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Introduction
Multiple sclerosis (MS) is a chronic inflammatory 
demyelinating disease of the central nervous sys-
tem (CNS).1 Spinal cord abnormalities are com-
mon in MS, and include a variety of pathological 
processes, such as demyelination, neuroaxonal 
loss and gliosis, ultimately resulting in chronic 
motor, sensory and autonomic dysfunction.1,2

Recent improvements in magnetic resonance 
imaging (MRI) acquisition protocols and post-
processing have overcome some of the limitations 
associated with imaging such a small and mobile 
structure, whose imaging is affected by motion 
artefacts, caused by breathing, cardiac move-
ment, cerebrospinal fluid (CSF) pulsation and 

blood flow.3 Conventional spinal cord MRI pro-
vides information on focal lesions, which is neces-
sary for the diagnosis and prognosis of MS, and is 
commonly used in the clinical setting. Advanced 
quantitative MRI techniques assess the type and 
extent of spinal cord abnormalities, but their use 
is essentially limited to research centres.

The aim of this review is to present and discuss 
advances in spinal cord imaging in MS. We have 
divided the review into the following sections: (1) 
Spinal cord lesions on conventional MRI for MS 
diagnosis, prognosis and clinical monitoring, and 
advances in spinal cord imaging to improve visu-
alization of lesions; (2) Spinal cord atrophy in 
relation to MS clinical features, and advances in 
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sensory and autonomic dysfunction. A number of pathological abnormalities, including 
demyelination and neuroaxonal loss, occur in the MS spinal cord and are studied in vivo with 
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of MRI lesion characteristics that allow MS to be distinguished from other myelopathies, 
evidence for the role of spinal cord lesions in predicting prognosis and monitoring disease 
course, and novel post-processing methods to obtain lesion probability maps. The rate of 
spinal cord atrophy is greater than that of brain atrophy (−1.78% versus −0.5% per year), and 
reflects neuroaxonal loss in an eloquent site of the central nervous system, suggesting that 
it can become an important outcome measure in clinical trials, especially in progressive 
MS. Recent developments allow the calculation of spinal cord atrophy from brain volumetric 
scans and evaluation of its progression over time with registration-based techniques. Fully 
automated analysis methods, including segmentation of grey matter and intramedullary 
lesions, will facilitate the use of spinal cord atrophy in trial designs and observational studies. 
Advances in quantitative imaging techniques to evaluate neuroaxonal integrity, myelin 
content, metabolic changes, and functional connectivity, have provided new insights into the 
mechanisms of damage in MS. Future directions of research and the possible impact of 7T 
scanners on spinal cord imaging will be discussed.
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imaging analysis methods for spinal cord atrophy 
measurement; and (3) Quantitative imaging tech-
niques to obtain insights into the pathogenesis of 
MS. Finally, we will consider novel developments 
in spinal cord MRI, including the advent of 7T 
scanners, and suggest future areas of research.

Spinal cord lesions
Spinal cord lesions on MRI correspond to areas 
of demyelination, neuroaxonal loss and gliosis, 
affecting spinal cord structure and function.4,5 
Postmortem spinal cord studies have described a 
larger proportion of demyelination in the grey 
matter (33%) than in the white matter (20%), 
with lesions involving either both grey matter and 
white matter, or grey matter isolately.6 No differ-
ence in the extent of grey matter demyelination 
was seen between different cord levels.6

Characteristics of MS lesions on spinal cord 
MRI
Spinal cord lesions are visualized as areas of T2 
hyperintensity (Figure 1) and, less commonly, as 
areas of T1 hypointensity on conventional spin-
echo sequences. Although T1 hypointensity in 
the spinal cord is thought to be rare in MS, a 
recent study using inversion-recovery prepared 
fast field echo sequence (e.g. heavily T1-weighted 
sequence) at 3T demonstrated that 87% of 
patients with MS show T1 hypointense lesions in 
the spinal cord, and most of the lesions seen on 

the short-tau inversion-recovery T2-weighted 
sequence were hypointense on T1.7

After administration of gadolinium, new inflam-
matory activity, with associated blood–brain bar-
rier breakdown, allows the MS lesions to appear 
as areas of T1 hyperintensity; gadolinium enhance-
ment in the acute spinal cord lesions is generally 
nodular and, in 20% of the cases, may have a ring 
shape.8–10

MS lesions often occur in the cervical region 
(59%), and, less frequently, in the lower thoracic 
spinal cord (T7–12; 20%).11 On sagittal scans, 
they appear as cylindrical lesions, while on axial 
images they appear as wedge-shape lesions. In 
sagittal views, they rarely exceed two vertebral 
segments in length. On axial scans, MS lesions 
involve less than 50% of the cross-sectional area, 
occupy preferentially the lateral and posterior 
white matter columns and do not spare the grey 
matter. However, spinal cord involvement can be 
diffuse, as shown by diffuse signal abnormalities 
on proton density (PD) images, especially in the 
progressive forms of MS; diffuse signal abnormal-
ities in relapsing–remitting MS (RRMS) are asso-
ciated with a poor prognosis.12,13

Recommended spinal cord MRI protocols
The protocols recommended for spinal cord MRI 
in the clinical setting include both sagittal and 
axial scans.14 For sagittal imaging, conventional 

