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Abstract
Antimicrobial photodynamic inactivation is currently being widely considered as alternative

to antibiotic chemotherapy of infective diseases, attracting much attention to design of

novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with car-

borane), applied here for the first time for antimicrobial photodynamic inactivation, appeared

to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subti-
lis, Staphyllococcus aureus andMycobacterium sp. Confocal fluorescence spectroscopy

and membrane leakage experiments indicated that bacteria cell death upon photodynamic

treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The

enhanced photobactericidal activity was attributed to the increased accumulation of the

conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correla-

tion spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photody-

namic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate

showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC
mutant, deficient in TolC-requiring multidrug efflux transporters.

Introduction
The medicinal chemistry of carba-closo-dodecaboranes (carboranes [1]) has been traditionally
centered on their use in boron neutron capture therapy (BNCT) of tumors [2,3]. Based on the
known ability of various porphyrin-related photosensitizers to accumulate in tumors and gen-
erate cytotoxic reactive oxygen species killing cancer cells, conjugation of carboranes with
these compounds was considered as a way to improve both their delivery to tumors and thera-
peutic efficacy. Actually, such studies resulted in design and synthesis of promising agents for
BNCT, photodynamic therapy and fluorescence imaging of tumors [4–12]. On the other hand,
in a series of studies carboranes were used as drug pharmacophores [13–15]. So far, no research
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has to our knowledge concerned antimicrobial photodynamic effect of boronated carboranes,
although photodynamic inactivation (PDI) of bacteria has long been studied with different
photosensitizers [16–32] resulting in a great variety of medicinal applications. Of note, some
data on dark bactericidal and fungicidal activity of 1-(aminoalky)-1,2-dicarba-closo-dodeca-
borane [33] and o-carboranylalanine [34] were earlier reported. The cytotoxic efficacy of deriv-
atives of polyhedric boron complexes could be related to their unique binding [35] and
membrane-penetrating [36,37] properties, the latter being associated with delocalization of
their charge.

Much attention is attracted now to studying antimicrobial PDI (aPDI), because this thera-
peutic modality, being effective against drug-resistant infections, might allow for the develop-
ment of a valuable alternative or supplemental option to the current antibiotic-based
treatments [26,38]. The major targets of PDI in bacterial cells are still debated, albeit strong evi-
dence has been obtained in favor of damage to outer cell structures being critical
[19,26,30,31,39–46]. In fact, various authors have concluded that although DNA damage
occurs, it may not be the primary cause of bacterial cell death [47,48].

Among a great variety of photosensitizers studied as agents in aPDT, derivatives of chlorin
[20,23,24,49–53] and bacteriochlorin [54] attracted special attention. In particular, Hamblin
and colleagues showed that covalent conjugates of chlorin e6 with poly-L-lysine [23,24] and
polyethyleneimine [51] were efficient photosensitizers (PS) of both gram-positive and gram-
negative bacteria, because the polycationic molecular constructs increased binding and pene-
tration of the PS into impermeable gram-negative cells. Chlorin-polyethyleneimine conjugates
were also effective in PDI of fungi [54].

Here, we for the first time applied boronated chlorin e6 amide (BACE, chlorin e6 13(1)-N-
{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl
ester) [8,9] for aPDI and found this photosensitizer to show much higher efficacy against
Gram-positive than against Gram-negative bacteria.

Materials and Methods

Chemicals
The sodium salt of 13(1)-N-{2-[N-(1-carba-closo-dodecaborane-1-yl)methyl]aminoethyl}
amide-15(2),17(3)-dimethyl ester of chlorin e6 (BACE) was synthesized and described earlier
[8,9]. Chlorin e6 was obtained from Porphyrin Products (Logan, UT). E. coli total lipid extract
was from Avanti polar lipids (Alabaster, AL). 5(6)-carboxyfluorescein (CF) was from Sigma-
Aldrich (St. Louis, MO).

