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Synopsis
While antioxidants are on everyone’s lips, antireductants are their much less-known counterparts. Following an anti-
oxidant’s definition, an antireductant prevents the chemical reduction of another compound by undergoing reduction
itself. Antireductants have been traced back as far as the origin of life, which they facilitated by removal of at-
mospheric dihydrogen, H2. Moreover, as electron acceptors, antireductants equipped the first metabolic pathways,
enabling lithoautotrophic microbial growth. When the Earth’s atmosphere became more oxidizing, certain antireduct-
ants revealed their Janus-face by acting as antioxidants. Both capacities, united in one compound, were detected
in primary as well as plant secondary metabolites. Substantiated by product identification, such antireductants
comprise antiradicals (e.g. carotenoids) up to diminishers of ruminal methane emission (e.g. fumarate, catechin
or resveratrol). Beyond these Janus-faced, multifunctional compounds, the spectrum of antireductants extends to
pure electron-attractors (e.g. atmospheric triplet oxygen, O2, for plant root and gut protection). Current and pro-
spective fields of antireductant application range from health promotion over industrial production to environmental
sustainability.

Key words: antioxidants, antiradicals, antireductants, carotenoids, catechin, dihydrogen toxicity, electro-biosynthesis,
flavonoids, food, fumarate, health, industrial production, metabolism, methane mitigation, multifunctionality, redox
biochemistry, redox homoeostasis, reductive stress, resveratrol.
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INTRODUCTION

Antioxidants are part of common parlance, whereas much less
is commonly known about antireductants. Although antioxidants
are not the scope of this review, they shall be covered in short
to give an idea about the position of antireductants as compared
with antioxidants. Currently, antioxidants form a very diverse
group of compounds with different mechanisms of action. Under
oxidizing conditions, antioxidants limit damage to living cells
[1,2], prevent rancidity, deterioration or discolouration of food
[3,4], protect metals from corrosion [5], avert thickening and
acidification of fuels and lubricants [6], impede embrittlement
of natural and synthetic rubber [7,8] and stabilize polyolefins,
such as polypropylene [9,10]. Even in purely biological contexts,
the term antioxidant is comprehensively used for quite differ-
ent substances, such as for radical scavengers, for inhibitors of
photosensitized oxidation, for quenchers of singlet oxygen, for
inactivators of peroxides, for metal-chelators, and even for en-
zymes such as superoxide-dismutase and catalase. Antioxidation
is extensively discussed and reviewed in literature in terms of
antioxidant activities [4,11,12], methods available for activity



Abbreviations: DTT, dithiothreitol; ETC, electron transport chain; KEAP1–NRF2, Kelch-like ECH-associated protein 1 - nuclear factor (erythroid-derived 2)-related factor 2; NAD(P),
nicotinamide adenine dinucleotide (phosphate); TCA, tricarboxylic acid; Tsa1, thiol-specific antioxidant protein 1
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determination [13–16] and benefits and adverse effects of anti-
oxidants [4,11,12,15,17].

Antireductant research is likewise conducted in multiple dis-
ciplines. The term ‘antireductant’ was already used in 1929 by
Chambers et al. [18] for an oxazine dye with a low standard
reduction potential, which – unlike dyes with similar reduction
potentials – was reduced in cytoplasm of echinoderm eggs. Scott
[7] in 1965 used the designation ‘hydrogen acceptor antioxidants’
for antireductants employed under oxygen (O2)-deficient condi-
tions in polymer technology. Gilbert [19] in 1968 referred to ‘an-
tireductant mechanisms’ for protection of first life forms against
atmospheric dihydrogen (H2). By one of the earliest definitions of
an antioxidant, it is a molecule that limits the oxidation of another
compound by undergoing oxidation itself [20,21]. In analogy to
this definition, an antireductant is a molecule, which prevents
or inhibits the reduction of another compound by being reduced
itself [22,23]. Thus, antireductants are electron acceptors, or hy-
drogen sinks (Table 1). Compounds such as hydroquinone [24]
or vitamin E [25] were among the first molecules recognized as
antioxidants. Just as melatonin [25] or resveratrol [26], they are
reducing-agents, or electron donors, and hence form paradigms
of antioxidants in terms of the definition given above. In
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Table 1 Overview of antireductants, and their protective roles in diverse sectors (with a focus on biogenic compounds)
*Antireductant sensu lato.

Sector Field Purpose Mechanism Antireductants References

Health Normal body function in
mammals

Natural protection from superoxide
radical anion (produced in cells
and blood vessels) to prevent
uncontrolled reactions

Oxidation or dismutation of
superoxide anion by
antireductants

Fe(III) cytochrome c,
superoxide-dismutase*

[46,47,68]

Reductive stress (e.g. from
overnutrition)

Natural protection from reductive
stress, manifested as increased
dissimilatory NADH:NAD+ ratio,
and prevention of oxygen radical
formation

Sacrificial reduction of e.g. human
serum albumin (as endogenous
antireductant)

Eicosapentanoic acid, human serum
albumin, S-adenosylmethionine,
betaine, carnitine, cholines

[48–50]

Reductive stress (induced
by DTT as reducing
agent in yeast)

Natural protection of protein
synthesis by prevention of
ribosomal protein aggregation
(caused by DTT) in the
endoplasmic reticulum (ER)