Figure 1. Lesions in MS and NMO.
T2 sagittal and axial (inset) spinal cord MRI of a patient with MS and a patient with AQP4-antibody-positive NMOSD. In 
MS (a), MRI shows areas of T2 hyperintensity which extend for a single vertebral level, involve both grey and white matter 
in the lateral-posterior part of the cord and have a cylindric shape on the sagittal view and a wedge shape on the axial 
view. In AQP4 NMOSD (b), there is a longitudinally extensive transverse myelitis from C1 to C5 and a lesion at T2–T3, with 
preferential involvement of the central spine.
MRI, magnetic resonance imaging; MS, multiple sclerosis; NMO, neuromyelitis optica; NMOSD, neuromyelitis optica 
spectrum disorder.
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or fast dual-echo spin-echo sequences (PD and 
T2-weighted, either in combination or indepen-
dently) are usually considered the gold standard. 
A recent study at 1.5T suggested that PD fast 
spin-echo sequences detect cord lesions in patients 
who have a normal T2 fast spin-echo MRI, and 
should therefore be used as a core sequence at 
1.5T.15 Either the T2 or PD spin-echo sequence 
can be substituted with a short-tau inversion-
recovery (STIR) T2-weighted sequence, which 
improves the visibility of MS lesions.16 In general, 
it is not recommended to use the STIR sequence 
on its own because of its susceptibility to 
flow-related artefacts and possible lower observer 
concordance.17 An alternative to the STIR 
sequence or to one of the two dual-echo 
T2-weighted sequences, is a heavily T1-weighted 
sequence,18 such as phase-sensitive inversion-
recovery (PSIR) or magnetization-prepared rapid 
gradient echo (MPRAGE), which improves the 
detection of MS lesions in the cervical cord.19 The 
three-dimensional (3D) acquisition of the MPRAGE 
permits multiplanar reconstruction that facilitates 
the delineation of lesions.20 A recent 3T study has 
reported that a 3D double inversion-recovery 
(DIR) sequence for the cervical spinal cord imag-
ing is more sensitive at detecting inflammatory 
lesions than conventional two-dimensional (2D) 
T2-weighted turbo spin echo (TSE) sequence.21 
However, the DIR sequence of the spinal cord is 
not widely used in clinical practice because it is 
strongly affected by artefacts, especially in obese 
patients, and by magnetic field inhomogeneities, 
and its coverage capability is currently limited to 
the cervical spine.21

For axial imaging, possible sequences are 2D or 
3D T2-weighted fast spin-echo sequences. A full 
cervical cord axial coverage detects more lesions 
(9–22%) than sagittal scans alone,11,22 and can 
also exclude lesions in cases of equivocal abnor-
malities on sagittal scans.11,22,23

No significant improvement in lesion detection 
was found when using 3T field strength com-
pared with 1.5T.24 Improvements in lesion detec-
tion are expected at 7T, although its application 
and relevance requires further studies, especially 
in the context of new coil designs and optimized 
acquisition times.2,25,26

Although pathological involvement of the spinal 
cord grey matter contributes significantly to disa-
bility in RRMS and secondary progressive MS 

(SPMS),27 its assessment with conventional MRI 
techniques is not achievable because of insuffi-
cient contrast between tissue compartments and 
low spatial resolution. In the research setting, 
improved delineation of cervical cord lesions and 
their involvement of the white and grey matter are 
obtained by using 3D-PSIR in combination with 
axial 3D gradient-echo fast field echo (3D-
FFE),28 although this MRI protocol requires a 
long acquisition time and has limited coverage of 
the cervical cord.

Diagnosis of MS supported by spinal cord MRI
The 2017 revised McDonald criteria confirmed 
that MRI is the most useful paraclinical test to aid 
the diagnosis of MS, and can be used to establish 
dissemination of lesions in space (DIS) and time 
(DIT) in patients presenting with a clinically iso-
lated syndrome (CIS).29 The spinal cord is one of 
the four areas of the CNS where lesions with 
characteristics typical of MS are scored to con-
firm DIS. Prior to the 2017 McDonald criteria, 
only asymptomatic spinal cord lesions were 
scored for DIS, which led to the high specificity of 
the DIS criteria; in order to facilitate the scoring 
of the criteria, and avoid discussing which lesion 
is the symptomatic one in cases of multiple lesions 
occurring in the same CNS location, the 2017 
revised criteria no longer distinguish between 
symptomatic and asymptomatic lesions when 
testing the DIS criteria.29 The inclusion of spinal 
cord symptomatic lesions for DIS or DIT 
increases diagnostic sensitivity, with little or no 
reduction in specificity.30–32

While brain MRI is recommended in all patients 
who are undergoing investigations for the diagno-
sis of MS, spinal cord MRI is advised when: (1) 
The clinical presentation suggests a spinal cord 
lesion; (2) The clinical presentation is suggestive 
of primary progressive MS (PPMS); (3) Brain 
MRI is normal, but there is a strong clinical sus-
picion of MS; (4) Brain MRI findings are incon-
clusive (e.g. ageing).18,29,33 Therefore, spinal cord 
MRI is generally recommended in patients with 
spinal cord CIS and in those with nonspinal MS 
not fulfilling the DIS criteria. It is debated 
whether all the remaining CIS patients, who have 
nonspinal MS and fulfil DIS criteria on brain 
MRI brain, should undergo spinal cord MRI.34

More recently, patients with clinical features 
typical of MS, but showing evidence of pathology 
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exclusively in the spinal cord, even with a single 
lesion, and whose MRI does not fulfil the DIS 
criteria, have been described as two novel clinical 
entities: (1) Progressive solitary sclerosis, when 
insidiously progressive upper motor neuron 
impairment can be attributed to an isolated 
demyelinating lesion within the CNS (within the 
spinal cord in 90% cases)35; and (2) Pure spinal 
MS, when relapsing episodes of short-segment 
myelitis occur over time, in the absence of typical 
brain or optic nerve lesions.36 Progressive solitary 
sclerosis and pure spinal MS are proposed novel 
MS phenotypes, characterized by a predominant 
spinal cord pathology.

