
of length n) and ARn (Acceleration run of length n); the Nn symbols 
stand for neutral runs which may break the deceleration/acceleration 

runs. Full black circles denote beginnings of decelerations runs and 
full gray circles mark the beginnings of accelerations runs — these 
can be thought of as reference points for the respective runs
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3.1.2  Presence of asymmetry in the variance‑based 
descriptors

The presence of asymmetry in the variance-based descrip-
tors was established by comparing the deceleration- and 
acceleration-based parameters as well as checking whether 
globally the proportion of subjects with a specific type of 
asymmetry was different from the theoretically expected 
value of 0.5 if there is no asymmetry [1, 17].

Short‑term asymmetry The parameters of the distribution of 
SD1d , SD1a and C1d may be found in Table 1. The number 
of cases in which short-term asymmetry can be established 
is 291, which is 75% of the entire group, the binomial test 
for this value to be consistent with 50% gives the p-value 
< 0.0001.

Long‑term asymmetry The parameters of the distribution 
of SD2d , SD2a and C2d may be found in Table 2. Long-term 
asymmetry is present in 269, which is 69.3% of the entire 
group, the binomial test for this value to be consistent with 
50% gives the p-value < 0.0001.

Total asymmetry The parameters of the distribution of 
SDNNd , SDNNa and Cd may be found in Table 3.

Presence of asymmetry in the runs based descriptors The 
summary of the acceleration and deceleration runs distribu-
tions may be found in Fig. 2 and in Table 4.

It can be concluded that the asymmetric effect, i.e., runs 
of accelerations being longer than those of decelerations, can 

be observed for runs of lengths 4 through 12, with lengths 
1–3 and over 12 being not statistically significant or too few 
to carry out the statistical tests. Thus, the runs-based descrip-
tors demonstrate the presence of HRA in the studied group.

Table 5 demonstrates the distributions of runs entropy for 
HDR and HAR shows the comparison between the two types.

The direct comparison between the entropic runs sum-
maries yields p < 0.0001 , so there is a highly statistically 
significant asymmetric effect.

3.2  Associations between variance‑based HRA 
descriptors and ADFA

3.2.1  Associations between variance‑based descriptors 
and local asymmetric scaling exponents

The associations between variance-based HRA descrip-
tors and ADFA exponents were studied with the use of the 
Spearman correlation as well as loess type regression to 
visualize the type of association. The results are presented 
in Table 6.

From the table above it can be seen that the asym-
metric scaling exponents are significantly associated 
with both HRV and HRA magnitudes. The associations 
between asymmetric contributions of HRA to short-term, 
long-term and total variability and the asymmetric expo-
nents are significant for decelerations and not significant 
for accelerations. Therefore it is necessary to study this 
in more detail. This is undertaken in the next section.

Table 1  The distributions of 
short-term HRA descriptors, 
i.e., SD1d , SD1a and C1d in the 
studied recordings

Min. 1st Q. Median Mean 3rd Q. Max.

SD1d 2.704 14.29 20.11 25.11 31.24 140.5
SD1a 2.741 14.22 19.36 22.44 27.67 137.0
C1d 0.3060 0.5002 0.5304 0.539 0.5733 0.7021

Table 2  The distributions of 
long-term HRA descriptors, 
i.e., SD2d , SD2a and C2d in the 
studied recordings

Min. 1st Q. Median Mean 3rd Q. Max.

SD2d 17.82 41.11 52.74 55.00 66.16 138.7
SD2a 17.54 41.56 55.18 59.17 71.35 155.4
C2d 0.3179 0.4508 0.4827 0.474 0.5042 0.5662

Table 3  The distributions of 
total HRA descriptors, i.e., 
SDNNd , SDNNa and Cd in the 
studied recordings

Min. 1st Q. Median Mean 3rd Q. Max.