Binding of misassembled proteins ER chaperone activity of Tsa1* [51]

Protein damage control and
clearance

Natural protection from protein
damage caused by reductive
stress

Degradation of redox-damaged
proteins via autophagy-lysosomal
pathway

Concerted action of KEAP1–NRF2
pathway and autophagy*

[29,51]

Phases of hypoxia (Cardio)protective effect during
reductive stress caused by
oxygen depletion

Less necrotic damage, due to
functioning of (exogenous)
fumarate as H2-sink competitive
to lactic acid generation under
anoxic conditions

Fumarate [74]

Ulcerative colitis Natural protection of colonocytes
from hydrogen sulfide toxicity

Oxidation of hydrogen sulfide to
thiosulfate and sulfate

ETC components, with O2 as final
electron acceptor

[45]

Food Wheat bread production Improved bread cohesiveness by
antireductant as flour additive

Oxidative disulfide formation
strengthens and protects
cross-linkage in gluten network
(R-S-S-R)

Bromate, dehydroascorbate [98]

Preservation of frozen,
farmed salmonoids

Protection against early stages of
lipid oxidation in raw, frozen fish
by in-feed astaxanthin

Antireductant action of astaxanthin Astaxanthin [77,98]

Deferrization and
demanganization of
drinking water

Protection from precipitate
formation and clogging of water
pipes on contact with air

Preventive removal of soluble iron
(Fe2 + ) and manganese by
aeration

O2 [78]
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Sector Field Purpose Mechanism Antireductants References

Production, biosynthesis Textile and industrial dyeing Improvement of colour efficiency
during dyeing via protection of
fibre reactive dyes from chemical
reduction

Sacrificial reduction of antireductant Ludigol (sodium
3-nitrobenzenesulfonate)

[94]

Electro-biosynthetic
production of chemicals

Cheap energy production (wind
turbines, and solar energy
captured in photovoltaic cells)
powers autotrophic microbial
electro-synthesis

Protection of microbiota from
reductive stress (electrons) by
means of antireductant

H+ (H2-formation), HCO3
−

(methanogenesis), anode*
(electron acceptor)

[37,95,96]

Environment Protection of primordial life
from H2

Natural protection from H2 inhibition
of e.g. fermentation and
N2-fixation in reducing
environment

H2 removal by reduction of
antireductant, or by
energy-yielding respiration of
inorganic electron-acceptor as
final H2 sink

ETC components, exogenous
electron acceptors for respiration:
carbonate (HCO3

− ), sulfate
(SO4

2 − ) up to sulfur (S0), nitrate
(NO3

− ), nitrite (NO2
− ),

Fe(III)-iron, Mn(III, IV)-manganese,
Cr(VI)-chromium, U(VI)-uranium

[30,31,35,38,39]

Removal of e.g. H2 and H2S by
anoxygenic photosynthesis

Autotrophic CO2- and N2-fixation [34]

Protection of plant
rhizosphere

Natural protection of plant roots in
water and sediment from
reduced, toxic microbial products
(H2, H2S, acids)

Chemical reduction of, or
energy-yielding respiration with
antireductant

O2 [44]

Protection of
photosynthesis from
reductive stress (in
cyanobacteria)

Natural protection from
overproduction of electrons
generated by photolysis of H2O

Although photosynthesis inhibits
respiratory energy production
(‘light inhibition of respiration’),
photosynthetic ETCs are coupled
via mobile plastoquinone to
various, membrane-bound
terminal respiratory oxidases as
sinks for surplus electrons

O2 as final electron acceptor [36]

Mitigation of ruminal
methane emission
(greenhouse gas)

Out-competition of methane
production in the rumen

Added antireductant as alternative
H2 (or electron)-sink to methane
precursors is energetically more
favourable for rumen
microorganisms than
methanogenesis

Nitrate (NO3
− ), sulfate (SO4

2 − ),
fumarate, catechin and
resveratrol (O2 would lead to feed
mineralization instead of
valorization)

[23,27,32,33,
40,41,91,97]

..........................................................................................................................................................................................................................................................................................................................................................................
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donor-acceptor maps, these reduced compounds were classi-
fied as bad electron-accepting antireductants [22,26]; although
in the case of resveratrol, this has been refuted for intestinal
conditions [27]. But then, the course of a reaction depends on
the setting in which it is supposed to take place. Nonetheless,
defining antioxidants as electron donors, and antireductants as
electron acceptors implies opposite reactivities. Then again, anti-
oxidation and antireduction are not necessarily opposing each
other, because both aim at damage control [8,12,22]. Espe-
cially in vivo, most biomolecules are multifunctional [1,2,27,28],
and a balanced presence of both antioxidants and antireduct-
ants seems beneficial to promote health and minimize adverse
reactions [12,29].

This review brings together aspects of prokaryotic and euka-
ryotic cellular physiology, health, production and ecology, in the
setting of the multidisciplinary – but often self-contained – foci
of antioxidant and antireductant research. Terminology differs in
different fields; in this review ‘antioxidant’ is consistently used
for electron donor, and ‘antireductant’ for electron acceptor. Nat-
ural, plant secondary metabolites and other biogenic molecules
are probably most suitable for application in food and feedstuff.
Growing environmental and safety concerns stimulate consider-
ation of sustainable biogenic compounds also in non-biological
disciplines [5]. Table 1 gives an overview of antireductants and
their current or anticipated applications in different sectors. Col-
lation of the existing knowledge about biogenic antireductants in
this review might help to draw parallels between disciplines, get
enlightened, inspired and pursue innovation.