Differential diagnosis of myelopathies 
facilitated by spinal cord MRI
MS could be responsible for up to 50% cases of 
inflammatory myelopathies and, thus, a number 
of conditions should be considered in the differ-
ential diagnosis. These include neuromyelitis 
optica spectrum disorders (NMOSDs), myelin 
oligodendrocyte glycoprotein-antibody (MOG-
Ab)-associated disease, sarcoidosis, and paraneo-
plastic syndrome, and require different treatment 
and management strategies.37,38 Certain lesion 
characteristics on spinal cord MRI may aid the 
clinicians to navigate through the differential diag-
nosis of spinal cord inflammatory pathology.14

NMOSD is responsible for up 50% cases of lon-
gitudinally extensive transverse myelitis (LETM), 
defined as T2 hyperintense spinal cord lesions 
extending ⩾3 vertebral levels (Figure 1).38 How-
ever, the length of spinal cord lesions in NMOSD 
depends on the timing of MRI with respect to 
clinical onset.39 NMOSD can also present with 
the involvement of <3 vertebral segments.40 
Additionally, LETM is not a pathognomonic fea-
ture of NMOSD, and other inflammatory demy-
elinating conditions can cause a LETM.

One of the most important spinal cord MRI fea-
tures differentiating NMOSD from MS, and other 
LETM aetiologies, is the presence of bright spotty 
lesions (BSLs),41,42 defined as lesions with signal 
intensities at least as high as, but not higher than, 
that of the surrounding CSF on a T2-weighted 
image, and not as low as that of the surrounding 
CSF on a T1-weighted image. BSLs are seen in 
the majority of patients without LETM, and it is 
thought that they indicate severe damage to the 
spinal cord. Other spinal cord distinctive features 

of NMOSD are lesions occupying ⩾50% axial 
cross-sectional area (transversally-extensive lesion), 
T1 hypointense lesions, and centrally located or 
both centrally and peripherally located lesions.38 
Gadolinium enhancement is common in NMOSD, 
but variable in its appearances (frequently irregu-
lar and punctuate); ring enhancement is seen in 
one-third of NMOSD myelitis episodes and dis-
tinguishes NMOSD from other causes of longitu-
dinally extensive myelopathies, but not from 
MS.10 Additionally, NMOSD lesions are more 
frequently located in the cervical or dorsal spinal 
cord, when compared with the lumbar cord.38

Overall, 20–40% of NMOSD patients negative 
for the aquaporin-4 antibody (AQP4-Ab), are 
instead MOG-Ab positive.43,44 The LETM of 
MOG-Ab-associated disease is virtually indistin-
guishable from that of NMOSD AQP4-positive 
disease.

Spinal cord sarcoidosis is an under-recognized 
cause of LETM and can precede symptoms of 
systemic and pulmonary sarcoidosis. Linear dor-
sal subpial enhancement extending ⩾2 vertebral 
segments and persisting >2 months differentiates 
spinal cord sarcoidosis from NMOSD and MS, 
where gadolinium enhancement is patchy, diffuse 
or ring-like.45,46 When linear dorsal subpial 
enhancement is combined with central canal 
enhancement in cases of sarcoidosis, a ‘trident’ 
sign on axial post-gadolinium sequences has been 
described.46,47

Other important causes of spinal cord lesions are 
post-infectious myelitis [e.g. cytomegalovirus 
(CMV), herpes simplex virus, varicella zoster, 
enterovirus], which often present with LETM, and 
are associated with variable radiological appear-
ances on T2, T1 and post-contrast T1-weighted 
images.

Noninflammatory myelopathies include vascular 
aetiologies (e.g. acute spinal cord infarction), spi-
nal dural arteriovenous fistula, tumours, nutri-
tional deficiencies, infections, and compressive 
myelopathies. In these cases, timely diagnosis and 
management is crucial to improve clinical 
outcomes.37,48

Additional clinical (e.g. hyper-acute or gradually 
progressive onset), radiological (e.g. presence of 
lesions on brain MRI, abnormalities on chest pos-
itron emission tomography imaging), laboratory 
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(e.g. presence of AQP4 and MOG-Abs) features 
might be necessary to establish the exact diagno-
sis of myelopathy.38,45,47 The most striking conse-
quence of a more appropriate and widespread use 
of spinal cord MRI and additional tests in cases of 
spinal cord myelopathy is that the recognition of 
an ‘idiopathic’ transverse myelitis is reducing over 
time.37

Prognosis of MRI using spinal cord MRI
In patients with radiologically isolated syndrome 
(RIS), the presence of asymptomatic spinal cord 
lesions is seen in 64% of patients who later 
develop CIS or MS, and in 100% of patients who 
later develop PPMS.49

In patients with CIS, the presence and the num-
ber of spinal cord lesions are associated with 
increased risk of clinical conversion to MS and 
disability progression, regardless of demograph-
ics, clinical features and brain MRI.50–52 In con-
trast, the probability of disability progression is 
very low in the absence of spinal cord lesions.50

In established MS, spinal cord lesions are associ-
ated with a higher risk of relapse,53 disability pro-
gression,54,55 and switching of disease modifying 
treatment due to poor treatment response.56 Also, 
upper cervical cord lesion load, quantified on PSIR 
sequences, is greater in progressive forms of MS 
than in RRMS, and is associated with disability.54 
In SPMS, spinal cord lesions frequently involve at 
least two spinal cord white matter columns and 
extend to the grey matter.13 The main limitation 
of these studies is that spinal cord coverage was 
confined to the upper cervical cord, in order to 
minimise physiologic artefacts and enable high-
resolution acquisitions within an acceptable time 
frame, thus limiting generalizability to clinical 
practice.13

Monitoring MS with spinal cord MRI
Spinal cord lesions are more likely to be sympto-
matic and leave residual neurological impairment, 
due to poor compensatory capacity of the spinal 
cord, than brain lesions.52,53 Despite this, 58% of 
new spinal cord lesions were reported to be 
asymptomatic and 25% of patients with RRMS 
develop at least one asymptomatic spinal cord 
lesion over 1.5 years.57 When only patients with 
stable RRMS are considered, 10% of them show 
subclinical spinal cord lesion activity alone.53 

Interestingly, asymptomatic spinal cord lesions 
predict clinical relapses when combined with 
asymptomatic brain lesions.53 Thus, spinal cord 
MRI could disclose subclinical disease activity in 
otherwise clinically stable MS, and could enhance 
a more thorough understanding of the course of 
MS.58 Asymptomatic spinal cord lesions may not 
be restricted to patients with MS, as they have 
also been observed in patients with NMOSD,59 
but more data for NMOSD are needed.

