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Abstract: Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors
(GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues.
Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through
machine learning (ML) will enable understanding of olfactory system, receptor characterization,
and exploitation of their therapeutic potential. In the current study, we have selected two broadly
tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space
by using molecular descriptors. We present a scheme for selecting the optimal features required to
train an ML-based model, based on which we selected the random forest (RF) as the best performer.
High activity agonist prediction involved screening five databases comprising ~23 M compounds,
using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual
screening and check receptor binding site compatibility, we used docking of the top target ligands to
carefully develop receptor model structures. Finally, experimental validation of selected compounds
with significant docking scores through in vitro assays revealed two high activity novel agonists for
OR1A1 and one for OR2W1.

Keywords: machine learning; random forest; molecular descriptors; virtual ligand screening; olfac-
tory receptor; G protein-coupled receptors; luciferase assay

1. Introduction

G protein-coupled receptors (GPCRs, also known as seven transmembrane or 7TM
receptors) represent the largest family of cell surface receptors. The myriad functional
diversity of GPCRs has led them to be the largest family of proteins targeted by approved
drugs. Primarily the drugs that target the GPCRs are small molecules and peptides [1].
Olfactory receptors (ORs) [2], first reported in 1991, represent the largest sub-group of G
protein-coupled receptors (GPCRs) [3].

Initially, ORs were thought to be localised only to nasal tissue and responsible solely
for the sense of olfaction, with odorant molecules combinatorically leading to the per-
ception of smell [4]. However, some ORs are expressed in extra-nasal tissues such as
mammalian germ cells [5], where they are implicated in different physiological and disease
conditions. A recent study has reported the localization of a subset of ORs in various tis-
sues including the brain, prostate, sperm, colon, breast, lungs and kidneys [6]. Functional
characterization of these ectopic ORs in different tissues support their roles in cell-cell
recognition, migration, proliferation, apoptosis, exocytosis, and novel alternate pathways.
Ectopic ORs are also known to be associated with numerous diseases and disorders, includ-
ing prostate cancer, melanoma, colon cancer, breast tumours, neurodegenerative disorders,
obesity and anaemia [7]. Thus, ORs are potential therapeutic targets [8]. Recently, del
Marmol et al., reported the experimental structure of an insect olfactory receptor through
cryo-electron microscopy [9], which has an inverted topology to animal ORs. However,
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there is no experimental structure for any animal OR. We have reviewed the challenges
associated with the experimental structure determination for ORs elsewhere in detail [10].
Briefly, the absence of any experimentally determined animal OR structure is attributed
to ORs being low abundance, tissue-specific hydrophobic membrane proteins, which are
difficult to crystallize. Further, ORs show poor trafficking to the plasma membrane, due to
mRNA retention when expressed heterologously in different cell types [11].

Linking the olfactory stimulus repertoire, consisting of more than a trillion, to its
counterpart ORs, is a challenging task. To date, only 21% of human ORs have been matched
(or deorphanized) with active ligands [10]. OR deorphanization using olfactory sensory
neurons (OSNs) can be vastly facilitated by computational approaches. In silico methods
coupled with in vitro approaches have proven useful in deorphanizing some ORs [12].
Recent excellent studies using pharmacophore based virtual screening [13] and machine
learning (ML) [14] have resulted in expanding the chemical space of a few ORs including
the prostate specific G protein receptors (PSGRs: OR51E1 and OR51E2). Although there
are a wide variety of ML algorithms, no single algorithm has been capable of solving
every problem [15]. ML has now been extensively used to solve various bioinformatics
problems [16,17], including GPCR research [18,19]. Recently, support vector machines
(SVMs) were used to predict agonists for OR51E1, OR1A1, OR2W1 and MOR256-3 from
commonly used odorants [14]. 7/18 predicted ligands for OR1A1, 2/5 for OR2W1, 5/13 for
MOR256-3 and 2/4 for OR51E1 were found to be the true ligands when verified through
in vitro luciferase assays. The OR51E1 homology model was then used in the reported
study to elaborate binding cavity, mutating the residues predicted by molecular docking
resulted in receptor response termination in vitro. Homology modelling and molecular
docking are thus powerful tools to study receptor ligand interactions in the absence
of experimental 3D structure. Many studies have been reported that couple homology
modelling, molecular docking and site-directed mutagenesis to elucidate the binding cradle
of different ORs with various odorants [20–24]. The mutational dataset for human ORs is
now available through an interactive webserver, the Human Olfactory Receptor Mutation
Database (hORMdb) [25]. Virtual screening using homology models has also resulted in the
discovery of novel ligands. Recently, the human metabolome database was screened against
the homology model of OR51E2 and resulted in identification of 24 novel agonists and one
antagonist verified experimentally. In a benchmarking study [26], homology models of
19 GPCRs were used for ligand based virtual screening and 10 models showed comparable
performance to X-ray structures depicting the applicability of homology models for the
identification of novel ligands. We recently compared the performance of four classifiers,
based on agonist and non-agonist datasets for OR1G1, with the naïve Bayes classifier
performing better than SVM, random forest [27] and neural networks (NN) for agonist
prediction [28].