ANTIREDUCTANTS FROM THE OUTSET

Although antioxidants form the centre of current attention, it is
their counterparts – antireductants – that can be traced back as
far as the origin of life. The presumed first role of antireductants
was to detoxify the primordial, anaerobic atmosphere by removal
of H2 [19]. The antireductant scenario thus started during the
evolution of the most early metabolic pathways.

A decisive criterion for qualification as an H2-sink is its prone-
ness to accept electrons, or – in other words – its susceptibility
to chemical reduction. The electrochemical reduction potential,
for instance, forms a measure (in volts) of the electron affinity
of a putative antireductant. Compounds with highly positive re-
duction potentials are the most easily reduced substances, and
thus represent efficient electron acceptors under both oxygenic
and anoxygenic conditions [22]. This principle does not only
apply to protective antireductant reactions, but also to energy
yielding redox-reactions. The underlying thermodynamic found-
ation is a linear correlation between the change in standard re-
duction potentials �E0 ′ [V] of redox-reactions and the Gibbs
free energy change �G0 ′ [kJ] (adaptable to non-standard con-
ditions by means of the Nernst equation, see below). Thus, in
addition to antireductive protection from H2, electron transfer
from H2 to electron-accepting compounds allowed the first or-
ganisms to gain energy. Different prokaryotes are able to perform

respiration with inorganic electron acceptors, such as carbonate
(HCO3

− ), sulfate (SO4
2 − ) up to sulfur (S0), nitrate (NO3

− ) or
nitrite (NO2

− ) [30], or with metal (hydr)oxides such as Fe(III)-
iron, Mn(III, IV)-manganese, Cr(VI)-chromium or even U(VI)-
uranium [31] (Table 1). The more energetically efficient the
type of respiration is an organism employs (e.g. O2 > NO3

−

> fumarate > SO4
2 − > HCO3

− ), the higher its chances to out-
compete others by overgrowing them [30,32,33]. Because rank-
ing of electron acceptors by Gibbs free energy change �G0 ′ (per
mole of accepted H2) matches their ranking by standard reduc-
tion potentials �E0 ′ [30], reactivities of these electron accept-
ors as antireductants follow the same ranking order from good
to bad.

Next to exergonic redox-reactions, anoxygenic photolysis was
an early microbial energy source, with electron donors such
as H2, hydrogen sulfide (H2S), sulfur (S0) or Fe(II)-iron [34].
Early forms of respiration as well as sun light provide en-
ergy for lithotrophic growth: The respective archaea and bac-
teria form metastable biomolecules by assimilatory reduction of
inorganic compounds such carbon dioxide (CO2) and nitrogen
(N2). Although H2 is an electron donor for N2-fixation (e.g. in
Clostridium pasteurianum), additional antireductants to assimil-
atory N2-reduction are needed in an H2 atmosphere to protect the
enzyme nitrogenase from H2-inhibition [35].

Though H2 continued escaping from the earth’s atmosphere
[19], it is currently still being replenished in all living cells
as reducing equivalents in the form of nicotinamide adenine
dinucleotide (phosphate). NAD(P)H forms the reducing agent,
whereas NAD(P)+ is the corresponding oxidized form. In gen-
eral, NADPH is formed for anabolic reactions, for example
in photosynthesis, whereas NADH is released during CHO-
compound dissimilation and employed to retain energy in the
form of ATP. Both photolytic NADPH- and ATP-production, and
ATP-yielding respiration make use of electron transport chains
(ETC) situated in cell membranes [36,37]. If a microorganism is
unable to perform ETC-coupled energy recovery, fermentation
forms a – less energy-yielding – alternative [36]. During fer-
mentation, oxidative ATP-formation (via dehydrogenase/kinase
reactions) results in excretion of reduced organic products such
as lactate, ethanol, formate and H2 as final electron-carriers.
Hence, although during respiration or photosynthesis H2 is oxid-
ized and thus removed, fermentation is another source of H2 and
other reducing agents [30]. High H2 levels are growth-limiting to
H2-releasing microorganism [38,39], which again emphasizes a
need for antireductive, H2-lowering mechanisms. Wolfe and co-
workers [38] were the first to recognize interspecies-hydrogen
transfer and consumption as interdependence in a consortium of
microorganisms, enabling the growth of the H2 producer. Os-
burn and Amend [39] showed that the archaeal prokaryote Ther-
mogladius shockii WB1 removes fermentatively generated H2

by conversion with S0 to H2S (Table 1). For the anaerobe, H2

accumulation obviously forms a bigger problem than H2S.
An old attainment, which is widespread among proka-

ryotes and eukaryotes, seems to be cytosolic or ETC-dependent
fumarate conversion. As antireductant, fumarate lowers the
emission of the greenhouse gas methane from the upper
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stomach – the rumen – of cows and sheep [28,40] (Table 1). The
rumen is a digestor, in which microorganisms ferment feed to
reduced organic compounds and H2. In this way, microbes make
nutrients from grass and leaves available to the ruminant. In the
highly reducing environment of the rumen, fumarate – when ad-
ded to feed – lowers methane production by acting as alternative
H2-sink to HCO3

− [28,40,41]. When fumarate is supplied solely
to this reducing environment, fumarate undergoes anabolic re-
duction, but also catabolic oxidation for energy gain. Excessive
reducing equivalents are – under these substrate-limiting condi-
tions – disposed of via methane emission [28]. The feasibility of
a mineral-catalysed, photochemical formation of succinate from
fumarate, such as in a reverse TCA cycle [42], even suggests a
role of fumarate in very first biomolecule formation. Probably,
simple organic acids, such as fumarate, and quinones are among
the oldest organic antireductants [43].