Spinal cord lesion mapping
Recent developments in imaging post-processing 
have allowed the creation of probability maps of 
spinal cord lesions, which show the probability of 
each voxel being ‘lesional’. Single-centre studies 
combining 3D T1-weighted FFE and the active 
surface model (ASM), a semi-automated voxel-
based analysis of the spinal cord, showed that 
patients with SPMS and especially PPMS have 
higher lesion counts and volumes, when com-
pared with RRMS, and that lesions are more fre-
quently located in the posterior cord than in the 
anterior cord, and in the upper cervical cord than 
in the lower cord.7,60 A larger, multicentre study, 
employing fully automated methods based on the 
Spinal Cord Toolbox (SCT) confirmed that 
lesions are more frequently located in the poste-
rior columns in all MS subtypes, and that lesion 
mapping at C3 clearly distinguishes between MS 
subtypes.61 In particular, high lesion probability 
was found in the posterior columns in RRMS, 
posterior and lateral cord in SPMS and posterior, 
lateral and central regions in PPMS (Figure 2).61 
Interestingly, high disability levels were associ-
ated with lateral and central cord involvement.61

Spinal cord atrophy
An increasing number of studies have focused on 
the importance of spinal cord atrophy as a bio-
marker of disability progression and as an out-
come measure in clinical trials.

Pathology correlates
Spinal cord atrophy is the consequence of differ-
ent pathological processes, including axonal tran-
section and associated neuroaxonal loss, 
demyelination, gliosis, and, ultimately diffuse tis-
sue injury.62–64 Although these pathological 
abnormalities occur within focal lesions, exten-
sive tissue abnormalities are also present in the 
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normal-appearing spinal cord of MS patients, 
and this finding may explain why spinal cord 
atrophy occurs independently of spinal cord 
lesions.5,63–65 Additionally, spinal cord atrophy 
also occurs, at least in part, independently of 
brain pathology.2,66,67

Advances in spinal cord atrophy measurements
Spinal cord atrophy is generally measured as the 
cross-sectional area at the cervical level, which is 
least affected by movement artefacts, yields the 
most reproducible results, and provides the best 
clinical correlates.68–72 The most common levels 
are C1–C2 and C2–C3, but measurements can 
be also made between C1 and C7.73

Atrophy assessment can be done on a variety 
of sequences, mainly 3D T1-weighted and 
T2*-weighted gradient-echo sequences on dif-
ferent MRI scanners (e.g. Philips, Siemens, 
GE).3,74,75

Methods for spinal cord image segmentation and 
atrophy calculation can be classified into three 

types: intensity-based, surface-based and image-
based.76 The older methods were fully manual, 
while the most recent methods have been semi-
automated or fully automated. For example, JIM 
is a surface-based method that automatically out-
lines the cord, after marking the centre of the spi-
nal cord.77 Within the JIM tool, the ASM has 
provided more prompt and reproducible meas-
ures of the spinal cord volume, compared with 
manual methods.78 The ASM offers a considera-
ble reduction in user interaction time, and can be 
performed over long spinal tracts. The user needs 
to identify landmarks at the extremes of the region 
to study, and, then, mark the centerline of the 
cord. Sagittally acquired images are then refor-
matted to the axial plane to obtain five contiguous 
3-mm slices; the program automatically calcu-
lates the radius and the centre of each axial slice 
and, finally, the cross-sectional area is obtained 
by averaging these contiguous slices.74 Other 
semi-automated method is NeuroQLab (an 
image-based method that segments the upper 
cervical cord from surrounding nonspinal cord 
tissue by using a Gaussian mixture modelling 
method).79,80

Figure 2. Lesion probability maps in the spinal cord. Lesion probability maps at the cervical level are shown 
for different disease subtypes (from Eden and colleagues61).
CIS, clinically isolated syndrome; PPMS, primary progressive multiple sclerosis; RRMS, relapsing–remitting multiple 
sclerosis; SPMS, secondary progressive multiple sclerosis.
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Recent efforts have attempted to develop fully 
automated methods, such as the SCT, which is 
an open-source comprehensive software dedi-
cated to the processing of spinal cord MRI. SCT 
is built on previously validated methods and 
includes motion correction tools, templates and 
algorithms to segment the spinal cord, allowing 
standardization and automation of the processing 
pipeline.81 The segmentation tool (PropSeg) con-
tained in the first version of SCT has already been 
tested on a large cohort of MS patients and 
healthy controls. This fully automated intensity-
based image segmentation method has the same 
sensitivity as the ASM but has higher inter-rater 
reproducibility and is more time efficient.82 A 
newer version of SCT also includes a fully auto-
mated framework for intramedullary lesion seg-
mentation, presenting with higher efficiency and 
reproducibility in lesion count and volume, when 
compared with manual detection.83

A recent study has demonstrated that there is a 
systematic difference in the values of the cross-
sectional area between methods, with lower val-
ues provided by fully automated methods (SCT) 
than semi-automated methods (NeuroQLab and 
JIM)84; a good agreement between these two 
semi-automated techniques was observed.84