Tunyasuvunakool et al., have reported highly accurate protein structure prediction
for the entire human proteome, including ORs [29]. However, the AlphaFold models
generated in this study need a lot of adjustment in the orientation of the transmembrane
helices (Jabeen and Ranganathan, unpublished data), to recover the OR binding sites that
were validated by published mutational studies [20–24]. Instead, we recently showed
that using a biophysical approach, Bio-GATS, for template selection generates an excellent
homology model for OR1A1 [30].

In the current study, we have focused our attention on two ectopic ORs with broad
ligand spectrum, OR1A1 and OR2W1. OR1A1, reported in gut enterochromaffin cells, was
implicated in serotonin release [31]. Recurrent mutations in OR1A1 were identified in
lung adenocarcinoma [32]. Further, OR1A1 was detected in HepG2 liver cells [33], and
implicated in hepatic triglyceride metabolism modulation. OR2W1 has recurrent mutations
reported in small lung cancer [34]. Both receptors, along with a few other ORs, are also
proposed to have roles in fatigue attenuation [35].

The aim of our study was to expand the chemical space for these two ORs with
potential clinical importance, by predicting and experimentally testing novel agonists.
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Therefore, we have developed an ML-based workflow (Figure 1) to predict agonists for
the two ORs by scanning the huge chemical compounds databases available online. We
selected three methods, RF, SVM and NB, based on their performance for OR1G1 [28]. We
filtered the predicted compounds using knowledge-based homology models of the two
receptors, based on the best Bio-GATS template [30]. From the shortlisted predictions, we
validated some of the randomly selected predicted compounds using an in vitro functional
assay.
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Figure 1. Workflow for agonist identification based on machine learning, molecular docking and
in vitro testing. Details of feature selection is shown in Supplementary Figure S3 and the process for
database filtration is shown in Supplementary Figure S5. Compounds from five different databases
were downloaded and classified as agonists or non-agonists for OR1A1 and OR2W1.

2. Methods
2.1. Ligand Dataset Collection for the Receptors and Chemical Descriptors Calculation

The experimentally tested compounds against the OR1A1 and OR2W1 were retrieved
from the literature. Among the 365 compounds tested against OR1A1, 51 are agonists, 263
are non-agonists, and 51 have conflicting information (Supplementary Table S1). While for
the OR2W1, 292 compounds have been experimentally tested, of which 64 are agonists, 198
are non-agonists, seven are antagonists, and 22 have conflicting information (Supplemen-
tary Table S2). As the antagonists are few in number and the compounds with conflicting
information could not be classified uniquely, these two categories were not considered
for further analysis. Molecular descriptors for the agonists and non-agonists of both the
receptors were calculated using an open-source and free software, Mordred v1.2.0 [36].
Overall, 1443 and 1505 2D and 3D molecular descriptors were calculated for OR1A1 and
OR2W1, respectively.

2.2. Data Pre-Processing, Feature Selection and Class Balancing

Since a large number of descriptors were calculated for both receptors, the pre-
processing and feature selection techniques were employed to get an optimal number
of features. Initially, all the features with any missing value were eliminated then a near
zero filter was applied to exclude features having low variance. A correlation filter was
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applied to reduce the collinearity among the descriptors [37]. The threshold value for
the correlation coefficient (r) was set to 0.95 as previously setup for OR1A1 and OR2W1
features [14] and for the moth odorant receptor [38]. Afterwards, three different methods
were used for feature selection including a wrapper method: recursive feature elimination,
a filter method: Gini, and an embedded method: random forest feature selection, were
applied for selection of relevant subset of molecular descriptors. The dataset, comprising
known agonists and non-agonists with the selected features, was split into 80% training and
20% test sets using random sampling. Pre-processing, feature selection and data splitting
were carried out using the R programming language [39].

Since the two classes (agonists and non-agonists) are imbalanced (one agonist: ~five
non-agonists for OR1A1 and one agonist: ~four non-agonists for OR2W1), we used the
synthetic minority over-sampling technique (SMOTE) [40] embedded as a node in Knime
3.6.0 [41] on the training-set to have balanced datasets. The 5th nearest neighbour was
considered for synthetic sampling.

2.3. Classifiers

We generated RF, SVM, and NB classifier models using the R programming language.
10-fold cross validation on the training dataset was used as a resampling method for each
classifier. The CV was repeated three times to avoid any bias during the creation of CV
data splits. A brief description of each model is provided below.

2.3.1. Random Forest

The RF approach utilizes the decision trees and creates various models through
random partitioning. The final output is based on majority voting [42]. In our model,
the number of trees and variables randomly sampled as candidates at each split were
hyper-parametrized to obtain the optimal RF model. The final RF classification model
was based on 300 trees with 5 variables randomly sampled as candidates at each split for
OR1A1 and 3 variables randomly sampled as candidates at each split for OR2W1.