When O2 emerged in the Earth’s atmosphere (as a result of
the evolution of plant-type photolysis of H2O), organism started
using O2 as an antireductant. Even self-protection of oxygenic
photosynthesis includes utilization of O2 as relieving electron-
sink during reductive stress [36]. In addition, plants still employ
O2 to protect their root system from reduced, toxic microbial
products [44]; and mammals use O2 in their colonocytes for
H2S-removal [45] (Table 1). However, an increasingly oxidizing
atmosphere made the development of antioxidant mechanisms
imperative, too [19]. Nevertheless, up to the present, antireductive
electron-sinks, such as assimilation and respiration are protective
of life, and play major roles in global biogeochemical cycling of
carbon, nitrogen, sulfur and metals.

Apart from aforementioned molecules, numerous electron-
transferring compounds exist in biological systems with dif-
ferent reduction potentials, fulfilling different metabolic needs.
Examples are various quinones, nicotinamides, flavins, caroten-
oids, xanthophylls and other pigments; but also iron–sulfur com-
pounds, and tetrapyrroles coordinated to metals such as cyto-
chromes, chlorophylls or cobalamins (vitamin B12) [36,37]. Most
electron carriers, redox factors or ETC components are first re-
duced in their biological function, and re-oxidized upon passing
on their electron(s). In the light of the natural, electron-accepting
role of these compounds, and depending on their reduction po-
tential, they are probably identical with or have co-evolved with
protective antireductants. Reports of ETC-coupled and other pro-
tectors from reductive stress [8,36,38,39,46–51] are supportive
of an in vivo antireductant function of a plethora of biogenic
molecules. Moreover, on a cellular level, complex, regulated
protection mechanisms against reductive stress seem to exist,
analogous to and intertwined with cellular antioxidant path-
ways: Grant and co-workers [51] were the first to report in-
duction of protein-synthesis protection and of damage control
genes in Saccharomyces cerevisiae as a cellular response to DTT-
induced reductive stress (Table 1). The interest in reductive stress
and its role in disease has multiplied over the last five years
(PubMed all-fields’ search results for ‘reductive stress’ start from
single-digit hits per year in 1987 to two-digit retrievals per year
since 2012). However, prevention of or protection from reduct-
ive stress is scarcely researched yet (exceptions are presented

in Table 1 and below). Nonetheless, not only the health sector,
but also other sectors such as nutrition, production and envir-
onment are already, and will be, benefitting from antireductants
(Table 1).

ANTIRADICALS: ANTIOXIDANTS AND
ANTIREDUCTANTS APART TOGETHER

Most biomolecules are non-radical, metastable compounds,
which depend on enzyme-catalysis for their conversion in bio-
logical systems. Radicals, by contrast, are more reactive due to
the possession of one or more unpaired valence electrons. While
dormant radicals form an integrated and controlled part of en-
zymes in living cells [52], free radicals react spontaneously with
different targets. Free radicals are biogenerated for example by
leakage of electrons directly to O2 during respiration, or by in-
juries caused through exposure to UV-light, infection or toxin
action [11]. On the one hand, free radicals in physiological con-
centrations act as hormetic stressors and activate repair systems
[12], or are even purposively synthesized to counteract patho-
gens in phagolysosomes, such as the superoxide anion (O2

− •)
[53]. On the other hand, highly reactive out-of-control free rad-
icals can cause damage to DNA, proteins and lipids, resulting in
mutagenesis or cell death [11,52].

‘Scavenging’ or ‘quenching’ of free radicals is the termino-
logy often used with indirect determination of radical elimina-
tion. Basically, chemical mechanisms of radical-clearance com-
prise electron-transfer reactions and adduct formation [54–57]
(Table 2). A one-electron transfer converts free radicals into less-
reactive, paired-electron compounds [22]. By means of a one-
electron reduction, antioxidants prevent radicals from oxidizing
other molecules. Alternatively, free radicals can be oxidized by
transferring one electron to an electron acceptor. In that case,
this electron acceptor is an antireductant, because it prevents
other molecules from becoming reduced by the free radical. Al-
though both modes of action are often invariably termed anti-
oxidation, Martı́nez et al. [22] specified the difference between
the two mechanisms, and united both antioxidants and antire-
ductants acting on free radicals under the term ‘antiradicals’.
Radicals can react simultaneously via different mechanisms, and
products also depend on which responsive target sites are within
closest reach [55,56,58,59] (Table 2). Experimental elucidation
of reaction cascades and mechanisms in biological systems still
poses a major challenge [14]. Computational modelling provides
a tool for calculation of electrochemical quantities, such as the
vertical electron affinity of a complex molecule as a measure for
its antireduction capacity [14,57,60–62]. However, accuracy of
computational prediction depends on the extent to which the com-
plexity imposed by natural conditions can be simulated [61,63].
Hence, due to methodological restraints, the terms antioxidant
and antireductant typically refer to electron donation or accept-
ance in radical research, but not to in situ or in vivo protective
efficacies [12,14].
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Table 2 Mechanisms of radical scavenging or quenching, with a focus on antireduction
Examples of antioxidation are included for comparison. Indices: *determined by computational modeling; †not in polar solvents; §in O2-free aqueous solution.

