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Abstract

Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool
for high-resolution structural biology research. The ultimate outcome of a cryoEM study
is an atomic model of a macromolecule or its complex with interacting partners. This
chapter describes a variety of algorithms and software to build a de novo model based
on the cryoEM 3D density map, to optimize the model with the best stereochemistry
restraints and finally to validate the model with proper protocols. The full process of
atomic structure determination from a cryoEM map is described. The tools outlined
in this chapter should prove extremely valuable in revealing atomic interactions guided
by cryoEM data.

1. INTRODUCTION

Recent advances in direct electron detectors as well as reconstruction

algorithms for single particles have led to the structure determination of
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macromolecular complexes ranging from 2 to 5 Å resolution (Henderson,

2015; Kuhlbrandt, 2014). At these resolutions, also referred to as “near-

atomic” resolution, it is possible to infer all-atom structures de novo. The

ability to do this of course depends highly on the overall resolution of the

data. Since map resolution can vary significantly, we describe here map res-

olution broadly in terms of map features (Fig. 1). At high resolution

(roughly, 3.5 Å or better), sidechains are clearly visible in maps and individ-

ual rotamers may be distinguished. Generally, at this resolution the topology

of the protein is unambiguous. At medium-high resolutions (3.5–4.5 Å)
only some sidechains (generally aromatics) are visible. Beta strands are sep-

arated, but the topology may be ambiguous as the density corresponding to

connecting loops may be difficult to resolve. At medium resolution

A

B

C

Fig. 1 Structure features of CryoEM maps determined at different resolutions. (A) Beta-
galactosidase at 2.2 Å (EMDB2984, PDB 5A1A). (B) Brome mosaic virus at 3.8 Å
(EMDB6000, PDB 3J7L). (C) IP3R1 at 4.7 Å (EMDB6369, PDB 3JAV). These figures are kindly
generated by Corey F. Hryc and Matthew L. Baker.
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(4.5–6 Å), helices are discernable, but individual beta strands are often no

longer separated. The overall protein topology is often quite difficult to

determine at this resolution. Generally speaking, at high-resolution, de novo

map interpretation is relatively straightforward; at medium-high resolution

it is possible but often difficult and error-prone, and at medium-resolution, it

is generally not possible.

Most electron cryo-microscopy (cryoEM) maps tend to be determined

to worse than 3.5 Å resolution, and even those at better resolutions often

have nonisotropic resolution, which poses additional challenges in determi-

nation of accurate all-atom models from data. Consequently, a wide variety

of approaches and strategies have been developed to deal with the limited

resolution of the cryoEM data. A number of different tasks arise in the pro-

cess of structure determination from a cryoEM reconstruction, including de

novo model building, model optimization, and model validation. Broadly

speaking, tools to address these tasks have been derived from two sources.

The first source is tools developed initially for X-ray crystallographic model

building and optimization that have been adapted for cryoEM reconstruc-

tions. The second source is tools that have been developed directly for

cryoEM reconstructions and have been targeted for the near-atomic resolu-

tion maps that have become available. In both cases, there is a wide range of

tools available for each of the three steps of structure determination.

There are also a number of other tools aimed at interpretation of

moderate-resolution density (>6 Å). Due to the low information content

of such maps, interpretation is generally limited to placement of existing

high-resolution structures into the density maps of large macromolecular

complexes. Such approaches typically draw off protein/protein docking,

to identify the subunit arrangement with best agreement with the experi-

mental map (Lasker, Topf, Sali, & Wolfson, 2009). Despite the valuable

insights garnered by such approaches, this chapter does not cover the details

of these methodologies, and instead is focused on the process of atomic-level

structure determination from near-atomic resolution density maps.

The remainder of this chapter covers the workflow of structure determi-

nation from cryoEM density data, as illustrated in the schematic of Fig. 2.