2.3.2. Support Vector Machine

SVM is based on calculating the maximal marginal hyperplane to separate positives
from the negatives [43]. In the current study, the SVM classifier was built using radial basis
kernel function. The two parameters that were hyper-parametrized are sigma and cost.
Sigma was held constant at the value of 0.2326189 and the accuracy metric was used to
select the optimal model using the largest value. The final value for sigma was 0.2326189
and 0.5 for cost.

2.3.3. Naïve Bayes

NB is the commonly used, simple and computationally less expensive ML method [44].
NB is based on Bayes rule as mentioned in Equation (1):

P(y|x) = P(y)P(x|y)/P(x) (1)

where y represents the class and x represents the data points.
The NB classifier assumes that all features are independent of each other so P(y) P(x|y)

can be re-written as Equation (2):

P
(

yj

)
P(x|y j) = P

(
yj

) n

∏
i=1

P(xi|yj) (2)

where P(yj) is the prior of the classes and P(xi|yj) is the distribution for one feature and
one class. The Gaussian distribution was used in this study for NB classification model.
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2.4. Model Validation

Prediction performance of each classifier was assessed by the test set for each OR and
by 10-fold cross validation of the training data. 20% of the dataset was reserved as a test
set and was not used for training the model. Therefore, this test set was unseen for the
classifier and can be considered as a blind test set, as no suitable external validation set
is available. Two statistical tests namely, p-value and Cohen’s kappa coefficient (κ) were
also used to evaluate the models. Further, accuracy, sensitivity, specificity and the F1 score
measures were used to evaluate the classifiers. The values for accuracy, sensitivity, and
specificity were calculated using Equations (3)–(5):

Accuracy = TP + TN/TP + TN + FP + FN (3)

Sensitivity/recall = TP/TP + FN (4)

Specificity = TN/TN + FP (5)

where TP, TN, FP and FN refer to true positive, true negative, false positive, and false
negative.

The F1 score is defined in Equation (6) as:

F1 = Precision*recall/Precision + recall (6)

where precision is calculated as Equation (7) and recall is calculated as Equation (4):

Precision = TP/TP + FP. (7)

2.5. Filtration of Compounds for Virtual Screening on the Basis of Chemical Similarity

For virtual screening using the built classifiers, we downloaded the compounds from
ZINC [45], human metabolome database (HMDB) [46], ChEBI [47], Cancer Odor Database
(COD) [48], OdorDB [49]. Those compounds that have already been experimentally tested
against OR1A1 and OR2W1were filtered out from the list. We used PubChem fingerprints
coupled with Tanimoto index for scanning similar spaced compounds from the above-
mentioned databases. Only compounds with Tanimoto index of at least 85% were selected
for screening. The final list of selected compounds was then evaluated as potential agonists
of OR1A1 and OR2W1, using the RF classifier.

2.6. OR1A1 and OR2W1 Homology Modelling

The 3D models of OR1A1 (UniProtID: Q9P1Q5) and OR2W1 (UniProtID: Q9Y3N9)
were built using homology modelling approach as described previously [50]. The X-ray
crystal structure of bovine rhodopsin (PDB ID: 1U19) [51] was used as the template for
homology modelling of human OR1A1 and OR2W1. Briefly, the sequences of OR1A1
and OR2W1 were aligned with bovine rhodopsin, based on conserved GPCR motifs
(Supplementary Figure S1). The predicted transmembrane domains in both receptors
were based on the GRoSS sequence alignment of all known GPCRs sequences [52], as
implemented by Bio-GATS [30]. Homology modelling was performed using MODELLER
9.18 [53]. The resulting models were assessed using the Modeller objective function, which
reflects the quality of the model and the presence of a disulphide bond between Cys97
and Cys179. The selected models were also evaluated using the Ramachandran plot and
favoured rotamers, on the Molprobity webserver [54]. The side chains of the built models
were refined using SCWRL4 [55] to improve rotamer geometry.

2.7. Molecular Docking of Highly Probable Predicted Compounds

The compounds having similar space as agonists of OR1A1 and OR2W1 were clas-
sified as agonists and non-agonists through the trained RF classifier. Compounds with
prediction probability of 1.0 for being agonists alone were considered for molecular dock-
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ing. The binding pockets of both the receptors were predicted using ICMPocketFinder
embedded in ICM package [56]. The binding pockets were selected based on site-directed
mutagenesis data of different ORs. Induced fit docking was then performed using ICM.
Ten conformations were generated for each predicted ligand and the control molecule. The
docking effort was set to 3, as the developers of ICM benchmark the accuracy at this effort
level. The conformation with the lowest ICM-score was selected for binding analysis.

2.8. Cell Culture

Hana3A cells [57] were maintained in minimal essential medium [34] containing 10%
FBS (vol/vol) with penicillin-streptomycin and amphotericin B (1/200 each vol/vol) at
37 ◦C and 5% CO2. Hana3A cells are derived from HEK293T [57] and are optimized for
OR studies as shown in several studies [58–66], compared to earlier OR expression in Sf9
insect cells in Gat et al. [67], and in Xenopus oocytes, COS-7, PC12h and CHO-K1 cells in
Katada et al. [68].