Reaction of antiradical via

Antioxidation Antireduction

Electron Adduct Electron Adduct

Antiradical compound Radical donation formation acceptance formation References

ENDOGENOUS ELECTROPHILIC COMPOUNDS:

Non-enzyme cellular and vascular components

Eicosapentanoic acid, human serum albumin,
S-adenosylmethionine, betaine, carnitine, cholines,

e− [reductive stress] X [48–50]

Metalloproteins and enzymes

Cytochrome c, superoxide-dismutase/catalase Superoxide (O2
−•) X [46,47]

EXOGENOUS, PLANT SECONDARY COMPOUNDS:

Carotenoids (cf. Figure 2a)

β -Carotene, lycopene, torulene Methoxyl (CH3O•), phenoxyl (C6H5O•) X* [60]

β -Carotene, lycopene, torulene Hydroperoxyl (HOO•), methyl peroxyl (CH3OO•), benzyl
peroxyl (C6H5CH2OO•)

X* [57,60, and
references therein]

β -Carotene, lycopene, torulene Acetyl peroxyl (CH3C(O)OO•), benzoyl peroxyl
(C6H5C(O)OO•), trichloromethyl peroxyl (CCl3OO•)

X* [60]

Astaxanthin Superoxide (O2
− •) X*,† [62]

β -Carotene, lycopene, lutein, zeaxanthin, astaxanthin,
canthaxanthin

Sulphonyl (RS•O2) X X [55,56]

β -Carotene, lycopene, lutein, zeaxanthin, astaxanthin,
canthaxanthin

Thiyl (RS•) X [55,56]

β -Carotene, lycopene, lutein, zeaxanthin, astaxanthin,
canthaxanthin, torulene*

Nitrogen dioxide (•NO2) X(*) [55,56,60*]
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Table 2 Continued.

Reaction of antiradical via

Antioxidation Antireduction

Electron Adduct Electron Adduct

Antiradical compound Radical donation formation acceptance formation References
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Natural, polyphenolic compounds, such as flavonoids, were es-
tablished as electron donors (antioxidants) with highly reactive,
electrophilic azide and dibromide radicals (Table 2). Resulting
aroxyl radical products were confirmed by means of absorption
spectra [64,65]. In contrast with the aforementioned radicals, the
superoxide radical was unreactive with such antioxidants [64].
Polyphenolic antireduction was demonstrated under O2-free ex-
perimental conditions: A number of flavonoids and phenolic acids
were reduced by nucleophilic radicals, such as hydrated electrons
(eaq

− •) [64,66,67], the hydrogen radical (H•) [66] and formate
radical (CO2

− ) [64]. The 1-hydroxyethyl (CH3
•CHOH) radical

also acted as a reducing agent in the absence of O2, implying
antireduction [66].

With carotenoids, extensive computational modelling has been
performed to predict their reactivities with free radicals. Oxygen-
centred radicals, such as methoxyl and phenoxyl radicals are
supposed to withdraw electrons from carotenoid antioxidants in
aqueous phase under standard conditions [57] (Table 2). Peroxyl
radicals with an electron-withdrawing group (benzoyloxy, acet-
yloxy or trichloromethyl) are predicted to also act in this man-
ner. By contrast, peroxyl radicals with electron-releasing groups
(hydrogen, methyl, benzyl) are expected to form adducts with
antireductants such as the carotenoid torulene [57,60] (Table 2).
Antireduction is also the suggested way of clearance of the neg-
atively charged superoxide radical, produced by oxidases in cells
and blood vessels [47]. Antireduction as mechanism of action is
in line with the relatively low standard reduction potential E0 ′

(of − 0.16 V) of superoxide generation from O2 [68], its ability
to reduce Fe3 + [54,68] and cytochrome c [46,47,54], and the
calculated capacity to reduce the carotenoid astaxanthin in ben-
zene [62]. In various organisms, the superoxide radical is cleared
by superoxide-dismutase; i.e. superoxide is alternately reduced
to H2O2 and oxidized to O2. This enzyme has therefore been
classified as both antioxidant and antireductant [47] (Tables 1
and 2).

Radicals of xenobiotic origin, such as the chlorine radical
(disinfectants), the 1-hydroxyethyl radical (alcohol consump-
tion) or the nitrogen dioxide (•NO2) radical (cigarette smoke),
initiate lipid autoxidation on their exposure to unsaturated fatty
acids [55,58,69,98]. Lipid autoxidation contributes to deteriora-
tion of fats and oils, and damages in biological membranes [8].
Primary attack to a C C double bond by electrophilic radicals
results in alkyl radical formation. If a carbon-centred radical is
not preventively cleared by antireduction, it reacts with O2 to
an alkyl peroxide (ROO•). This peroxyl radical then attacks an-
other alkene double bond, producing another alkyl radical, and
thus starts an autoxidative chain reaction [54]. Antireductants,
which react with alkyl radicals, hence must be able to compete
with O2 for electron acceptance [8]. There are antireductants,
which are stable in the presence of O2, such as quinones [8,47],
or the commercially available galvinoxyl radical [70]. Never-
theless, in view of the high standard reduction potential E0 ′ of
the redox couple O2/H2O of + 0.82 V [71], antireduction seems
to work best in anoxic environments [8,19,23,27,66,67]. Then
again, in most cells and tissues, reducing capacities are high
and O2 levels low [18,72,73]. Probably due to respiration and