Carboxyfluorescein leakage from liposomes
Dye-loaded liposomes were prepared by evaporation under a stream of nitrogen of a 2% solu-
tion of E. coli total lipid extract in chloroform followed by hydration with a buffer solution con-
taining 230 mM Tris and 100 mM CF. The mixture was vortexed, passed through a cycle of
freezing and thawing, and extruded through 0.1-μm pore size Nucleopore polycarbonate mem-
branes using an Avanti Mini-Extruder. The unbound CF was then removed by passage through
a Sephadex G-50 coarse column with a buffer solution containing 10 mM Tris and 100 mM
KCl, pH 7.4. To initiate the release of liposome-entrapped CF, the liposomes were incubated in
the dark at room temperature with photosensitizers for 5 min and then illuminated with a hal-
ogen light source (“NovaFlex”, World Precision Instruments, USA) for 1 min. CF release from
liposomes into the bulk solution was monitored by an increase in CF fluorescence resulting
from its dequenching upon dilution. Fluorescence of liposomes loaded with 100 mM CF was
monitored at 520 nm (excitation at 490 nm) with a Panorama Fluorat 02 spectrofluorimeter

Photodynamic Inactivation of Bacteria by Carboranyl-Chlorin e6

PLOS ONE | DOI:10.1371/journal.pone.0141990 November 4, 2015 2 / 16

(3)-dimethyl ester; CFU, colony forming unit; CLSM,
confocal laser scanning microscopy; FCS,
fluorescence correlation spectroscopy.



(Lumex, Russia). The extent of CF efflux was calculated as (Ft−F0)/(F100-F0), where F0 and Ft
represent the initial fluorescence intensity and the fluorescence intensity at the time t, and F100
is the fluorescence intensity after complete disruption of liposomes by addition of the detergent
Triton-X100 (final concentration, 0.1% w/w).

Bacterial strains
Standard laboratory strains Bacillus subtilis subs. subtilis Cohn 1872, strain BR151 (trpC2 lys-3
metB10), and E. coli Castellani and Chalmers 1919, strain W3110 (F- lambda-IN(rrnD-rrE)1
rph-1) were used in this study. Staphyllococcus aureus Rosenbach 1884 (entry #144) andMyco-
bacterium sp. (entry #377) were obtained from the Microorganisms Collection of the Moscow
State University. The deletion strain JW5503 (ECK3026 in the Keio collection [55], the E. coli
ΔtolCmutant), devoid of the tolC gene, was kindly provided by Hironori Niki, National Insti-
tute of Genetics, Japan [55].

Bacteria growth
Bacterial cells were grown at 37°С in LB medium at 140 rpm shaking frequency. Overnight cul-
ture was diluted in fresh growth medium and grown to mid-log phase, then washed twice in
sodium phosphate buffer (pH 7.4) at 7,000 rpm for 5 min and resuspended to an optical den-
sity of about 0.8 at 600 nm, corresponding to approx. 108 cells/ml. The resulting bacterial sus-
pension was used for further experiments.

aPDI measured by plating
To measure aPDI, we used the method of serial dilutions. Suspensions of bacteria were incu-
bated in the dark at room temperature for 10 min with 1 nM—10 μM chlorin e6 or BACE in
sterile PBS and illuminated with red light (λ> 630 nm) obtained with KS-15 filter from a halo-
gen light source (“NovaFlex”, World Precision Instruments, USA). The survival of bacteria was
assessed through colony forming unit (CFU) counts. CFU were determined by bacterial plating
on Petri dishes of serial dilutions. The fraction of survived cells was calculated as the ratio of
CFU of bacteria illuminated in the presence of a certain concentration of a photosensitizer to
CFU of the control bacteria (grown in the absence of photosensitizers in the dark).

Alternatively, to avoid serial dilutions, suspensions of bacteria (2–5�104 cell/mL) were incu-
bated in the dark at room temperature for 10 min with 1 nM—10 μM chlorin e6 or BACE in
nutrition broth. 0.2 mL of the bacterial suspensions was placed in a 96-well plate and illumi-
nated with red light, as described above. The viable bacteria were assessed through CFU counts.
The CFU for bacteria grown in the dark in the absence of photosensitizers was taken as 100%
(control).