When using these methods for spinal cord atro-
phy calculation, the rate of atrophy is estimated 
by numerical subtraction of spinal cord cross-
sectional area measurements calculated at different 
time points. We have recently applied to the spinal 
cord a registration-based technique, called the gen-
eralized boundary shift integral, used for comput-
ing brain atrophy, and have demonstrated that this 
method is feasible and may produce a reduction in 
sample size needed in clinical trials.85,86 It is 
expected that the development and optimization of 
registration-based techniques for spinal cord atro-
phy will reduce measurement noise, as it has hap-
pened when registration-based techniques were 
first used for computing brain atrophy.87

There has been a recent shift towards calculating 
spinal cord atrophy using brain volumetric 
images.80,88 A recent MAGNIMS study has con-
firmed that the spinal cord cross-sectional area, 
calculated at the C1–C2 level using dedicated vol-
umetric MRI of the spinal cord, is similar to that 
obtained using volumetric brain MRI.84 Further 
studies will aim to validate this new approach, 
which has the potential to allow calculation of 

spinal cord atrophy without acquiring a dedicated 
cord sequence, thereby saving scanning time, in 
both clinical trials and observational cohorts.

Spinal cord atrophy in disease phenotypes
Spinal cord atrophy occurs even in early stages of 
MS, and has been detected in patients with 
CIS.75,89–91 In CIS patients who were followed up 
for 5 years after onset, the lowest rate of spinal 
cord atrophy (−0.1% a year) was observed in 
those who remained with a CIS, while the highest 
rate (−1.4% a year) was detected in patients who 
developed MS and had an expanded disability 
status scale (EDSS) at the last time point equal or 
greater than 3.52 In general, a high rate of spinal 
cord atrophy is observed in the progressive forms 
of MS, especially SPMS (−2.2% per year; 
Figure 3).73,91 A recent study has reported yearly 
rate of spinal cord atrophy between −0.38% in 
RRMS and −0.62% in SPMS.92 A MAGNIMS 
multicentre study has detected a rate of −1.22% 
per year in patients with stable MS and −2.01% 
in patients who deteriorated over time.73 
Interestingly, we found a significant development 
of spinal cord atrophy in early PPMS patients 
when compared with healthy controls over only 1 
year of follow up, but not in patients with estab-
lished SPMS, who had a higher disability and 
more atrophic cord than early PPMS patients.93 
Although the rate of atrophy may vary slightly 
between studies, because of different cohorts and 
different methods, it is consistently reported to be 
higher than the rate of brain atrophy, which is 
known to be around −0.5% per year in MS 
patients.94 A recent meta-analysis of 22 longitudi-
nal studies assessing spinal cord atrophy in all MS 
subtypes revealed a pooled rate of spinal cord 
atrophy of −1.78% per year, that increased to 
−2.08% per year when considering progressive 
patients alone.68

The segmentation of grey matter areas on PSIR 
images at 3T allows the evaluation of grey matter 
atrophy in MS. Relapsing MS patients show 
smaller spinal cord grey matter areas (i.e. higher 
atrophy) than age and sex-matched controls, 
without significant differences in spinal cord 
white matter areas95; the grey matter of progres-
sive MS patients shows the highest degree of 
atrophy.95

Only a few studies have examined cervical cord 
atrophy in NMOSD and reported conflicting 

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 12

8 journals.sagepub.com/home/tan

results. Some studies found more pronounced 
spinal cord atrophy in AQP4-positive patients 
than patients with MOG-Abs,96 and in MS than 
NMOSD,97 whereas another study found similar 
reductions of cross-sectional areas in NMOSD 
and MS.98

Spinal cord atrophy and MS disability
A number of studies have shown associations 
between: (1) the extent of spinal cord atrophy at a 
single time point and concurrent disability,99 and 
(2) the rate of spinal cord atrophy over time and 
disability progression.52,75,91,100–102 A recent study 
has reported that every 1% increase in the annual 
rate of spinal cord volume loss is associated with 
a 28% risk of developing disability progression in 
the subsequent year.92 In a longitudinal cohort of 
nonspinal CIS, upper cord cross-sectional area 
decrease was associated with 5-year increased dis-
ability, measured by the EDSS.52 Within the 
EDSS, the subscores that reflect the neurological 
functions mediated by spinal cord pathways, such 
as the pyramidal, sensory, bowel and bladder 
functional scores, correlated with spinal cord 
atrophy.103 A higher spinal cord atrophy rate is 
associated with a worsening of more specific 
measures of motor disability, such as the nine 
hole peg test (9HPT) and the 25-foot walking test 
(25FWT).92,99 Associations between the develop-
ment of spinal cord atrophy and disability pro-
gression are particularly strong in PPMS.104

Spinal cord atrophy in clinical trials
Since spinal cord atrophy rates are two-to-three-
times higher than brain atrophy (−1.78% versus 
−0.5% per year), in particular in progressive 

MS,68,105 and the spinal cord is a very eloquent site 
of pathology in MS, spinal cord atrophy has been 
considered as an exploratory outcome measure in 
phase II and phase III clinical trials, especially in 
patients with progressive MS, although much less 
frequently than brain atrophy.106 However, clinical 
therapeutic trials that incorporated spinal cord 
atrophy as an outcome measure did not demon-
strate beneficial drug effects on this metric.107–110 
In addition to the possibility that the medications 
tested were not effective, there may be other rea-
sons for these negative results, related to methodo-
logical difficulties of calculating spinal cord 
atrophy; these include: movement artefacts and 
subsequent image noise; the limited spatial resolu-
tion of MRI scanners, which is an important issue, 
given the small cord size; multicentre design, with 
inter-site variability related to the use of different 
scanners with different acquisition settings; and 
inter-study variability related to the use of different 
methods to calculate spinal cord area.111,112 Also, 
spinal cord normalization using the intracranial 
volume, which aims to reduce the effect of biologi-
cal conditions unrelated to the disease, has been 
suggested,69,70,113 but it is not always performed.