endogenous antioxidation, intact biological systems are highly
self-controlled and –regulated [52]. While in animals and man,
reducing cofactors such as NADH determine the intrinsic redox
status, in fruits and vegetables ascorbate and plant phenols are
important redox determinants [64]. The redox status inside living
matter is measured as apparent reduction potential Eh of redox
couples following the Nernst equation (Eh = Eo ′ + (RT/nF) ×
ln([Ox]/[Red]), with Eo ′: reduction potential at standard condi-
tions, R: gas constant, T: temperature, n: number of moles of elec-
trons transferred, F: Faraday’s constant). This equation factors
the ratio of oxidized to reduced molecules of e.g. glutathione or
cysteine [RSSR]/[RSH]2, as in situ coexisting concentrations. In
yeast cytoplasm, glutathione [RSSR]:[RSH] ratios of 1:∼70–190
were reported [51]. For mammals, Go and Jones [73] compiled
glutathione-related Eh values of approximately − 0.2 V in red
blood cells (as oxygen carriers) and the lung lining fluid, less
than − 0.2 V in cells and tissues, and approximately − 0.3 V in
mitochondria, the organelles of dissimilatory NADH-generation
and aerobic respiration. In view of these reducing conditions,
endogenous antioxidation and antireduction probably comple-
ment one another and thus coexist. The part antireduction plays
in redox homoeostasis becomes obvious during phases of O2-
depletion, or an unbalance of the cellular [NAD+ ]:[NADH] ratio.
For instance, exogenous fumarate had a cardioprotective effect
during hypoxia, as it acts as competitive electron acceptor to en-
dogenous, necrotizing lactic acid fermentation [74] (Figure 1).
Elevated dissimilatory NADH levels can result from high blood
glucose levels, such as during persistent over-nutrition. The thus
caused reductive stress was reported to manifest itself as en-
hanced electron leakage and formation of oxygen radicals during
respiration. The oxygen radicals are then the source of oxidat-
ive stress [50,75,76]. Early protection from reductive stress is
offered by diverse endogenous antireductants, such as serum al-
bumin (via disulfide reduction), and biomolecules with positively
charged, methylated N or S atoms [49,50] (Tables 1 and 2).

Exogenous antireductants against nucleophilic radicals in liv-
ing systems can only play a physiological role at sites where
they can be made bioavailable. In human beings, conceivable
areas of application are the skin [2], the intestinal epithelium as
entry port of in-food contraries and pathogens, followed by the
blood stream, up to body fat, in which lipophilic compounds
accumulate [77]. In view of the high reactivity of free rad-
icals, large amounts of antireductants might be necessary for
local, competitive protection [12]. However, exogenous antire-
ductants, as oxidizing agents, must not unbalance the delicate
redox homoeostasis: On overdosing, an antireductant might be-
come an inducer of oxidative stress (commonly referred to as
pro-oxidant). Electrophilic therapeutics, intended to activate cel-
lular antioxidant mechanisms, were shown to cause oxidative
modifications to other molecules and sustain activation of redu-
cing pathways (e.g. KEAP1–NRF2 [Kelch-like ECH-associated
protein 1 – nuclear factor (erythroid-derived 2)-related factor
2] disulfide reduction) [29]. In excess, antireductants might, as
electrophilic therapeutics, hyperactivate responding systems, and
similarly cause proteotoxicity and further damage [29]. Hence,
as with antioxidants for health promotion [11,12,15,17,29],
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Figure 1 Janus-faced compound fumarate: both antioxidant and antireductant in one molecule
Sources of data: [40,74,83,84].

antireductant application seems equally challenging. Neverthe-
less, in a slightly different context, the strategy seems to work:
In-feed astaxanthin was shown to become incorporated in sal-
monid fat during aquaculture, and was inferred to act as a food-
preserving antireductant in the subsequently frozen fish [98] by
provision of protection against early lipid oxidation [77] (Tables 1
and 2). Undoubtedly, anoxic environments [8,19,23,27,66,67,74]
and interphases between anoxic and oxygenic settings [44,45,
78,98] encourage antireductant operation (Table 1).

In terms of active compounds, current data indicate that apart
from electronegativity, the impact of functional groups (on elec-
tron density, delocalization and affinity), as well as accessibil-
ity of active sites to both radical and antiradical are crucial for
the type of reaction between them [59,61,79]. In addition, the
reaction environment (polarity, temperature, pH) and actual con-
centrations of all reactants represent important factors, because
normal life conditions are non-standard conditions [12,37,58–
60,63,67,72]. Taking these factors into account, the susceptibil-
ity of a radical to antireduction seems to basically depend on its
nucleophilicity, and the difference between the non-standard re-
duction potentials of the combined half-reactions as driving force
[22,61,79,80].