Dark toxicity of BACE and chlorin e6 measured by optical density
Overnight E. coli bacterial cells cultures were diluted in fresh LB media. Chlorin e6 or BACE
(100 nM—50 μM) were added to bacterial cultures (1–5�106 cells/ml), placed in 96-well plates,
Cell density was determined by absorbance at 600 nm using an Multiscan FC multimode
reader (Thermo Scientific, USA) after bacteria were allowed to grow in the dark within 21
hours.

Accumulation of photosensitizers by bacterial cells
Accumulation of photosensitizers by bacterial cells was evaluated from the fluorescence of the
pellet obtained after centrifugation at 12000g for 2 min. Cells were incubated for 10 min in the
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dark with the indicated amount of a photosensitizer. The pellet obtained after centrifugation
was treated with 0.1 M NaOH / 1% SDS. The photosensitizer concentration was determined
from its fluorescence by using a calibration curve for the solutions of different concentrations
in 0.1 M NaOH / 1% SDS.

Fluorescence correlation spectroscopy
Fluorescence correlation spectroscopy (FCS) measurements were carried out with a home-
made FCS setup [56,57] including an Olympus IMT-2 inverted microscope with a 40x, NA 1.2
water immersion objective (Carl Zeiss, Jena, Germany). A Nd:YAG solid state laser was used
for excitation of SRB at 532 nm. The fluorescence that passed through an appropriate dichroic
beam splitter and a long-pass filter was imaged onto a 50-μm core fiber coupled to an ava-
lanche photodiode (PerkinElmer Optoelectronics, Fremont, CA). The signal from an output
was correlated by a correlator card (Correlator.com, Bridgewater, NJ). The data acquisition
time was 30 s. The experimental data were obtained under stirring conditions which increased
the number of events by about three orders of magnitude thus substantially enhancing the res-
olution of the method. Concentrations of BACE and chlorin e6 (about 100 nM) were used to
produce the count rate of 100 kHz. For peak intensity analysis fluorescence traces with the
sampling time of 25 μs were analyzed using WinEDR Strathclyde Electrophysiology Software
designed by J. Dempster (University of Strathclyde, UK). The software, originally designed for
the single-channel analysis of electrophysiological data, enables one to count the number of
peaks (n(F>F0)) of the FCS signal having amplitudes higher than the defined value (F0) [8,58].
A program of our own design with a similar algorithm (coined Saligat; provided on request)
was also used.

Potassium leakage
Potassium concentration was measured with the help of a K+-sensitive electrode (NIKO-ANA-
LIT, Moscow, Russia) in the medium of 100 mM choline chloride, 5 mMMOPS, рН 7.4.

Confocal laser scanning microscopy of photosensitizer distribution in
bacterial cells
To study photosensitizer distribution in B. subtilis cells, we used confocal laser scanning
microscopy (CLSM). Bacteria cell suspensions were incubated with photosensitizers for 15 min
in the minimal volume of PBS on coverslips in a Recon camera of an inverted microscope.
Then the mounting medium—a mixture of 20% aqueous gelatin solution with an equal volume
of glycerol—was added. Before using, the glycerol-gelatin mixture was heated to 50–60°C for 7
min, then allowed to cool to 37°C and quickly added to a coverslip with bacteria. Digital images
were acquired using an Axiovert 200M LSM-510 META microscope (Carl Zeiss AG, Ger-
many). The confocal images were recorded with a Plan-Apochromat 100x/1.4 Oil Ph3 objec-
tive. Fluorescence of photosensitizers was excited with a 633 nm He–Ne laser, and emission
was detected with a 650–710 nm band pass filter.

