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BACKGROUND: The interval between successive births (birth interval) may affect breast cancer risk, whereas interval from last birth to
cancer onset may modify its behaviour.
METHODS: The study cohort consisted of 29 488 Finnish grand multiparous (GM) women, including 628 women with breast cancer.
Conditional logistic regression for case–control design nested within the cohort was used to estimate proportional hazards (referred
as relative risks, RR). Age at first birth and parity were co-variables.
RESULTS: Short interval (o1 year) between first and second birth increased the risk of advanced ductal breast cancer at ages o 50
years (RR¼ 5.29; 95% CI 2.00–14.0) as compared to interval 3þ years. The risk of advanced ductal cancer was also large
(RR ¼ 4.00; 95% CI 1.19–13.4) shortly (o3 years) after last birth as compared with the period 15þ years.
CONCLUSIONS: Short birth interval-associated excess breast cancer risk may be related to stimulatory effects of female steroid
hormones produced during two closely connected pregnancies, or defective breast maturation owing to failures in breastfeeding.
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Findings in our previous study of grand multiparous women (GM,
at least five births) indicated that birth interval (time between two
successive births) might affect the risk of breast cancer (Hinkula
et al, 2001). This finding and those of others (Albrektsen et al,
2005) prompted us to evaluate the impact of individual birth
intervals on risk. Specific attention was paid to the interval
between first and second births because the first pregnancy had a
significant role in the maturation of the breast resistance against
carcinogenic influences (Russo et al, 1994a, 2005). The length of
birth interval depends also on the duration of breastfeeding, which
is an important determinant of breast cancer risk (Collaborative
Group of Hormonal in Breast Cancer, 2002; Ursin et al, 2005; Lord
et al, 2008).

Pregnancies have dual effects on breast cancer: an immediate
increase in the risk after childbirth is followed by a long-term
protection (Woods et al, 1980; Kvåle and Heuch, 1987; Kelsey et al,
1993). In addition, cancers appearing within 2–6 years after birth
are more frequently advanced than those in women having a long
interval between birth and cancer onset (Kroman et al, 1997;
Wohlfarth et al, 2001; Phillips et al, 2004; Rosenberg et al, 2004;
Albrektsen et al, 2005, 2006).

This study population comprises of only GM women, most of
whom belong to the religious minority, the Laestadian movement
within the Lutheran church, which forbids the use of artificial
contraception. Hence conception in this population takes place
in physiological circumstances, thereby representing a specific
advantage for our study. Here, we aimed to explore the impact

of individual birth intervals on breast cancer risk at different
stages. Another aim was to assess how the relative risk changes
in relation to time since last birth in a Finnish cohort of
GM women.

MATERIALS AND METHODS

The data of the Finnish national Population Register comprised
29 488 women born 1935 or later and registered as having at least
five biological children by the end of 1997. This database involves
complete linkages between parents and the children born in
October 1953 or later, but precluding our obtaining full parity
history for women born before 1935. The exactly registered
birthdays of each child form the basis for birth interval
calculations.

Breast cancer cases diagnosed among the GM women between
the fifth childbirth and 31 December 2006 were identified in an
automatic record linkage with the files of the national population-
based Finnish Cancer Registry, using personal identifiers as the
key. There were 628 such breast cancers. The Finnish Cancer
Registry files include clinical stage and cancer morphology. The
registry receives cancer notifications from hospitals, pathological
and cytological laboratories, and also from physicians outside
hospitals; its coverage is almost 100% (Teppo et al, 1994).

Statistical methods

For each breast cancer case, 50 controls were randomly selected
among the GM cohort members who were at risk for breast cancer
at the time of cancer onset of the case and fulfilled the matching
criteria; a tolerance of ±1 year was allowed on the date of birth.
The proportional hazards method was applied to this case– control
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data. A woman was a non-case until she became a case, so controls
for each case were selected among non-cases irrespective of whether
they later became cases. The point estimates, hazard ratios were
obtained in SAS 9.1 using the PHREG procedure with the option
TIES¼DISRETE, which requests the discrete logistic model. This
method is same as the method of the conditional logistic regression
analysis if the controls were selected among the individuals who
were at risk of becoming cases. Proportional hazard were referred
here as relative risks (RR). Possible interactions were evaluated
using the TPHREG procedure, a test release of the PHREG
procedure that incorporates the CLASS statement in SAS 9.1. No
interactions were found between the study variables.