JANUS-FACED COMPOUNDS: BOTH
ANTIOXIDANT AND ANTIREDUCTANT
IN ONE MOLECULE

In many antioxidants, antireductant function has been predicted
or discovered [14,22,23,27,60,67]. The compounds in question
can both donate electrons as antioxidants (and being themselves
oxidized), and accept electrons as antireductants (and being them-

selves reduced). These properties furnish them with a dual, Janus-
faced nature. For the sake of clarity, ‘dual nature’ does not refer
to redox couples, and hence neither to regenerating actions as
described for vitamin E, vitamin C, glutathione, etc. [79,81], nor
to in vivo redox-signalling or -regulation via either direct reduc-
tion or oxidation [12,82]. On the contrary, starting with one and
the same compound, either antioxidant, or antireductant action
generates either oxidized or reduced conversion products. Well-
known natural antioxidants such as certain carotenoids [14,22,56]
and flavonoids [23,27,67] fall into this category, but also rather
small metabolites as fumarate [40,74,83,84] (Figure 1). This sec-
tion focuses on Janus-faced compounds and their biochemical
conversions as antioxidants and antireductants. Possibilities of
reactivity enhancement are specified for antireductants.

Carotenoids, i.e. plant secondary compounds such as β-
carotene, zeaxanthin and lutein, have been reported to act both
as antioxidant, and as antireductant under respectively suitable
conditions [14,22,85] (Table 3). Antioxidant reactions occur at
various double bonds of the conjugated backbone of carotenoids
(Figure 2a). β-Carotene, for example, is oxidatively cleaved dur-
ing antioxidation into diversely-sized fragments with hydroxy,
carbonyl, carboxy and epoxy groups [17]. Both antioxidation
and antireduction capacities of carotenoids do not seem to be
affected by the isoprene-derived methyl groups of their polyene
backbone. Calculated data for compounds with 4 and 9 conjug-
ated double bonds in their polyene chain were in line with those
for the equally alkenylated, but in addition methylated vitamin
A (retinol) and β-carotene (Figure 2a) [22,85]. By contrast, the
size of the conjugated system is pivotal for the electron-capturing
antireduction capacity, as substantiated experimentally and com-
putationally: Larger polyene molecules with a more extended
conjugated system represented better antireductants than smal-
ler ones [14,85]. Keto (C O) group(s) on the terminal ring(s),
which prolong the conjugated system, equip carotenoids with
a higher electron-accepting, antireduction potential. A hydroxy
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Table 3 Janus-faced compounds: natural antioxidants as antireductants (with respective reactivities depending on polarity, pH
and O2-level of the setting)
Abbreviations: AR, antireductant; CM, computational modelling of electron affinity of AR as electron acceptor in polar solvent; ECR, experimental
chemical reduction of AR under O2-free conditions; EMR, experimental microbial reduction of AR as alternative hydrogen sink to methane
precursors under anaerobic conditions.

Antireductants Setting References

Primary metabolite: Fumarate EMR [40]

Carotenoids: β -Carotene, lutein, zeaxanthin, echinenone, canthaxanthin, adinorubin, astaxanthin CM
ECR

[22,88]
[14]

Psittacofulvins: Tetradecahexenal, hexadecaheptenal, octadecaoctenal, eicosanonenal CM [88]

Anthocyanins: Peonidin, cyaniding, delphinidin, pelargonidin, petunidin, malvidin CM [88]

Phenols and flavonoids: ( + )-Catechin, 4-chromanol, genistein, genistin, rutin, caffeic acid, trans-cinnamic acid,
p-coumaric acid, 2,4,6-trihydroxyl-benzoic acid, baicalein, baicalin, naringenin, naringin, quercetin, gossypin

EMR
ECR

[23,27]
[67]

group next to the C O group, such as in adinorubin or astaxanthin
(Figure 2a), again seems to enhance antireductant quality [22].
As a side effect, oxygen substituents make lipophilic caroten-
oids better soluble in aqueous solution [79]. The antireductant
capacity of natural carotenoids can be improved by chemical
modification: Martı́nez [86] showed by electron density model-
ling that exchanging the C O groups, as of canthaxanthin, by
C S, C Se or C Te enhanced the antireductant potential of the
parent compounds. Another option to improve electron accept-
ance is to make use of the metal-complexing ability of highly
oxygen-substituted carotenoids. Metal chelation by astaxanthin,
via interaction of divalent metal cations with oxygen atoms of
an end ring’s C O group and deprotonated hydroxy group, res-
ulted in higher electron-accepting capacities. Concurrently, the
resulting chelate also showed increased electron-donating, i.e. an-
tioxidant, capacities [87]. Remarkably, the removal of metal ions
in itself by complexation has been associated with prevention of
oxidative stress [4,87].

Psittacofulvins are non-carotenoid polyenes with one terminal
carbonyl group. Psittacofulvins occur only in parrot feathers, and
they are of special interest as model compounds for compar-
ative electron affinity computation. In a non-polar environment
(benzene), they were calculated to act as electron-donating anti-
oxidants, whereas in water they would attract electrons as anti-
reductants [88] (Table 3). Psittacofulvins – as an outlier here –
offer a glimpse of the huge variation, and variability, of biogenic
compounds as basis for multifunctionality in nature. Apart from
being classified as antioxidants or antireductants, many plant sec-
ondary compounds are also pigments, absorbing light for energy
recovery or provision of colour (even after being eaten), or –
alternatively – are plant-protective feeding-repellents [64].