Detection of cell membrane integrity
Cell membrane integrity after illumination of bacteria in the presence of a photosensitizer was
estimated using propidium iodide (PI). Bacterial cells were incubated for 15 min with 30 nM
PI and then examined with a Nikon Eclipse Ti-E confocal laser scanning microscope with a
Nikon Eclipse Ti-E A1 laser-scanning confocal system and a Plan Apo 20x/0.75 objective.
Images were captured for 25 fields of views for each sample, and the number of cells per field of
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view was counted, as determined by PI staining and differential interference contrast micros-
copy (DIC).

Statistics
All data are presented as means ± standard deviations as a result of 3–5 experiments.

Results and Discussion
Fig 1A displays the dependence of the survival of B. subtilis cells after photodynamic treatment
on the concentration of photosensitizers, as measured by the conventional colony-counting

Fig 1. A. Dose dependence of phototoxicity of BACE and chlorin e6 towards Bacillus subtilis. Cells
were incubated with the photosensitizers for 10 min in the dark and illuminated with red light at 4 J/cm2.
Colony-forming units (CFU) were determined by serial dilution-agar plating method. The cell surviving
fraction was evaluated as CFU experiment / CFU control.B. Dose dependence of phototoxicity of BACE
towards E. coli. Cells were incubated with the photosensitizers for 10 min in the dark and illuminated with red
light at 4 J/cm2 or 20 J/cm2. Photosensitizer concentration in the insert was 5 μM.

doi:10.1371/journal.pone.0141990.g001
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method. It is seen that BACE at a concentration of 10 nM was substantially more effective in
provoking PDI of B. subtilis than chlorin e6, which correlated with the corresponding differ-
ence (about two orders of magnitude) in the accumulation of BACE and chlorin e6 by B. subti-
lis cells (Fig 2A). It is worth mentioning that here we meant the increased association of the
photosensitizer with bacterial cells without indication of its localization on the surface or inside
cells. Bearing in mind that BACE and chlorin e6 were reported to have close values of the quan-
tum yield of generation of singlet oxygen [8], with the latter being the key agent in the BACE
photosensitizing activity in model systems [8,58], the increased photodynamic potency of
BACE compared to chlorin e6 could be related to the enhanced accumulation of the boronated
photosensitizer by bacterial cells.

In the PDI experiments with the gram-negative bacteria E. coli, chlorin e6 was completely
inactive at a concentration of 5 μM (Fig 1B, insert), by contrast to its impact on the gram-

Fig 2. Uptake of BACE or chlorin e6 by B. subtilis (A) and E. coli (B) cells.Cells were incubated for 10 min
in the dark with the indicated amount of a photosensitizer. The pellet obtained after centrifugation was treated
with 0.1 M NaOH / 1% SDS. The photosensitizer concentration was determined from its fluorescence by
using a calibration curve for the solutions of different concentrations in 0.1 M NaOH / 1% SDS.

doi:10.1371/journal.pone.0141990.g002
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positive species B. subtilis (Fig 1A), which was in line with the conclusion made by Zorin and
coauthors [20] that the effectiveness of chlorin-mediated photoinactivation of E. coli is 100-
200-times lower than that of B. subtilis. Our observations also agree with the data obtained for
chlorin e6 in [24,53]. When applied with the illumination of 4 J/cm2, BACE was also ineffective
to photosensitize PDI of E. coli (Fig 1B). However at 20 J/cm2, BACE appeared to effectively
suppress the colony-forming activity of E. coli beginning from 1 μM (Fig 1B), in contrast to
chlorin e6 (Fig 1B, insert). Similar to the case of B. subtilis, the enhanced photobactericidal
activity of BACE compared to chlorin e6 with E. coli could also be attributed to the increased
uptake of BACE by the bacterial cells (Fig 2B).