SDNNd 12.75 31.29 40.61 43.16 51.77 139.6
SDNNa 12.55 31.34 41.64 44.97 54.41 146.5
Cd 0.3670 0.4698 0.4902 0.4855 0.5035 0.5604
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3.2.2  Associations between the presence of asymmetry 
in variance‑based descriptors and the presence 
of asymmetry in local asymmetric scaling exponents

To answer the question whether or not the asymmetry 
observable in variance-based descriptors is related to the 
asymmetry observable in the scaling exponents is actu-
ally present rather than there being just an association 
between �± and the variance of time series we first build a 

2 × 2 contingency table between the two categorical varia-
bles. Then for each type of asymmetry we build a logistic 
regression model to study the strength and significance of 
the association, i.e., the predictor in each case is the pres-
ence of asymmetry expressed according to the standard 
definition, e.g., using the inequalities from points 1.3, 1.4 
and 1.5. The presence of asymmetry is coded as 1.

The relations between various types of HRA and 
ADFA are summarized in Table 7. The results of the 

Table 4  The distributions of 
monotonic runs in the studied 
recordings

The line labels indicate the run length (RL), DR (AR) stands for the number of the deceleration (accel-
eration) runs of a specific length, # with DR (AR) means the number of recording containing runs of the 
specified type and length

RL DR IQR DR # DR AR IQR AR # AR p

1 179.0 (129.75–265) 388 196.5 (129.75–265) 388 p = 0.044
2 180.0 (140–225) 388 185.0 (140–225) 388 NS
3 79.0 (54.75–108) 388 68.0 (54.75–108) 388 NS
4 17.5 (11–31.5) 386 21.5 (11–31.5) 387 p < 0.001
5 5.0 (2–11) 363 9.0 (2–11) 377 p < 0.001
6 1.0 (0–4) 279 3.0 (0–4) 341 p < 0.001
7 0.0 (0–1) 148 1.0 (0–1) 257 p < 0.001
8 0.0 (0–0) 68 0.0 (0–0) 151 p < 0.001
9 0.0 (0–0) 22 0.0 (0–0) 71 p < 0.001
10 0.0 (0–0) 9 0.0 (0–0) 35 p < 0.001

Fig. 2  Distributions of monotonic runs along with the comparisons with the paired Wilcoxon test

Table 5  The distributions of 
entropic HRA descriptors, i.e., 
HDR and HAR

Min. 1st Q. Median Mean 3rd Q. Max.

HDR 0.6865 0.9351 1.024 1.023 1.107 1.388
HAR 0.7907 1.0100 1.096 1.115 1.214 1.601

2974 Medical & Biological Engineering & Computing (2022) 60:2969–2979
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logistic model of the above asymmetry as predictor of 
𝛼
+
< 𝛼

− are presented in Table 8.
It can be concluded that variance-based heart rate 

asymmetry and asymmetry in local ADFA are related.

3.3  Associations between runs‑based HRA 
descriptors and ADFA

Tables 9 and 10 demonstrate the correlations between 
deceleration / acceleration runs and ADFA asymmetric 
exponents. The associations are quite strong for runs of 
length greater than 3. This may mean that there is both an 
association between heart rate asymmetry and ADFA and 
an association between the presence of various length 
runs and ADFA. Thus it is necessary to study the co-
occurrence of both types of asymmetry.

3.3.1  Associations between the presence of asymmetry 
in runs‑based descriptors and the presence 
of asymmetry in local asymmetric scaling exponents

We use the same method as above for runs of length 
greater than 3, since for these runs the heart rate asym-
metry is clearly observable. The results of the logistic 
regression models for all the analyzed run lengths can be 
found in Table 12.

From both Tables 11 and 12 it can be concluded that the 
presence of asymmetry in monotonic runs predicts the pres-
ence of asymmetry in ADFA.

3.3.2  The association between asymmetry in the entropic 
HRA descriptors and ADFA

The associations between �± and the quantities summariz-
ing all the above runs, i.e., HDR and HAR are presented in 
Table 13.