Flavonoids such as anthocyanidins (Figure 2b) exist in dif-
ferent stable configurations at different pH values. At low pH,
they are positively charged, and at high pH, they are negatively
charged. According to computational modelling, neutral or neg-
atively charged anthocyanidins make good electron-donating an-
tioxidants. Positively charged anthocyanidins are very effective
electron-accepting antireductants [88] (Table 3). In the related
flavones (Figure 2b), antioxidation is mainly provided for by
the C-ring of the molecule, namely by the double bond between
carbons 2 and 3 and the keto group on carbon 4. In flavonols
(Figure 2b), the added hydroxy group on carbon 3 in the C-ring

increases antioxidant activity [89]. In flavanols (Figure 2b) with
their saturated bond between carbons 2 and 3 in the C-ring, the
site most prone to one-electron donation is a deprotonated (negat-
ively charged) hydroxy group on carbon 4′ in the B-ring, assisted
by an ortho-positioned, second hydroxy group [64,90]. Aroxyl
radical species as primary oxidation products are stabilized by ex-
tensive electron delocalization [64]. As antireductant, the flavanol
( + )-catechin (Figure 2b) proved step-wise degraded; C-ring
opening was followed by A-ring cleavage. The hydroxy groups
on carbons 5 and 7 of the A ring – which are oxidized during an-
tioxidation [64,90] – together with the heterocyclic oxygen of the
C-ring, also ended up as aliphatic carboxylic or keto group after
ring fissions under reducing conditions [23]. However, neither
oxidation, nor reduction was involved during (anti)reductive
C- and A-ring cleavages, but chemical rearrangements and
hydrolyses. Product identification revealed that (anti)reductive
conversions comprised essentially diverse hydrogenation reac-
tions [23]. The B-ring of ( + )-catechin – most susceptible to
oxidation at its hydroxy group on carbon 4′ [64,90] (see above)
– was the last ring present as identifier of the parent compound
during (anti)reductive catechin degradation. Although catechin
conversion proceeded via different reaction sequences in rumen
fluid, the B-ring of ( + )-catechin was shown to lose its hydroxy
group on carbon 4′ at some point in all of the sequences by
reductive dehydroxylation [23].

The stilbenoid resveratrol (Figure 2c) is a good electron-
donating antioxidant, but a bad electron accepting antireductant,
according to its positioning on a donor–acceptor map (relative to
melatonin and α-lipoic acid by means of calculated donation and
acceptance indices) [26]. Despite this ranking, under anaerobic
conditions, resveratrol is reduced as an antireductant when sim-
ultaneously lowering methane emission [27,91] (Tables 1 and 3).
Evidence was obtained for hydrogenation of the aliphatic double
bond of resveratrol on its (anti)reductive conversion [27].

Interestingly, bioreduction of the flavanol catechin (Figure 2b)
and of the stilbenoid resveratrol (Figure 2c) was first discovered
during research focusing on the low bioavailability of these anti-
oxidants after oral ingestion. It became evident that gut microor-
ganisms degrade these plant antioxidants to reduced metabol-
ites [92,93]. Although the loss of supposedly health-promoting
antioxidants by microbial reduction in the digestive tract is
obviously undesired, the same conversions were shown to lower
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emission of the greenhouse gas methane from the upper stom-
ach of ruminants [23,27,91]. Greenhouse gas mitigation is a
contemporary requirement in the framework of global climate
change. As competitive hydrogen-sinks, catechin and resveratrol
removed H2 as by-product from rumen fermentation and thus
facilitate plant material digestion. Hence, in the rumen those nat-
ural compounds function as hydrogen- and methane-lowering
antireductants. They prevent biochemical reduction of HCO3

−

to methane by undergoing competing, reductive reactions them-

selves [23,27]. Not only acknowledged natural antioxidants
such as catechin and resveratrol function in this way [23,27],
but also small compounds such as fumarate [40,41] (Tables 1
and 3).

Fumarate, as an exogenous antireductant, not only lowered
ruminal methane emission [40,41], but also protected the heart
under O2-deficiency [74] (Table 1). As antioxidant, fumarate was
reported to activate an enzyme (GPx1) that scavenges ROS [84],
and to bind ozone, for example [83]. In summary, fumarate can
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either act as an electron-accepting antireductant [40], undergo
photochemical or enzymatic reductive assimilation [28,42], act
as an energy and electron source [28], or play diverse roles in
antioxidation [83,84]. All its capacities make fumarate not just a
paradigm of a Janus-faced antioxidant/reductant (Figure 1), but
a truly multifunctional compound.

CONCLUDING REMARKS

Up to now, antireductants appeared only sporadically in sci-
entific papers. The sparse pieces of information available on
antireduction were comprehensively gathered from diverse re-
search disciplines (Table 1) for this review. Hence, this review
substantiates – for the first time – that antireduction is an an-
cient strategy, that it is still essential for current life, and that
it offers promising perspectives for future applications. Cellular
‘redox homoeostasis’, for example, can only be maintained un-
der natural protection by both antioxidants and antireductants.
Moreover, seemingly unrelated topical fields, such as ‘reductive
stress’, ‘electro-biosynthesis’ or ‘mitigation of ruminal methane
emission’ all relate to antireduction (Table 1), and might profit
from the knowledge collated in this review.
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