Bright fluorescence of chlorins enabled us to supplement the data on the macroscopic
uptake of chlorins by bacterial cells (Fig 2) by FCS measurements of photosensitizer

Fig 3. Accumulation of BACE and chlorin e6 by B. subtilis (A) and E. coli (B) cells monitored by FCS. Fluorescence intensity traces of photosensitizers
were recorded with the FCS set-up in the presence or absence of bacterial cells (106 per ml). Inserts: Corresponding dependences of the number of peaks
with the fluorescence intensity F exceeding the threshold F0, n(F>F0), on the value of F0.

doi:10.1371/journal.pone.0141990.g003
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accumulation by single bacterial cells (Fig 3). The addition of B. subtilis cells to the solution of
BACE resulted in the appearance of high-amplitude peaks in the fluorescence intensity traces
recorded with an FCS set-up which reflected uptake of BACE by single bacterial cells (Fig 3A).
The fluorescence peaks were much lower with chlorin e6, as compared to BACE. Similar results
were obtained with E. coli cells (Fig 3B). Our data on the relationship between the photody-
namic efficacy and the bacterial accumulation of BACE are in line with qualitative correlation

Fig 4. A. Membrane integrity of BACE- and chlorin e6-treatedB. subtilis cells after illumination. Photosensitizers are depicted in blue color, propidium
iodide (PI)–in red color. Membrane integrity was assessed by counting PI-positive cells after illumination with red light at 4 J/cm2. B. Intracellular
localization of the photosensitizers measured by confocal laser microscopy.

doi:10.1371/journal.pone.0141990.g004
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Fig 5. Potassium permeability of BACE- and chlorin e6-treated B. subtilis (A) and E. coli (B) cells after
illumination measured by a potassium-selective electrode. Cells were incubated with photosensitizers
for 10 min prior to illumination (4 J/cm2). Nigericin (1 μM) was added at the end of each recording to induce full
potassium efflux.

doi:10.1371/journal.pone.0141990.g005
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between PDI of a panel of bacteria species using chlorin e6-polyethyleneimine conjugates [51]
and their uptake by bacterial cells.

By applying CLSM to B. subtilis cells incubated with PI, we compared the light-induced
effects on cell membrane integrity in the presence of BACE and chlorin e6. As seen from Fig
4A, the percentage of cells permeable to PI was much higher after the photodynamic treatment
with BACE, than with chlorin e6, thereby indicating the involvement of membrane damage in
the PDI of bacterial cells. This assumption was supported by CLSM images of BACE and
chlorin e6 distribution in cells of B. subtilis, which revealed predominant localization of BACE
on the surface of bacterial cells (Fig 4B). With E. coli the changes in PI permeability were negli-
gible under these conditions (data not shown).

To further investigate the membrane damage in the course of BACE-mediated aPDI, we
measured its impact on the potassium leakage from bacterial cells [59]. As seen from Fig 5A,
illumination (4 J/cm2) of B. subtilis cell suspension in the presence of the photosensitizers
resulted in significant stimulation of potassium leakage from cells, with BACE being more
effective than chlorin e6, whereas noticeable potassium leakage was not observed with E. coli
cells under these conditions (Fig 5B).

To compare the photodynamic potencies of the two photosensitizers in a model membrane
system mimicking bacterial cell membranes, we examined the ability of BACE and chlorin e6
to sensitize the photodynamic leakage of the fluorescent dye CF from liposomes formed from
E. coli total lipid extract with a high content (about 20%) of negatively charged lipids. Fig 6

Fig 6. Photodynamic action on liposomesmade from E. coli total lipids.Carboxyfluorescein leakage from liposomes induced by 1-min exposure to
visible light (4 J/cm2) in the presence of BACE (red curve), chlorin e6 (blue curve), and a control without illumination and photosensitizers (green curve). The
solution was 100 mMKCl, 10 mM Tris, 10 mMMES, pH 7.0. Lipid concentration was 5 μg/ml.

doi:10.1371/journal.pone.0141990.g006

Photodynamic Inactivation of Bacteria by Carboranyl-Chlorin e6

PLOS ONE | DOI:10.1371/journal.pone.0141990 November 4, 2015 10 / 16



Fig 7. Phototoxicity and dark toxicity of BACE and chlorin e6 towardsMycobacterium sp. (A),
Staphyllococcus aureus (B), andBacillus subtilis (C) evaluated by CFU counts. Phototoxicity was
determined upon illumination with red light at 4 J/cm2. The data shown are mean values ± standard
deviations.

doi:10.1371/journal.pone.0141990.g007
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shows that BACE at a concentration of 30 nM was much more effective than chlorin e6 in pro-
voking the CF leakage under these conditions. Earlier chlorin e6-aided photodynamic leakage
of CF from liposomes formed of neutral lipids was described in [60–62].