There have been encouraging results from recent, 
single-centre, phase II clinical trials employing 
spinal cord atrophy.93,111 We demonstrated that if 
patients at the early stage of PPMS, with mild dis-
ability and a nonatrophic cord are selected, the 
sample size necessary to run a trial over only 1 
year is achievable.93

Quantitative spinal cord imaging techniques
Advanced imaging techniques are currently used in 
exploratory studies to investigate microstructural 

Figure 3. Spinal cord atrophy visible on conventional MRI.
Cervical cord MRI with sagittal and C2 axial (inset, used for spinal cord cross-sectional area measurements) views in CIS  
(a) and PPMS (b).
CIS, clinically isolated syndrome; MRI, magnetic resonance imaging; PPMS, primary progressive multiple sclerosis.
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abnormalities which reflect neurodegeneration, 
and to develop new targets for therapeutic 
intervention.114,115 These techniques include 
methods that study neuroaxonal integrity [diffu-
sion tensor imaging (DTI) and new models of dif-
fusion], myelin content [magnetization transfer 
ratio (MTR), and myelin water imaging], meta-
bolic changes [magnetic resonance spectroscopy 
(MRS)], and functional connectivity [functional 
MRI (fMRI); Table 1]. However, advanced MRI 
techniques remain technically challenging, and 
results from studies using different acquisition 
protocols are difficult to compare.116–118 We will 
focus on the most recent advances in these tech-
niques and their latest applications to MS 
patients, and refer to other manuscripts for more 
technical and comprehensive reviews.119–121

Diffusion based techniques
DTI provides quantitative measures of micro-
structural abnormalities, which have been found 
to be abnormal in MS when compared with 
healthy controls. Recent studies have reported 
increased magnitude of diffusion in the direc-
tion perpendicular to the main direction of 
fibre bundles [i.e. radial diffusivity (RD)], and 
reduced diffusion anisotropy [i.e. fractional ani-
sotropy (FA)] in RRMS with acute spinal cord 
involvement, when compared with healthy con-
trols, and in SPMS, when compared with clini-
cally stable RRMS,27,117 suggesting reduced 
myelin and axonal integrity and impaired neu-
ronal fibre coherence.134 A combination of DTI 
indices could explain up to 77% of the EDSS 
variability, suggesting a strong contribution of 
spinal cord microstructural changes to irrevers-
ible disability (Table 1).27 A recent study, which 
investigated the reproducibility of DTI-derived 
measures at C1–C6 between different sites, has 
shown the feasibility of multicentre spinal cord 
DTI, with adequate matching of the sequence 
design across sites, in particular for different 
manufacturers.135 The main advantages of spi-
nal cord DTI are that it is simple to acquire and 
easy to interpret; its main limitation is that the 
DTI-derived measures are based on model 
approximations that the biological substrate is 
likely to violate and have low pathological 
specificity.

Q-space imaging (QSI) is a model-free technique 
that determines the voxelwise probability density 
function of fibre orientation, and seems to be 

more sensitive than conventional DTI measures 
at detecting MS-related abnormalities.136 QSI-
derived indices of perpendicular diffusivity are 
increased and indices of parallel diffusivity are 
decreased in the spinal cord of early PPMS, when 
compared with controls, possibly reflecting 
increased movement of water in the direction per-
pendicular to the long axis of the cord, due to the 
breakdown of myelin and axonal membranes, 
even in the absence of a significant degree of spi-
nal cord atrophy.122,123 Changes in QSI-derived 
measures are associated with different measures 
of clinical disability, suggesting that they reflect 
pathological abnormalities that contribute to neu-
rological deficits (Table 1).122,123 The main limi-
tations of QSI include the need to acquire a large 
number of data points, therefore necessitating 
long acquisition times, limited directional resolu-
tion, and difficulty in interpreting the probability 
density function.

Neurite orientation dispersion and density imaging 
(NODDI) is a recently developed multi-compart-
mental diffusion model, providing microstructural 
indices related to geometrical complexity of neur-
ite architecture (Figure 4).137 This technique 
applied to the spinal cord has been recently vali-
dated by comparison with histology, and a trend 
towards lower neurite complexity in demyelinated 
lesions, has been demonstrated.138,139 In a pilot 
study we found that neurite dispersion index was 
reduced in the spinal cord of patients with RRMS 
when compared with healthy controls,124 and a 
recent study has described reduced orientation 
index in the normal-appearing white matter and 
lesions of the spinal cord from six patients with 
MS, when compared with eight healthy controls 
(Table 1).125 The main findings of brain and spinal 
cord NODDI studies is that for similar value of FA 
there are different combinations of orientation dis-
persion index and neurite dispersion index, so 
NODDI is expected to be more pathologically spe-
cific than DTI.

Finally, an exploratory study has assessed the fea-
sibility of the spherical mean technique (SMT), 
which is another multi-compartmental diffusion 
model, in the spinal cord in six patients with MS 
and eight controls (Table 1).126 SMT, which is 
feasible on standard MRI scanners, enables the 
mapping of the neurite density and compartment 
diffusivities, and is sensitive in identifying abnor-
mal changes in MS lesions when compared with 
healthy white matter.126
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Table 1. Pathological specificity of advanced spinal cord MRI and clinical correlates.
Table shows pathophysiologic mechanism of MS that can be studied with different advanced MRI techniques. Changes occurring in 
different MS subtypes and clinical correlates are presented.