2.9. Dual-Glo Luciferase Reporter Gene Assay

The Dual-Glo luciferase assay system (Promega, Madison, WI, USA) was used to
evaluate the functionality of wild-type OR1A1 and OR2W1 in an in vitro system [69,70].
The open reading frames of ORs were amplified using Phusion polymerase (Thermo Fisher
Scientific, Waltham, MA, USA). Amplified fragments were cloned into pCI expression
vector (Promega, Madison, WI, USA) containing the sequence encoding the first 20 amino
acids of human rhodopsin (Rho-tag) at N-terminal [71]. Hana3A cells have been cultured
and plated the day before transfection with 6 mL at 1/10 of a 100% confluence 100 mm
plate into 96-well plates coated with poly D-lysine. After overnight incubation, the required
genes were transfected using, for each plate, 5 ng SV40-RL, 10 ng CRE-Luc, 5 ng human
RTP1S [72], 2.5 ng M3 receptor [73] and 5 ng of receptor (OR1A1, OR2W1 or empty vector
Rho-pCI) plasmid. After around 18 h of transfection, cells were stimulated during 3.5 h by
25 µL of odorant diluted in CD293 + 1% glutamine + 30 µM CuCl2. Odorants were obtained
from Sigma Aldrich (St. Louis, MO, USA) and diluted at 1 M concentration in DMSO as
stock solutions. Dose response curves were determined with concentrations of 0, 1, 3.16,
10, 31.6, 100, and 316 µM obtained by dilution of the DMSO stock solution in CD293 + 1%
glutamine + 30 µM CuCl2. The luminescence of Firefly (Luc) and Renilla (Rluc) luciferase,
were then sequentially monitored by injecting the corresponding substrate following the
supplier’s protocol. The activity in each well was normalized as (Luc-400)/(Rluc-400). The
response of the receptor was also normalized to its basal activity as (NLX/NL0)-1 where
NL0 is the normalized luminescence value at 0 µM of odorant and NLX the value at X µM.
The cell response upon odorant stimulation was attributed to an OR if the empty vector
control showed no response, assuring that the cell response is not due to other parameters
than the presence of the OR at the cell surface. Raw results were first analyzed with Excel
(Microsoft Corporation, Albuquerque, NM, USA) and dose response curves, max efficacy
and EC50 have been determined with GraphPrism 6 software (GraphPad Software, La
Jolla, CA, USA). Areas under the curves (AUC) were calculated in Excel by summing all
the OR responses at different concentrations for each odorant.

2.10. Cell Surface Expression Evaluation by Flow Cytometry

The cell surface expression of the studied ORs has been evaluated by flow cytom-
etry, which provides more quantitative cell surface expression data than conventional
immunostaining, using the following protocol [74]. Human embryonic kidney variant
293T (HEK293T) cells were grown to confluency, resuspended and seeded onto 35 mm
plates at 25% confluency. The cells were cultured overnight. The OR, RTP1s and GFP
were transfected using Lipofectamine 2000. After 18–24 h, the cells were resuspended by
cell stripper and then kept in 5 mL round bottom polystyrene (PS) tubes (Falcon 2052,
Corning, Corning, NY, USA) on ice. The cells were spun down at 4 ◦C and resuspended
in phosphate-buffered saline (PBS) containing 15 mM NaN3, and 2% foetal bovine serum
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(FBS) to wash the cell stripper. They were incubated in ice with primary antibody (mouse
anti-Rho4D2 [75]) and then washed, and stained with phycoerythrin (PE)-conjugated don-
key anti-mouse antibody (Jackson Immunologicals, West Grove, PA, USA) in the dark. To
stain dead cells, 7-aminoactinomycin D (Calbiochem, MilliporeSigma, Burlington, MA,
USA) was added. The cells were analyzed using FACS (BD FACSCanto II, Bio-Rad Labora-
tories, Hercules, CA, USA) with gating, allowing for GFP positive, single, spherical, viable
cells, and the measured PE fluorescence intensities were analyzed and visualized using
Flowjo v10.0.8 [76]. We also added Olfr539, which is robustly expressed on the cell surface,
and Olfr541, which shows no detectable cell surface expression, as positive and negative
controls of OR cell surface expression [74], respectively.

3. Results
3.1. Chemical Diversity Analysis

The chemical space for OR1A1 and OR2W1 is highly diverse and comprised of alde-
hydes, alcohols and esters among others (Supplementary Figure S2). The diversified nature
of the collected experimentally known compounds against the two receptors were veri-
fied using principal component analysis (PCA). The first two principal components were
plotted and are clearly indicative of the diversified chemical space for the two receptors
(Figure 2A). Splitting the experimentally tested data into 80% training and 20% test datasets
showed considerable overlap between the two sets (Figure 2B) indicating that the classifiers
are being validated on the basis of similar spaced compounds.
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3.2. Feature Selection and Performance of the Classifiers