To compare sensitivity of different bacteria to PDI with BACE and chlorin e6, we deter-
mined cell viability for a series of bacteria species growing simultaneously in a 96-well plate
under illumination in the presence of different concentrations of photosensitizers by using
CFU counts (Fig 7). Remarkably,Mycobacterium sp. (Fig 7A) and Staphyllococcus aureus (Fig
7B) appeared to be highly sensitive to PDI with BACE (and less sensitive to PDI with chlorin
e6), similar to B. subtilis (Fig 7C). The most striking difference in sensitivity to BACE and
chlorin e6 was observed withMycobacterium sp. (Fig 7A). E. coli were resistant to PDI in this
system (data not shown), unless the concentration of BACE was increased to 50 μM, which
exhibited dark toxicity against these bacteria. By contrast, withMycobacterium sp., S. aureus
and B. subtilis, dark toxicity of BACE was about two orders of magnitude lower than its photo-
toxicity (Fig 7).

The focus of the paper was to compare photodynamic efficacies of BACE and chlorin e6
under mild illumination conditions, i.e. at 4 J/cm-2. Under these conditions BACE appeared to
be effective with a panel of Gram-positive bacteria and ineffective with Gram-negative bacteria,
whereas for killing the latter illumination at 20 J/cm-2 was required. Therefore, to gain insight
in the mechanism of the photobactericidal effect of BACE, we examined its impact on mem-
brane integrity and performed leakage experiments also under mild illumination conditions.

Fig 8. Dark toxicity of BACE and chlorin e6 towardsWT Escherichia coli and the E. coliΔtolCmutant.Chlorin e6 or BACE (100 nM—50 μM) were
added to bacterial cultures (1–5*106 cells/ml), placed in 96-well plates. Cell density was determined by absorbance at 600 nm. After that bacteria were
allowed to grow in the dark within 21 hours and cell density was measured again.

doi:10.1371/journal.pone.0141990.g008
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Unlike chlorin e6, BACE showed increased dark toxicity with the E. coli ΔtolCmutant [55],
deficient in TolC-requiring multidrug efflux transporters [63], compared to the wild-type
strain (Fig 8). Similar difference was found earlier for phenothiazinium antimicrobial photo-
sensitizers [64]. The results obtained with the E. coli ΔtolCmutant indicate that BACE is a sub-
strate of E. colimultidrug resistance pumps. To support this assumption, we examined dark
toxicity of BACE with the E. coli ΔacrEmutant, derived by a single deletion of acrE from the
same parent strain as the ΔtolCmutant. In E. coli, AcrE along with AcrB, AcrD, AcrEF,
MdtABC, and MdtEF belong to resistance-nodulation-cell division (RND) family of multidrug
efflux transporters that require interaction with TolC to function [65]. In fact, the E. coli ΔacrE
mutant displayed rather poor sensitivity to BACE (data not shown). Hence, the multifunctional
outer membrane channel TolC is required for BACE efflux from E. coli cells.

In conclusion, BACE, a photosensitizer of the carboranyl-chlorin type, was shown here for
the first time to be highly effective in killing a series of Gram-positive bacteria, with outer cell
structures being most likely the major target of the photodynamic action. The enhanced effi-
cacy of BACE as an antimicrobial photosensitizer with respect to chlorin e6 could be explained
by the increased accumulation of the boronated derivative by bacterial cells.
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