The RRs were also calculated for ductal and lobular, and for
local and advanced (regional or distant metastases) breast cancers
separately. Further stratification was based on the age at the
diagnosis of cancer (o50 years and 50þ years). Pregnancy at the
age of 50 years or later is extremely rare. The younger women
represent thus the years of reproduction and the older ones that of
ovarian quiescence. The distribution of patients into different
subcategories is presented in Table 1.

The likelihood ratio test was used to evaluate statistical
significance of the parameters of interest. The trend test was
analysed using linear trend test for the classified variables. The
lowest category had value 1 and the highest category had the same
value as the number of classes of the respective variable. Each of
the four intervals between first and fifth births was classified into
three categories (o1, 1–2 and 3þ complete years). Parity (5, 6, 7,
8, 9 and 10þ children) and the age at first birth (o20, 20– 24,
25–29, 30þ years) were added in each model. The time from the
latest birth to the date of onset of cancer was stratified into four
categories (o3, 3–6, 7–14, 15þ complete years).

RESULTS

Overall, the RR did not differ significantly between different birth
intervals, whereas short interval (o3 years) between last birth and
cancer onset was associated with a significantly increased risk as
compared to those with the interval of 15þ years (Table 2).
Increase in the number of births and decline in age at first birth
diminished the risk of breast cancer.

For cancers diagnosed before 50 years of age, the RR for short
interval (o1 year) between first and second birth was increased
twofold when compared with birth interval of 3þ years, and the
interval from last birth to cancer onset among the cases was three
times more often short (o3 years) than among the controls
(Table 3). An increase in parity from 5 to 8þ nearly halved the RR
in both age groups. In the group of 50þ year-old GM women, a
decline in age at first birth decreased significantly the RR of breast
cancer.

The most significant findings appeared in advanced ductal
cancer diagnosed before age 50 years (Table 4). Short (o1 year)
interval between first and second birth was associated with more
than fivefold increased RR when compared with the 3þ years
category. The RR of this cancer type appearing within 3 years after
last birth was fourfold as compared with the 15þ years category.

Table 1 Number (N) and percentage of women with breast cancer in 1974–
2006 among 29 488 women in Finland born 1935+ and registered to have at least five biological children, by histology, clinical stage at diagnosis, and age at
diagnosis

All ages Age o50 years Age 50+ years

Breast cancer category N Percentage of all women N Percentage of sub-category N Percentage of sub-category

All 628 100 180 29 448 71
Histology

Ductal cancer 484 77 140 29 344 71
Lobular cancer 101 16 21 21 80 80
Other types/unknown 43 7 19 44 24 56

Clinical stage
Local 326 52 67 21 259 80
Advanced 264 42 105 40 159 60
Unknown 38 6 8 21 30 79

Table 2 Number of breast cancer cases (N) among grand multiparous
women, and model-based multivariable relative risks (RR) with 95%
confidence intervals (95% CI), by study variables

Variable N RR 95% CI

Interval between births
1st and 2nd
o1 year 60 1.06 0.76–1.49
1–2.99 years 472 0.91 0.72–1.14
3+years 96 1.00 Ref.

2nd and 3rd
o1 year 25 0.78 0.50–1.21
1–2.99 years 449 1.05 0.86–1.27
3+ years 154 1.00 Ref.

3rd and 4th
o1 year 18 1.08 0.66–1.78
1–2.99 years 397 1.06 0.89–1.27
3+ years 213 1.00 Ref.

4th and 5th
o1 year 12 0.91 0.51–1.64
1–2.99 years 326 1.03 0.86–1.22
3+ years 290 1.00 Ref.

Time since last birtha

o3 years 32 2.36 1.31–4.27
3–6.99 years 45 1.54 0.98–2.41
7–14.99 years 164 1.25 0.96–1.63
15+ years 387 1.00 Ref.

Number of birthsb

5 407 1.00 Ref.
6 119 0.79 0.63–0.97
7 41 0.66 0.47–0.93
8+ 61 0.58 0.42–0.80

Age at first birthc

o20 years 212 1.00 Ref.
20–24 years 303 0.97 0.81–1.16
25–29 years 95 1.45 1.12–1.89
30+ years 18 1.47 0.88–2.46

aLikelihood ratio test P¼ 0.04, P-trend¼ 0.006. bLikelihood ratio test P¼ 0.001,
P-trend¼ 0.0001. cLikelihood ratio test P¼ 0.01, P-trend¼ 0.02.
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These factors operate separately; there was not a single breast
cancer GM woman, with birth interval o1 year and interval from
last birth to cancer o3 years. A long interval (15þ years) between
last birth and cancer onset may protect against breast cancer at age
50þ years (Table 4).