The strategy for identifying novel agonists for OR1A1 and OR2W1 required training
of the classifiers with the chemical descriptors (or features) of the known agonists and
non-agonists. Mordred calculated 1505 for OR1A1 and 1443 features for OR2W1. Feature
selection is an important step for efficient dimensionality reduction to gain quality classi-
fiers [77]. Broadly, three methods for feature selection in use are filter methods, wrapper
methods and embedded methods. However, it is hard to determine any one specific
method as the most accurate [78]. As the accuracy of machine learning approaches is
highly dependent on the selected features [79], we used a combination of data-driven filter
methods and other feature selection methods (recursive feature elimination, Gini index,
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and random forest feature selection) to select the optimal features. Initially, 1096 features
for OR1A1 and 1034 features for OR2W1 respectively, were eliminated, using filter methods
(Supplementary Figure S3). Subsequently, three different methods for feature selection
were applied to each selected feature dataset. A wrapper method: recursive feature elim-
ination, a filter method: Gini index, and an embedded method: random forest feature
selection were used. The top 20 features from each approach were compared. For OR1A1,
13 consensus features were obtained by the three methods, namely VR2_A, AATSC0v,
ATSC6d, ATSC7d, ATSC8c, BCUTm.1l, C3SP2, EState_VSA4, JGI5, JGI6, JGI7, PEOE_VSA6,
and SdssC. For OR2W1, there were only two consensus features: JGI5 and JGI6, among
the three different methods of feature selection. Therefore, the features predicted by three
different methods were iteratively applied to finally select the five features for OR2W1 for
training the model (Supplementary Figure S4). This selection of the features was based
on the combination of features giving the maximum accuracy. The detailed description of
each selected feature is mentioned in Supplementary Table S3. The selected combination of
five features gave the maximum accuracy for all classification models. RF, SVM and NB
classifiers were hyper-parameterized and trained using the selected features. The SVM
classifier showed comparable performance to RF classifier for the OR1A1 dataset, while for
the OR2W1 dataset, the RF classifier outperforms the other two classifiers (Figure 3).
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The performance of each classifier was validated by 10-fold CV, and testing data.
Additionally, the classifiers (or models) were evaluated on the basis of accuracy, specificity,
sensitivity, and F1 metrics. Additionally, we carried out two statistical tests to compare the
performance of the classifiers (Supplementary Table S4). The p-value of each classifier was
significant (<2 × 10−16) for the training dataset for both ORs while for testing dataset, the
RF classifier was close second to the SVM classifier for OR1A1 and scored best for OR2W1-
test set. The kappa values for RF classifiers outperformed the other two classifiers for both
training and testing sets of OR1A1 and of OR2W1. Based on the classifier evaluation scores,
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RF was selected as the predictive model for screening the compounds downloaded from
five different databases.

3.3. Putative Ligand Screening through Machine Learning Based Classification

We downloaded 22,938,816 compounds from five different online databases (ZINC,
HMDB, ChEBI, COD, and OdorDB). Since the classifiers were computationally trained
on specific molecular descriptors for agonists and non-agonists of OR1A1 and OR2W1,
they can only classify compounds belonging to similar chemical space. To identify similar
chemically spaced compounds, we applied a Tanimoto index value of 0.85 to the entire
downloaded dataset. The compound search space was thus reduced to 35,415 for OR1A1
and 27,127 for OR2W1 (Supplementary Figure S5). The trained RF classifier ranked these
chemically similar compounds as agonists and non-agonists, separately, for each receptor.
Based on classification probabilities, compounds were ranked as agonists. As the sensitivity
and F1 score values of the RF classifier for testing data were below 0.80, we set up a
threshold value of prediction probability as 1.0, in order to limit false positive predictions.
Generally, the class membership probability has a threshold value of 0.5 [80]. With this
threshold value, 67 compounds (three from ChEBI, one from COD, two from HMDB, three
from OdorDB, and 58 from ZINC) were predicted as OR1A1 agonists. Independently,
83 compounds (three from ChEBI, none from COD and OdorDB, and 80 from ZINC) were
predicted as OR2W1 agonists.