As we did for the other descriptors, let us build the 2 × 2 
contingency table (Table 14) and the logistic model for the 
co-occurrence of the two types of asymmetry.

The coefficient of the model is 1.856 with p < 0.0001 , so 
again the association is strong.

3.4  HRA as a predictor for the occurrence 
of asymmetry in ADFA

If HRA occurrence is treated as a predictor of ADFA then 
the positive predictive values for the variance-based asym-
metry are 0.85, 0.82 and 0.8 with sensitivities 0.81, 0.84 and 
0.84 for short-term, long-term and total HRA, 0.81 with sen-
sitivity 0.85 for HAR < HDR and 0.67, 0.76, 0.76, 0.83, 0.81, 
0.87 and 0.84 with sensitivities 0.82, 0.83, 0.8, 0.84, 0.82, 
0.81, 0.84 and 0.79 for HRA in runs of length 4 through 10.

Table 6  Associations between variance-based HRA descriptors and 
ADFA scaling exponents

Descriptor �
+

�
−

SD1 −0.798 ( p < 0.0001) −0.561 ( p < 0.0001)
SD2 −0.475 ( p < 0.0001) −0.198 ( p < 0.0001)
SDNN −0.544 ( p < 0.0001) −0.269 ( p < 0.0001)
SD1d −0.784 ( p < 0.0001) −0.529 ( p < 0.0001)
SD1a −0.809 ( p < 0.0001) −0.6 ( p < 0.0001)
C1d −0.277 ( p < 0.0001) 0.086 (NS)
SD2d −0.454 ( p < 0.0001) −0.201 ( p < 0.0001)
SD2a −0.487 ( p < 0.0001) −0.195 ( p < 0.0001)
C2d 0.417 ( p < 0.0001) 0.077 (NS)
SDNNd −0.54 ( p < 0.0001) −0.279 ( p < 0.0001)
SDNNa −0.546 ( p < 0.0001) −0.26 ( p < 0.0001)
Cd 0.335 ( p < 0.0001) 0.02 (NS)

Table 7  Associations between 
occurrence of HRA and the 
asymmetry in ADFA

𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−
𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−
𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−

C1d < 0.5 56 41 C2d > 0.5 68 51 Cd > 0.5 68 55
C1d > 0.5 54 237 C2d < 0.5 42 227 Cd < 0.5 42 223

Table 8  Logistic regression analysis results for the associations 
between HRA and the presence of ADFA asymmetry

Asymmetry type Coeff.

C1d > 0.5 1.791 ( p < 0.0001)
C2d < 0.5 1.975 ( p < 0.0001)
Cd < 0.5 1.882 ( p < 0.0001)

Table 9  Associations between deceleration runs and the ADFA scal-
ing exponents

�
+

�
−

DR1 0.061 (NS) 0.064 (NS)
DR2 −0.325 ( p < 0.0001) −0.42 ( p < 0.0001)
DR3 0.188 (2e-04) 0.076 (NS)
DR4 0.478 ( p < 0.0001) 0.492 ( p < 0.0001)
DR5 0.645 ( p < 0.0001) 0.681 ( p < 0.0001)
DR6 0.684 ( p < 0.0001) 0.643 ( p < 0.0001)
DR7 0.574 ( p < 0.0001) 0.561 ( p < 0.0001)
DR8 0.524 ( p < 0.0001) 0.464 ( p < 0.0001)
DR9 0.257 ( p < 0.0001) 0.216 ( p < 0.0001)
DR10 0.231 ( p < 0.0001) 0.239 ( p < 0.0001)
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Clearly, in all the types of descriptors, the presence of asym-
metry in HRA entails the presence of asymmetry in ADFA.

4  Discussion

In the present paper we have shown that HRA in both its 
versions presented here, i.e., variance based and runs based, 
is associated with the asymmetry observable in ADFA, i.e., 

𝛼
+
< 𝛼

− . The study was carried out in a group of healthy 
young people from whom stationary 30-min-long recordings 
were obtained.