Pathophysiologic 
mechanisms

Advanced MRI 
technique

Changes in MS
(compared with controls)

Clinical correlates
(if abnormal)

Reference

Neuroaxonal 
integrity

DTI (FA, RD, MD) MD, FA = in RIS
RD ↑↑↑ in RRMS and SPMS
MD ↑↑↑ in RRMS and SPMS
FA ↓↓↓ in RRMS and SPMS

EDSS
Upper limb function
Lower limb function

27,116,117

 QSI ADCxy, FWHMxy, P0xy ↑↑↑ in 
PPMS
ADCz, FWHMz, P0z ↓↓↓ in 
PPMS

Spasticity
Postural instability
Sensory dysfunction

122,123

 NODDI (vin, ODI) vin ↓↓↓ in RRMS lesions
ODI ↑↑↑ in RRMS NAWM
ODI ↑↑↑ in RRMS lesions

124,125

 SMT (Vax) Vax ↓↓↓ in RRMS 126

 MRS (NAA/Cr) ↓↓↓ in PPMS, RRMS and 
SPMS

EDSS
Upper limb function
Lower limb function

127

 MRS (NAA) ↓↓↓ in PPMS EDSS
Spasticity
Postural instability
Sensory dysfunction

122

 MRS (Glx) ↓↓↓ in PPMS Postural instability 122

Myelin content MTR ↓ in RIS
↓↓↓ in RRMS

EDSS 116,128,129

 Myelin water 
fraction

↓↓↓ in PPMS
↓↓↓ in RRMS

EDSS
Lower limb function

130,131

 MTSat n/a EDSS
Lower limb function

132

Astrocytic 
activation and 
proliferation

MRS  
(Myo-inositol)

↑↑↑ in PPMS lesions Postural instability 122

Functional 
connectivity

BOLD fMRI ↓↓↓ in RRMS lesions
↑↑↑ in RRMS peri-lesional 
area

133

ADC, apparent diffusion coefficient; BOLD, blood oxygenation level-dependent; Cr, creatinine; DTI, diffusion tensor imaging; EDSS, expanded 
disability status scale; FA, fractional anisotropy; fMRI, functional MRI; FWHM, full-width half-maximum; Glx, glutamate and glutamine; MD, 
mean diffusivity; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; MS, multiple sclerosis; MT, magnetization 
transfer; MTR, magnetization transfer ratio; MTSat, quantitative MT saturation; NAA, N-acetyl-aspartate; NAWM, normal-appearing white 
matter; NODDI, neurite orientation dispersion and density imaging; ODI, orientation dispersion index; P0xy, zero displacement probability; 
PPMS, primary progressive MS; QSI, q-space imaging; RD, radial diffusivity; RIS, radiologically isolated syndrome; RRMS, relapsing–remitting 
MS; SMT, spherical mean technique; Vax, axonal volume fraction; vin, intra-neurite volume fraction.

An in vivo study of the spinal cord, which fits, 
studies and compares several biophysical models, 
similar to what has been done in the brain,140 

would be important to establish the limitations 
and the advantages of each model and the clinical 
potential of the latest models. Reducing the 
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acquisition times, without sacrificing the accuracy 
of the derived indices, may be possible with the 
latest techniques.126 The development of more 
advanced hardware (high-field MRI scanners), 
software (localization, gating, and motion com-
pensation), and coils (such as multi-channel 
phased-array coils) will contribute to expand the 
use of diffusion-derived metrics in MS clinical 
practice and trials.120

Techniques reflecting myelin content
MTR is a quantitative technique measuring the 
magnetization exchange between freely mobile 
protons and those associated with macromole-
cules such as myelin, providing an indirect esti-
mate of myelin content, in addition to neuroaxonal 
integrity and water content. A large study carried 
out in patients with MS reported lower MTR val-
ues in patients with a higher EDSS, than those 
with a lower EDSS, independent of lesion load,128 
suggesting that this measure can detect clinically 
relevant differences beyond conventional imag-
ing. Reduced MTR values were found in the cer-
vical spinal cord of 60 patients with early RRMS 
when compared with 34 age-matched controls, in 
the absence of spinal cord atrophy.129 This study 
also showed that the main contribution to low 
MTR levels is from the normal-appearing spinal 
cord tissue, since the effect of the lesions is 
minimal.129 In patients, there was a correlation 
between lower MTR and higher lesion load.129 
Some evidence for reduced MTR values were 
also found in the cervical cord of patients with 

RIS,116 although this finding requires further con-
firmation. Of note, the distribution of MTR 
reduction in the spinal cord periphery and bar-
ycentre supports a spatial pattern of microstruc-
tural damage that resembles that in the brain,129,141 
and suggests that MTR abnormalities in a region 
involving the pia mater and subpial cord occur 
early in the course of MS and are more marked in 
those with a progressive course.142 Clinical corre-
lates of MTR are reported in Table 1.

Myelin water imaging has been validated as a 
technique that provides a marker for myelin,143,144 
but it has been applied to the spinal cord in only 
a few studies. Myelin water fraction varies along 
the spinal cord proportionally to the white matter 
area fraction.145 In patients with cervical spondy-
lotic myelopathy, myelin water imaging shows 
high specificity in detecting impaired spinal cord 
conduction, when compared with conventional 
imaging (e.g. T2 signal intensity) which only pro-
vides a measurement of the extent of spinal cord 
compression.146 In MS, spinal cord myelin water 
fraction decreased by 11% in PPMS, but not in 
healthy controls,130 and was associated with disa-
bility scores (Table 1),147 suggesting progressive 
demyelination in this disease subtype, that is 
related to progressive disability accrual. Cervical 
spinal cord myelin water volume fraction progres-
sively decreases in MS, but not in NMOSD, in 
the absence of clinical relapses, suggesting that 
neurodegenerative and demyelinating processes 
occur continuously in MS, but not in NMOSD 
where inflammation might dominate.131

Figure 4. NODDI in the spinal cord.
NODDI provides tissue-specific indices related to geometrical complexity of neurite architecture. Cervical spinal cord 
NODDI maps of IVF (estimating the amount of free water), NDI (estimating the number of neurites), and ODI (estimating the 
variability of neurite orientations) are shown from healthy controls and patients with MS (courtesy Dr Francesco Grussu, 
University College London, UK).
IVF, isotropic volume fraction; MS, multiple sclerosis; NDI, neurite density index; NODDI, neurite orientation dispersion and 
density imaging; ODI, orientation dispersion index.
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MTR and myelin water imaging appear to pro-
vide complementary information. Although MTR 
is not pathologically specific, it is commonly 
available and fast to acquire, while myelin water 
imaging is more specific as a myelin marker but 
requires more complicated post-processing and is 
not a sequence product.