3.4. Homology Model and Molecular Docking Analysis

To identify the top candidates for experimental validation, we conducted induced-fit
docking of the highly probable compounds based on 3D homology models of OR1A1 and
OR2W1. We built the homology models of OR2W1 (UniProtID: Q9Y3N9) and OR1A1
(UniProtID: Q9P1Q5) using the approach described previously [50], with the X-ray crystal-
lographic structure of bovine rhodopsin (PDB ID: 1U19) [51] as a template, and Bio-GATS
TM alignments [30]. The experimental structure of an insect OR has recently been resolved
at 3.3 Å resolution [9] with an inverted topology to human ORs. The sequence identity
(SI) and query coverage (QC) between the experimentally determined structure (PDBID:
7LID) and our target sequences is extremely low (SI for 7LID-OR1A1 pair: 7.0%, QC: 50%
and SI for 7LID-OR2W1 pair: 7.16%, QC: 58%). Due to the low resolution of the insect OR
structure and extremely low sequence identity and low query coverage with the human
ORs under investigation, we did not proceed with the 7LID template. The structures for
predicted ligands and benzophenone (experimentally known ligand for both receptors)
were downloaded from PubChem [81] and optimized using the ICM package [56] and
docked to the homology models for OR1A1 and OR2W1. The binding site for each receptor
was selected as a consensus site considering the experimental mutagenesis sites for the
other ORs (OR1A1, OR1A2, OR1G1, OR2AG1, OR2M3, OR5AN1, OR7D4 and OR51E2),
based on the alignment of OR1A1, OR2W1 and the OR sequences with available muta-
genesis data shown in Supplementary Figure S6. Positions G1083.35, S1093.36, C1123.39,
N1554.56, I2065.46 and Y2526.48 of the predicted binding pocket are consistent with the
available OR mutagenesis data for OR2W1 (numbering in superscripts are the respective
Ballesteros-Weinstein residue numbers [82]). Also, positions G1083.35, N1093.36, S1123.39,
I2055.46, Y2516.48, Y2586.55 and T2777.42 of the OR1A1 binding pocket are consistent with
mutagenesis data available for OR1A1. All predicted ligands and benzophenone were
docked to their respective receptor model, with 100 conformations were generated for each
predicted ligand and the control (benzophenone). The ICM docking score of benzophenone
was used as a threshold to select the docked compounds with equivalent scores. The
conformation that fits within the binding pocket and has an ICM docking score around that
of benzophenone, was selected. This strategy reduced the predictions to 23 compounds
for OR1A1 and 10 compounds for OR2W1, with ICM scores nearest to that of benzophe-
none (Tables 1 and 2). Of these, four compounds for OR1A1 and two compounds for



Int. J. Mol. Sci. 2021, 22, 11546 10 of 17

OR2W1 that were not reported in the Bushdid et al. [14] study were randomly selected,
and experimentally tested using functional in vitro assays.

Table 1. Highly probable OR1A1 agonists based on docking scores. Control in italics; experimentally test compounds
underlined.

PubChem_CID Compound Name Database Chemical Nature ICM Docking
Score

3102 Benzophenone Control Ketone −12.8345

10465547 [(Z)-Pent-3-enyl] 2-aminobenzoate ZINC Heterocyclic compound −24.058033

70545042 Prop-2-enyl 3-iodobenzoate ZINC Heterocyclic compound −20.113147

56806459 2-(4-Methylphenoxy)pentan-3-one ZINC Ketone −19.297316

84603836 (3-Fluorophenyl)methyl 4-methylpentanoate ZINC Ester −18.084389

101977 D-citronellol ChEBI, HMDB Terpene −18.009

56828593 4-(3-Fluorophenyl)-3-methyl-4-oxobutanenitrile ZINC Heterocyclic compound −17.436507

17973047 4-(1-Methylcyclopropyl)phenol ZINC Heterocyclic compound −17.286264

30842889 Prop-2-enyl 2-(2,4-difluorophenyl)acetate ZINC Ester −17.136729

22048986 6-Chloro-1-(3-fluorophenyl)hexan-1-one ZINC Ketone −17.053948

11470552 Ethyl 2-(3-bromophenyl)acetate ZINC Ester −16.812695

45085600 (5S)-5,6-dimethylhept-6-en-2-one ZINC Ketone −16.733556

5352782 3-[(E)-But-1-enyl]pyridine ZINC Heterocyclic compound −16.708306

7021479 Methyl 2-(2-methylphenyl)acetate ZINC Ester −16.649985

59382573 (3-Methoxyphenyl)methyl butanoate ZINC Ester −16.572913

84177 Ethyl 2-(4-chlorophenyl)acetate ZINC Ester −16.278326

6368521 1-[(E)-2-Chloroethenyl]-4-methoxybenzene ZINC Heterocyclic compound −16.266073

78901972 (3-Fluorophenyl)methyl 2-propylsulfanylacetate ZINC Ester −16.165344

8842 Citronellol OdorDB, ChEBI Terpene −14.6017

22311 Dipentene OdorDB, COD Terpene −13.9064

1318 1,10-Phenanthroline ChEBI Heterocyclic compound −13.7334

24473 Dihydrocarvone OdorDB Ketone −11.3054

131752167 2,10-Bisaboladiene-1,4-diol HMDB Alcohol −10.6224

78236 4-Nonanone HMDB Ketone −10.5291

Table 2. Highly probable OR2W1 agonists based on docking scores. Control in italics; experimentally test compounds
underlined.

PubChem_CID Compound Name Database Chemical Nature ICM Docking
Score

3102 Benzophenone Control Ketone −11.8875

13433021 4-Methyl-2-m-tolylpyridine ZINC Heterocyclic compound −14.515694

2733871 2,4-Dimethyl-1-phenylpyrrole ZINC Heterocyclic compound −14.150921

249799 1-Butoxy-4-phenylbenzene ZINC Heterocyclic compound −13.419691

22562335 Methyl 3-(4-ethoxyphenyl)prop-2-ynoate ZINC Heterocyclic compound −12.639271

16530415 (2,3,4,5,6-Pentafluorophenyl)methyl
2-hydroxy-3-methylbenzoate ZINC Heterocyclic compound −11.02916
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Table 2. Cont.