In the studied group we observed clear and highly statis-
tically significant heart rate asymmetry at all time scales, 
i.e., short-term ( C1d > 0.5 ), long-term ( C2d < 0.5 ) and total 
( Cd < 0.5).

Runs-based asymmetry is also clearly visible and signifi-
cant for all observable runs of length > 3 as well as in the 
summary runs-based descriptors, i.e., HDR < HAR.

This group also exhibits a clear and highly statistically 
significant ADFA asymmetry, defined as 𝛼+

< 𝛼
−.

We have found that both scaling exponents are highly 
statistically significantly associated with the heart rate vari-
ability of the analyzed recordings, i.e., they were associated 
with total ( SDNN2 ), long-term ( SD22 ) and short-term ( SD12 ) 
variability. For this reason they were also associated with the 
unnormalized HRA Poincaré plot descriptors like SD12

d∕a
 , 

SD22
d∕a

 and SDNN2
d∕a

 . The associations between the scaling 
exponents and the magnitude of the relative contributions to 
asymmetry ( C1d , C2d , Cd ) were significant for �+ , but not 
significant for �− . At this point it is probably impossible to 
interpret this result.

The associations of �± with the magnitudes of the runs-
based HRA descriptors are also highly statistically significant.

However, the strongest associations between ADFA 
and HRA in the RR intervals time series are observable in 
the agreement in between the two types. From the num-
bers presented in Section 3.4 on the predictive power of 
HRA for ADFA asymmetry, it is almost certain that both 
approaches describe the same physiological phenomenon, 
even though they use totally different methods, assump-
tions and even different language (HRA is based on sta-
tistical considerations, and ADFA on studying long-range 
correlations in dynamic systems).

An important limitation of this study should be raised at 
this point. Since the recordings used in the present study 
are quite short, the �± cannot be considered measures of 

Table 10  Associations between acceleration runs and the ADFA scal-
ing exponents

�
+

�
−

AR1 0.091 (NS) −0.011 (NS)
AR2 −0.245 ( p < 0.0001) −0.43 ( p < 0.0001)
AR3 0.091 (NS) 0.109 (0.0321)
AR4 0.211 ( p < 0.0001) 0.41 ( p < 0.0001)
AR5 0.267 ( p < 0.0001) 0.52 ( p < 0.0001)
AR6 0.345 ( p < 0.0001) 0.585 ( p < 0.0001)
AR7 0.396 ( p < 0.0001) 0.581 ( p < 0.0001)
AR8 0.364 ( p < 0.0001) 0.513 ( p < 0.0001)
AR9 0.279 ( p < 0.0001) 0.427 ( p < 0.0001)
AR10 0.266 ( p < 0.0001) 0.318 ( p < 0.0001)

Table 11  Associations between occurrence of HRA in runs of length 
4–10 and the asymmetry in ADFA

𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−
𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−

DR4 > AR4 73 93 DR5 > AR5 57 67
DR4 < AR4 37 185 DR5 < AR5 53 210
DR6 > AR6 52 64 DR7 > AR7 38 36
DR6 < AR6 40 204 DR7<AR7 38 171
DR8> AR8 23 24 DR9>AR9 10 9
DR8< AR8 24 101 DR9<AR9 11 58
DR10 > AR10 2 5
DR10< AR10 7 26

Table 12  Logistic regression analysis results for the associations 
between the presence of ADFA asymmetry and runs asymmetry

Runs asymmetry Coeff.