DISCUSSION

This study finds that among GM women, breast cancer is
associated with birth interval. Most important was the new finding
that short birth interval between first and second birth was
significantly associated with increased risk of advanced ductal
cancer in young GM mothers. The risk of ductal breast cancer in
clinically advanced stage is also high during the 3 years following
the last birth.

Previous studies on the risk factors in breast cancer have
comprised predominantly nulliparous women and women with
few children. We widened the perspective by evaluating this topic
in a homogenous group of Finnish GM women, whose breast

cancer risk is low, 45% having below the average incidence
(Hinkula et al, 2001).

The registers used in this study, the National Population
Register for births, and the Finnish Cancer Registry, are reliable
and virtually complete (Teppo et al, 1994; Pukkala, 2009). Because
the most important results in this study are from ages o50 years,
the lack of information on postmenopausal hormone therapy or
body weight does not weaken the validity of the findings.

The RR of advanced ductal breast cancer of GM women below 50
years of age was more than five times higher if the interval between
first and second birth was o1 year (¼ pregnancy interval o3– 4
months) as compared to 3þ years. The mechanism of this
detrimental effect is unclear. The fact that it appeared only after
the first pregnancy might reflect an association with breast
maturation, because first pregnancy may have a central role in
the differentiation of breast cells more resistant to carcinogenic
influences (Lambe et al, 1994; Russo and Russo, 1994b; Chie
et al, 2000; Russo et al, 2005; Wagner and Smith, 2005; Siwko
et al, 2008). The suggestion that incomplete differentiation may

Table 3 Number of breast cancer cases (N) and model-based relative
risks (RR) with 95% confidence interval (95% CI) in o50 and 50+ year-old
grand multiparous women, by age at follow-up and by study variables

Age at
follow-up o50 years

Age at
follow-up 50+ years

Variable N RR 95% CI N RR 95% CI

Interval between births
1st and 2nd birth
o1 year 20 2.03 1.08–3.83 40 0.81 0.54–1.21
1–2.99 years 136 1.29 0.82–2.03 336 0.80 0.61–1.04
3+ years 24 1.00 Ref a 72 1.00 Ref

2nd and 3rd birth
o1 year 5 0.71 0.28–1.85 20 0.80 0.49–1.31
1–2.99 years 129 1.23 0.85–1.78 320 0.98 0.78–1.24
3+ years 46 1.00 Ref 108 1.00 Ref

3rd and 4th birth
o1 year 3 0.85 0.26–2.80 15 1.14 0.66–1.96
1–2.99 years 116 1.26 0.89–1.78 281 1.00 0.81–1.24
3+ years 61 1.00 Ref 152 1.00 Ref

4th and 5th birth
o1 year 6 1.68 0.70–4.03 6 0.64 0.28–1.45
1–2.99 years 86 0.86 0.61–1.23 240 1.12 0.91–1.37
3+ years 88 1.00 Ref 202 1.00 Ref

Time since last birth
o3 years 31 3.27 1.42–7.51 1 13.8 1.32–144
3–6.99 years 40 2.13 1.07–4.26 5 1.50 0.58–3.90
7–14.99 years 86 1.75 1.00–3.05 78 1.10 0.80–1.51
15+years 23 1.00 Refb 364 1.00 Ref

Number of births
5 110 1.00 Ref c 297 1.00 Ref d

6 37 0.90 0.60–1.34 82 0.73 0.57–0.94
7 12 0.63 0.33–1.21 29 0.66 0.45–0.99
8+ 21 0.55 0.29–1.02 40 0.59 0.40–0.87

Age at first birth
o20 years 53 1.00 Ref 159 1.00 Ref e

20–24 years 92 1.04 0.73–1.49 211 0.93 0.75–1.15
25–29 years 29 1.22 0.73–2.04 66 1.52 1.12–2.06
30+ years 6 1.41 0.54–3.64 12 1.51 0.82–2.81

Total 180 448

aP-trend ¼ 0.04. bLR test P¼ 0.05, P-trend¼ 0.008. cP-trend¼ 0.04. dLR test
P¼ 0.006, P-trend¼ 0.001. eLR test P¼ 0.009, P-trend¼ 0.04.