PubChem_CID Compound Name Database Chemical Nature ICM Docking
Score

3847415 1-Ethenyl-4-[4-(4-ethenylphenoxy)butoxy]benzene ZINC Heterocyclic compound −8.767672

12252872 Ethyl 4-hydroxy-3-prop-2-enylbenzoate ZINC Heterocyclic compound −8.68684

231770 1,3-bis(4-Bromophenyl)prop-2-en-1-one ZINC Heterocyclic compound −8.668044

7129 2-Ethoxynaphthalene ZINC Ether −8.208685

60008260 Ethyl 2-amino-5-cyanobenzoate ZINC Heterocyclic compound −8.011839

3.5. In Vitro Testing of Predicted Agonists Using Luciferase Assay

We tested the response of OR1A1 and OR2W1 to different concentrations of the candi-
date molecules using an in vitro luciferase assay (Figure 4A,B), following the verification
of cell surface expression of these two ORs by flow cytometry (see Methods). We used
Olfr539 and Olfr541 as positive and negative controls of OR cell surface expression, respec-
tively [74]. In comparison to our controls, both ORs are relatively well trafficked to the cell
surface (Supplementary Figure S7 and Supplementary Data File).
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Figure 4. Dose-response curves for tested compounds against (A) OR1A1 and (B) OR2W1 for the luciferase assay (see
Methods). The tested compounds were randomly selected from short-listed compounds after machine learning and
molecular docking to evaluate the random forest model predictions. Cell surface expression of these two ORs from flow
cytometry are shown in Figure S7.

Benzophenone was added to the set of tested molecules as a positive control for OR1A1
and OR2W1 activation as it is an agonist for both ORs [83]. Ethyl 2-(3-bromophenyl)acetate,
methyl 2-(2-methylphenyl)acetate and 1,10-phenanthroline stimulations were tested for
OR1A1 activation in dose-responses (Figure 4A). Both ethyl 2-(3-bromophenyl)acetate and
methyl 2-(2-methylphenyl)acetate were able to activate OR1A1 and showed similar dose-
response curves and EC50 values (EC50 (ethyl 2-(3-bromophenyl)acetate) = 11.5–24.4 µM;
EC50 (methyl 2-(2-methylphenyl)acetate) = 12.2–25.0 µM, 95% CI). Dipentene (racemic
limonene) was a weak activator, while 1,10-phenanthroline did not activate OR1A1 and was
considered a non-agonist. 1,4-bis(4-Vinylphenoxy)butane and 2-ethoxynaphthalene stimu-
lation were tested for OR2W1 (Figure 4B). 2-Ethoxynaphthalene activated OR2W1 in a dose-
response manner with an EC50 of 6.59–3.05 µM (95% CI). 1,4-bis(4-Vinylphenoxy)butane
was identified as a non-agonist of OR2W1.

3.6. Binding Mode of the Tested Ligands

The two activating agonists for OR1A1 and the activating agonist for OR2W1 were
re-docked in their respective receptor’s binding pocket, to analyse the receptor binding
residues and the binding mode for these novel agonists. Interacting residues of the indi-
vidual receptors are shown in Supplementary Figure S8. Ethyl 2-(3-bromophenyl)acetate
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has a single hydrogen bond to S1123.41 within the OR1A1 binding pocket, while the rest of
the interactions are hydrophobic. Methyl 2-(2-methylphenyl)acetate shows hydrophobic
interactions with OR1A1. 2-Ethoxynaphthalene also shows predominantly hydrophobic
interactions with OR2W1.