A recent paper investigated the role of spinal 
cord magnetization transfer (MT) saturation 
(MTSat), which is a quantitative MT saturation 
technique, minimally affected by T1 relaxation 
and field inhomogeneity, and demonstrated that 
MTSat correlates with disability more strongly 
than MTR, suggesting higher sensitivity to tis-
sue damage for future clinical applications 
(Table 1).132

Finally, quantitative MT (qMT) applied at 3T 
with reasonable acquisition time showed excel-
lent grey/white contrast and sensitivity to MS 
pathology (lesions).148

Metabolic imaging techniques
1H-MRS estimates the levels of metabolites, as 
long as they are available in relatively high con-
centrations.149 The most commonly estimated 
metabolites are total N-acetyl-aspartate (NAA; a 
marker of neuronal mitochondrial metabolism 
and, more in general, of neuronal integrity); 
NAA/Cr (NAA values normalized by voxel creati-
nine); glutamate and its precursor glutamine 
(Glx; whose reduction indicates chronic neuroax-
onal degeneration); and myo-inositol (a marker of 
glial cell activation and proliferation). A recent 
investigation of MRS at 3T using in vivo and 
postmortem experiments reported an extended 
metabolic profile of the spinal cord, thereby indi-
cating the rich information which can be provided 
by this technique.150

When MRS was applied to patients with early 
PPMS, lower NAA, lower Glx, and higher myo-
inositol, in particular within lesions, were detected 
in patients compared with normal-appearing tis-
sue in healthy controls.122 Metabolic changes 
within the spinal cord occurred in the absence of 
significant spinal cord atrophy, pointing towards 
early neuroaxonal loss and tissue remodelling, 
and were associated with disability measures.122 
When including patients at different disease 
stages, lower NAA/Cr was associated with spinal 
cord atrophy and with disability progression 

during follow up (Table 1).127 Also, diffuse lesions 
were characterized by lower NAA/Cr when com-
pared with focal lesions.127

MRS may assist with the differential diagnosis of 
myelopathies. It has been used to define the met-
abolic profile of different spinal cord tumours 
(e.g. strongly reduced NAA and strongly increased 
myo-inositol in the ependymoma, or absence of 
significant metabolic changes in extradural 
tumours, such as the schwannoma), and trau-
matic spinal cord injury (reduced NAA).151

23Na-MRS has been investigated in the brains of 
MS patients in several studies,152,153 that have 
shown increased total sodium concentration in 
the MS lesions and normal-appearing tissue in 
patients when compared with controls, suggesting 
either an expansion of the extracellular compart-
ment as a consequence of neuroaxonal loss, or an 
accumulation of sodium in the swollen axonal ter-
minals with ongoing degeneration.114 Advances in 
sodium imaging acquisition and analysis have 
allowed application of this metabolic technique to 
the spinal cord of healthy controls,154 and patients 
with MS;155 preliminary findings mirror brain 
results, with higher total sodium concentration in 
patients with MS than healthy controls.

Functional MRI
Very few studies have investigated the resting 
state blood oxygenation level-dependent (BOLD) 
signal in the spinal cord mainly because its 
sensitivity and reliability are still suboptimal 
and technical limitations are significant.156 In a 
7T fMRI study measuring the BOLD signal, spi-
nal cord functional networks were generally 
intact in RRMS (Table 1). However, increased 
connectivity was found at the boundaries of 
lesions, possibly indicating compensatory 
changes to demyelination/axonal loss, or disrup-
tion of inhibitory spinal interneurons.133

Future research
Ultra-high-field (7T) scanners have appeared in 
recent years. 7T MRI of the spinal cord can 
potentially overcome limitations of 1.5 and 3T 
scanners, by improving spatial resolution, increas-
ing the contrast-to-noise ratio, and allowing bet-
ter characterization of white and grey matter.157,158 
However, 7T spinal cord MRI remains techni-
cally challenging due to motion artefacts and field 
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inhomogeneities, and requires time-consuming 
acquisition and complex post-processing. New 
coils that reduce field inhomogeneities and allow 
whole spine coverage will help to overcome these 
limitations and develop this exciting tool in MS. 
Preliminary reports have shown increased sensi-
tivity and spatial accuracy in characterizing 
pathology in the spinal cord than lower field 
MRI.159

In addition to spinal cord imaging at 7T, future 
research will focus on: (1) Developing and opti-
mizing methods and techniques that can over-
come the technical challenges posed by imaging 
the spinal cord, (2) Clarifying the use of asympto-
matic lesions for monitoring MS and their added 
value to brain asymptomatic lesions, (3) 
Developing and optimizing quantitative MRI 
techniques, which provide biomarkers reflecting 
pathological abnormalities that contribute to dis-
ability, (4) Optimizing registration-based tech-
niques for computing spinal cord atrophy, which 
will increase precision and reduce variability of 
spinal cord atrophy quantification and translate it 
into the design of clinical trials.

The ultimate goal of future spinal cord imaging 
research is to characterize in vivo axonal pathol-
ogy and other pathological abnormalities in a 
clinical setting, thereby improving our under-
standing of the disease mechanisms and monitor 
the clinical course of MS and its response to 
treatment.
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