Table 4 Number of ductal breast cancer with regional or distant
metastases at diagnosis (N), and model-based relative risks (RR) with 95%
confidence interval (95% CI) in o50 and 50+ year-old grand multiparous
women, by age at follow-up and study variables

Age o50 years Age 50+ years

Variable N RR 95% CI N RR 95% CI

Interval between births
1st and 2nd birth
o1 year 13 5.29 2.00–14.0 13 0.80 0.39–1.65
1–2.99 years 60 2.08 0.93–4.68 78 0.57 0.35–0.92
3+ years 7 1.00 Ref a 24 1.00 Ref

2nd and 3rd birth
o1 year 1 0.26 0.03–1.99 7 0.91 0.39–2.11
1–2.99 years 57 1.11 0.64–1.93 73 0.72 0.47–1.11
3+ years 22 1.00 Ref 35 1.00 Ref

3rd and 4th birth
o1 year 2 1.13 0.25–5.01 2 0.68 0.16–2.88
1–2.99 years 50 1.16 0.68–1.96 77 1.19 0.79–1.82
3+ years 28 1.00 Ref 36 1.00 Ref

4th and 5th birth
o1 year 2 1.38 0.31–6.23 4 1.49 0.52–4.27
1–2.99 years 45 1.26 0.75–2.11 56 1.03 0.69–1.54
3+ years 33 1.00 Ref 55 1.00 Ref

Time since last birth
o3 years 16 4.00 1.19–13.4 1 — —
3–6.99 years 19 2.43 0.85–6.93 1 2.21 0.25–20.0
7–14.99 years 36 1.84 0.78–4.37 19 1.61 0.84–3.09
15+ years 9 1.00 Ref b 94 1.00 Ref c

Number of births
5 46 1.00 Ref 78 1.00 Refd

6 17 0.88 0.48–1.61 30 0.98 0.62–1.54
7 6 0.65 0.26–1.64 2 0.15 0.04–0.63
8+ 11 0.53 0.22–1.32 5 0.32 0.12–0.87

Age at first birth
o20 years 24 1.00 Ref 50 1.00 Ref e

20–24 years 40 0.91 0.53–1.56 45 0.63 0.42–0.95
25–29 years 14 1.06 0.50–2.28 14 1.10 0.58–2.08
30+ years 2 0.76 0.16–3.67 6 2.51 0.97–6.48

Total 80 115

aLR test P¼ 0.003; P-trend¼ 0.006. bP-trend¼ 0.03. cP-trend¼ 0.04. dLR test
P¼ 0.0006; P-trend¼ 0.003. eLR test P¼ 0.01.
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predispose to breast cancer (Lagiou et al, 2003) has been
supported by findings in experimental animal studies that an
interaction of carcinogen with an undifferentiated breast epithe-
lium is a prerequisite for carcinogenic initiation (Russo et al,
2001). It is possible that an insufficiently maturated breast of the
young mother after her first childbirth – remains susceptible to
carcinogenic effects, including hormonal influences.

Theories of hormonal mechanisms of breast cancer development
are primarily based on exposure to excessive endogenous
oestrogens (Colditz and Rosner, 2000; Yager and Davidson
2006). The influence of endogenous hormones on the risk of
breast cancer of women may involve in addition to estrogens
effects of progesterone, prolactin, testosterone and IGF-1 on
terminal differentiation of mammary stem cells (Merrill et al,
2005). Estrogens and progesterone are mitogenic for epithelial
breast cells, and may stimulate breast cell proliferation (Söderqvist,
1998). During pregnancy, progesterone induces lobular– alveolar
development and differentiation for lactation (Lange et al, 1999),
and estrogens regulate ductal growth (Mauvais-Jarvis et al, 1986).
Older premenopausal and perimenopausal women have been
claimed to be at increased risk (Alexander and Roberts, 1987),
possibly implying an increased growth rate for present tumours
during the menopause, perhaps due to the effects of oestrogen
unopposed by progesterone.