4. Discussion

In the current study, we report the ML-based virtual screening workflow for agonist
identification of two broadly tuned ectopic ORs: OR1A1 and OR2W1. Both receptors
have physiological and pathophysiological implications. In an earlier study, SVM was
applied to OR1A1 and OR2W1 to screen a test set of 258 compounds and resulted in the
identification of novel agonists for both receptors, with a hit rate of 39 to 40% for these
ORs [14]. In this present work, we further build hyper-parameterized RF and NB models
along with SVM, selected the best performing RF model and achieved a hit rate of 75%
for OR1A1 and 50% for OR2W1, respectively. The dataset, comprised of experimentally
known agonists and non-agonists for both ORs, is highly imbalanced. Therefore, careful
selection of features as well as the classification model is necessary. Further, the dataset for
OR2W1 is extremely diverse, show high variance and low biased as compared to OR1A1
(Figure 2) which indicates that OR2W1 dataset is more prone to overfitting. The right
balance between variance and bias is desired, to have an optimal ML model [84]. Therefore,
we carefully selected the features to train the classifiers by applying filter-based, wrapper,
and embedded methods. We have selected five features to suit the size of the data sets.
Moreover, all three models were hyper-parameterized to avoid any overfitting that might
occur due to decreased bias. As a result, we obtained models showing reasonably good
classification accuracy, both on training and testing data, as shown in Figure 3. We then
compared the performance of three well-established ML classifiers based on accuracy,
sensitivity, specificity and F1 score. The hyper-parameterized RF classifier outperforms
the other classifiers, SVM and NB, for both receptors with all values exceeding 0.85 for
training data and thus capable of distinguishing agonists from non-agonists. However,
sensitivity and F1 score for testing data was below 0.80. Therefore, we set up a threshold
value of prediction probability to 1.0, in order to avoid excessive false positives. Generally,
the class membership probability has a threshold value of only 0.5 [80], indicating that
our selected threshold is much more stringent. Based on performance, we selected the
RF classifier and used it to screen the huge test set of 22,938,816 compounds from five
compound databases. Scanning similar spaced test set compounds with the RF classifier
yielded 67 and 83 compounds ranked as agonists for OR1A1 and OR2W1, respectively.
We docked these compounds into the binding pocket of the respective receptor structural
models, to further validate our predictions. Compounds showing good binding affinity
in docking runs were shortlisted and randomly selected for experimental testing through
luciferase assays, to evaluate the validity of our approach. Of the four compounds tested
for their responsiveness against OR1A1, ethyl 2-(3-bromophenyl)acetate and methyl 2-
(2-methylphenyl)acetate are identified as high activity novel agonists for OR1A1. We
also identified dipentene (racemic limonene), as an activating ligand for OR1A1. The two
isomers of limonene that are (S)-(-)-limonene and (R)-limonene have already been identified
as agonists for OR1A1 in multiple studies (Supplementary Table S1). 1,10-Phenanthroline
did not activate the receptor and therefore, was regarded as a non-agonist for OR1A1. We
also tested two compounds for their activity against OR2W1. 2-Ethoxynaphthalene turned
to be the agonist, while 1,4 bis(4-vinylphenoxy) butane was regarded as a non-agonist. Our
results are consistent with the observations of Bushdid et al. [14], where agonist and non-
agonist spaces could not easily be differentiated on the basis of simple chemical descriptors.
Evaluating the experimental affinity between ORs and odorant molecules could be helpful
to establish a performant predictive model. Unfortunately, there are no such data available
today for mammalian ORs.

We further compared the potency of identified agonists with the previously identified
potent agonists for OR1A1 and OR2W1 as illustrated in the supporting information of
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Bushdid et al. [14]. Agonists identified in this study show a triggered response of >80%
of the control (benzophenone) for OR1A1, while the agonist identified for OR2W1 shows
90% triggered response of the same control (benzophenone) (Figure 5). Although (−)-
carvone is a stronger control for OR1A1 as compared to benzophenone, the novel agonists
identified in this study show comparable triggered response to (−)-carvone (>75%). 2-
ethoxynephthalene, identified as an agonist for OR2W1 in the current study is two times
more potent than the strongest agonist identified for OR2W1 in the Bushdid et al. [14]
study. Identification of highly potent agonists demonstrates the efficacy of our classification
model.
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We re-analysed the putative binding sites of novel agonists with the binding pocket
of respective ORs. It is being reported by multiple studies that ligand binding niche for
many ORs comprised of TM3, TM5, TM6 and TM7 [59],[85]. The putative interacting
sites of all three novel agonists lie within the proposed ligand binding cradle of ORs
(Supplementary Figure S9). Also, the residues G1083.36, N1093.37, S1123.40, I2055.46, Y2516.48,
Y2586.55, T2777.42 of OR1A1 have already been validated experimentally to be part of ligand
binding pocket through site directed mutagenesis [20,21]. OR2W1 does not have any site
directed mutagenesis data available yet, but the putative agonist binding residue positions
within the receptor have been recognised as important in defining ligand binding cradle for
ORs (Supplementary Figure S6). Position 3.36, 3.37, 5.46 (G108, S109, I206 in OR2W1) are
part of ligand binding pocket in OR1A1 and OR1A2 [20]. Position 3.40 (C112 in OR2W1) is
an important binding cradle position for OR1A1, OR1A2 [15], OR1G1 [23], and OR51E2 [24]
while 6.48 is important for ligand binding in OR1A1. The position 7.42 is crucial for ligand
binding in OR1A1 and OR7D4 [86].

In summary, we have identified two high activity agonists for OR1A1 and one high
activity agonist for OR2W1 through binary classification based on RF model. The data
driven approaches like ML coupled with in vitro approaches are well suited for linking
odorants to their respective ORs. The proposed workflow is generic and applicable to
other broadly tuned olfactory receptors including OR52D1 and a PSGR i.e., OR51E2 for
discovering further high affinity ligands. Unfortunately, the majority of the ORs are either
narrowly tuned or orphans so ML methods cannot be applied for discovering agonists
for these ORs. Moreover, ML models can only classify the compounds that overlap the
chemical space of already known compounds and are limited by their applicability domain.
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Other methods such as pharmacophore-based virtual screening and structure based virtual
screening might be helpful in identifying structurally different agonists.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222111546/s1 and https://www.mdpi.com/article/10.3390/ijms222111546/s2. Refer-
ences [14,20,21,31,82,87–93] are also cited in the Supplementary Materials.
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