DR4< AR4 1.367 ( p < 0.0001)
DR5< AR5 1.215 ( p < 0.0001)
DR6< AR6 1.422 ( p < 0.0001)
DR7< AR7 1.558 ( p < 0.0001)
DR8< AR8 1.395 ( p < 0.0001)
DR9< AR9 1.768 ( p < 0.0001)
DR10< AR10 0.396 ( NS)

Table 13  Associations between HDR and HAR and the asymmetry in 
ADFA

�
+

�
−

HDR 0.756 ( p < 0.0001) 0.68 ( p < 0.0001)
HAR 0.319 ( p < 0.0001) 0.601 ( p < 0.0001)

Table 14  Associations between 
occurrence of HRA in the 
entropic descriptors and the 
asymmetry in ADFA

𝛼
+
> 𝛼

−
𝛼
+
< 𝛼

−

HDR > HAR 57 40
HDR < HAR 53 238
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fractality and they will be strongly related with the vari-
ance of the recording. Therefore, the results involving 
variance-based HRA descriptors are weakened by this 
observation. However, the relation with the normalized 
descriptors is much more robust to this effect since the 
dependence on variance is largely eliminated by normaliz-
ing by variance-based parameters. Additionally, the results 
relating the incidence of asymmetry in ADFA with HRA 
should be fully resistant to this effect.

The explanation of HRA has not yet been established. 
In the crudest approximation of the Autonomic Nervous 
System (ANS) it can be said that the parasympathetic 
branch of the ANS is responsible for decelerations and 
the sympathetic branch is responsible for accelerations. 
In this picture it might be tempting to ascribe the decel-
eration-based descriptors ( SD1d , SD2d , SDNNd , C1d , C2d , 
Cd , DRx as well as �+ ) to the parasympathetic branch 
and the rest to the sympathetic branch. Yet, in reality, 
both branches can lead to both accelerations and decel-
erations through activation or deactivation. It would be 
more prudent to state that HRA reflects the interaction 
between both branches as well as describing the patterns 
of accelerations and decelerations. �± in the approach 
assumed in ADFA are influenced by both accelerations 
and decelerations and reflect the differences in noise left 
over after removing linear trends. Thus, their asymmetric 
behavior most possibly reflects the different interactions, 
both long and short term, present during decelerating and 
accelerating trends.

Possibly the best way in which the two types of asym-
metry can be related is through the monotonic runs. It 
is fair to hypothesize that, since falling and rising trends 
consist of individual runs, rising trends in the RR inter-
vals time series should be dominated by decelerating runs 
and falling trends by accelerating runs. Since, as we have 
shown in this and other papers, the dynamics of these runs 
differ, the long-range correlations reflected by the ADFA 
scaling exponents, should also differ.

The above hypothesis is strictly mathematical. As 
far as physiological relation is concerned,we can safely 
hypothesize that both measures are linked through a com-
mon, underlying physiological process. One such process 
which immediately comes to mind is respiratory sinus 
arryhythmia, which is a strong driver of heart rate vari-
ability. However, as demonstrated in [34], the link between 
HRA and RSA is by no means clear. The authors find no 
link between period variability asymmetry and respiratory 
sinus arrhythmia in healthy and chronic heart failure indi-
viduals. This means that further, physiologically oriented 
studies are necessary.

Since this is a strictly observational study we refrain 
from physiological explanation for HRA and its relation 
with ADFA as this would call for a full paper, we would, 

however, like to note that a few interesting and convinc-
ing physiological mechanisms have been identified in 
[35]. Another point that should be raised at this point is 
that we use a specific approach to HRA, namely the var-
iance-based and runs-based descriptors. There are other 
approaches, like using predictability markers [36] which 
could also shed light on the analyzed problem.

To sum up, ADFA asymmetry is associated with HRA 
and one is an almost perfect predictor of the other.

5  Conclusion

ADFA, which is a new method for studying asymmetry 
in time series has been applied to the time series of RR 
intervals. It has been found that it is associated to other 
approaches to asymmetry in this time series. Since ADFA 
has unique properties, like the ability to study long-range 
correlations or scaling behavior of the time series, it is a 
promising direction in the HRA analysis, even though it 
does have some interpretational difficulties.
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