Studies on the possible role of prolactin in breast cancer have
yielded inconsistent results – protective or carcinogenic effects or
no effect (Clevenger et al, 2003; Albrektsen et al, 2006). The most
recent prospective study suggests that prolactin might increase the
risk of breast cancer (Tworoger et al, 2007). During pregnancy,
prolactin level rises strongly from the eighth week onwards
reaching the peak concentration at term. Thereafter prolactin, the
principal hormone for milk biosynthesis, remains elevated only in
nursing mothers, in whom each breastfeeding induces a transient
peak in its level. In non-lactating woman prolactin concentration
declines rapidly, which allows early resumption of ovulatory
menstrual cycle and early fecundation after the birth. The
contraceptive effect of prolactin is not absolute; the efficacy
weakens especially from the fourth postpartum month onward.
Fecundation of lactating GM mother within 3 –4 months after her
first childbirth is thus possible but supposedly a rare phenomenon.
In such a case, the joint actions of prolactin, (induced by suckling)
and progesterone (from corpus luteum of the second pregnancy)
would initiate, in the beginning of second pregnancy, abnormal
cellular changes owing to the potential for breast cancer
development. Alternatively, the long-term joint stimulatory actions
of placental hormones (estrogens and progesterone) and prolactin
during two closely consecutive pregnancies may serve as initiators
for malignant transformation of epithelial breast cells.

In spite of our lack of breastfeeding data, we hypothesise that
GM women, with increased breast cancer risk in association with
a short interval between first and second birth, do not have
breastfeed or have only for a very short time. Short-term
breastfeeding, and especially no breastfeeding is associated with
shorter birth interval (Rutstein 2005). An increase in breast cancer
risk has been reported among premenopausal American women,

who nursed their first (RR¼ 1.37) or second (RR¼ 1,44) child o1
month (Byers et al, 1985).

Because lactation participates in the differentiation of mammary
epithelium in its terminal phase (Russo and Russo, 1994b; Russo
et al, 2001, 2008), deficient breastfeeding of the first child might
leave the breast cells susceptible to carcinogenic influences. This
would be in accordance with the finding that lactation has a
significant independent protective effect in breast cancer (Byers
et al, 1985; Collaborative Group of Hormonal Factors in Breast
Cancer, 2002; Ursin et al, 2005), particularly before menopause
(Byers et al, 1985; Newcomb et al, 1994; Lord et al, 2008).
Insufficient breastfeeding resulting in defective breast maturation
might thus be the primary cause for breast cancer of young GM
women in this specific subgroup.

The picture of breast cancer risk increase associated with birth
intervals appeared to be more complicated than the previous one
that long birth interval solely would affect the risk (Kvåle et al, 1987;
Albrektsen et al, 2005, 2006). In the light of the present results the
picture of adverse effects associated with birth intervals seems to be
more complex than the view that only long birth intervals affect risk
(Kvåle and Heuch, 1987; Albrektsen et al, 2005, 2006).

The RR of breast cancer of young GM women was highest
shortly after their last birth, which is in accordance with earlier
observations of mothers with few pregnancies (Kvåle and Heuch,
1987; Leon et al, 1995; Wohlfarth et al, 2001; Albrektsen et al, 2005,
2006). Transiently increased breast cancer risk after the last
childbirth in this study showed no association with the number of
pregnancies. The detrimental effect of short interval extended to
GM women aged 50þ years. Transient increase risk after latest
birth may even last for 15 years (Lambe et al, 1994; Liu et al, 2002).

Young age at first birth and increasing parity are established
protective factors in breast cancer risk (La Vecchia et al, 1989;
Layde et al, 1989; Lambe et al, 1996; Merrill et al, 2005). In this
study, after adjusting for other study variables, age at first birth
and parity were significant factors in GM women aged 50þ years.
Among GM women o50 years, our previous study of the same
cohort (Hinkula et al, 2001) that did not include birth intervals and
age at last birth showed, that age at first birth – but not parity – is a
significant risk factor. In contrast, in this study parity is a
significant risk factor among younger GM women – but not age at
first birth. Thus, the new age-related variables seem to weaken the
age at first birth effect and strengthen the role of parity as an
independent risk factor in this age period.

Elevated risk of advanced ductal breast cancer of young GM
women with short interval between first and second birth might
have an association with female steroid hormones and prolactin
secreted during two closely consecutive pregnancies or with
defective maturation of the breast owing to inappropriate nursing.
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