The chapter will cover the process of structure determination from a near-

atomic resolution map at high and medium-high resolutions (2–4.5 Å), pro-
viding details on the various tools available to aid in structure determination

at each step, as well as some biological examples where the corresponding

approach was employed. Additionally, each section will also present some

of the tools for gleaning structural insights at medium (4.5–6 Å) resolutions,
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though this resolution is generally beyond that for which a model may

be determined to atomic-level accuracy. Each section will describe one

of the three major steps in cryoEM structure determination, corresponding

to the blocks in Fig. 2. The first step, de novo structure determination,

describes how an initial model may be constructed given only a primary

sequence and a reconstruction, when no other or limited structural informa-

tion is known. In the second step, model optimization, we describe a broad

class of methods to improve the fit of a model to data and improve the geom-

etry of a model. Finally, we describe tools for model validation, which

attempt to quantify the overall accuracy of a model given a reconstruction.

2. DE NOVO MODEL BUILDING

The first challenge in interpreting a map de novo is in segmentation.

Generally, an electron microscopy single particle reconstruction will consist

of many different subunits, both symmetrically and nonsymmetrically

related to one another. Segmentation divides the map into submaps which

Fig. 2 An overview of three steps of atomic model determination from near-atomic res-
olution data. (Left) De novo building methods take primary sequence and map, and
automatically produce a backbone model with sequence registered, identifying which
regions in the map correspond to particular sequences. (Center) Model optimization
takes an initial model—either produced from de novo building, or from a high-
resolution homologue—and optimizes the coordinates to better agree with the map,
as well as adopt more physically realistic geometry. (Right) Model validation aims to
assess—both globally and locally—the accuracy of a model, given experimental data.
Such tools are useful not only for assessing overall accuracy but also for tuning param-
eters of optimization.
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each contain one polypeptide or one nucleic acid chain. There are several

tools available for automatic, model-free segmentation, such as the program

Segger (Pintilie, Zhang, Chiu, & Gossard, 2009; Pintilie, Zhang, Goddard,

Chiu, & Gossard, 2010). However, such approaches perform inconsistently,

with errors arising from either nonuniform resolution throughout the map,

which makes segmentation difficult, or from tightly intertwined subunits, in

which the protein–protein interfaces are indistinguishable from protein

cores. For the remainder of this section, we will assume segmentation has

been determined, or that we are performing “segmentation through

interpretation,” that is, using the building of a multichain model to provide

segmentation of the cryoEMmap. An interesting example of the latter arose

in the epsilon 15 bacteriophage: model building of the major coat protein

into the cryoEM map led to discovery (and corresponding segmentation)

of a second, previously unknown, coat protein (Jiang et al., 2008).

Some de novo model building, particularly at the highest resolutions,

directly uses tools originally developed for X-ray crystallography. One of

the most widely used crystallographic tools for structure determination in

cryoEM reconstructions is COOT (Emsley, Lohkamp, Scott, & Cowtan,

2010), a system for model building and real-space refinement into density

maps. It displays maps and models and has a variety of tools—accessible

through an interactive GUI interface—that allow for building of backbone

into density, assignment of sequence to backbone, rotamer building, and

real-space refinement (Brown et al., 2015). However, the process is largely

manual, and consequently, determining atomic structure from cryoEM den-

sity can be labor-intensive.

In the highest-resolution cases, automated crystallographic structure

determination tools, such as phenix autobuild (Adams et al., 2010) and

Buccaneer (Cowtan, 2006), may be applied to problems in cryoEM. While

these methods are widely used for crystallographic datasets of 3 Å or better,

they have been used in crystallographic data as low as 3.8 Å, though the

results at this resolution are inconsistent. The two programs differ in imple-

mentation details but both attempt to find “seed placements” of either

helices or strands, extend these seeds guided by density, then finally place

sequence on these seed placements. Since the majority of cryoEMmaps have

not reached sufficiently high enough resolution except a few exceptional

cases, these tools have not been fully explored but definitely are options

as cryoEM maps continue to improve in quality, or as methodological

improvements permit their use at lower resolutions.
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More recently, a de novo model-building tool based on Rosetta struc-

ture prediction has been developed (Wang et al., 2015). Unlike crystallo-

graphic model-building programs, this approach combines the steps of

backbone placement and sequence determination, and makes use of

predicted backbone conformation to enable sequence registration in maps

where sidechain density is ambiguous. Seed fragments are placed—not based

on ideal helices and strands—but rather based on predicted backbone con-

formations given local sequence. The correct placements are selected using

Monte Carlo samplingwith a score function that measures the consistency of

a set of placements. The approach is then iterated—fixing fragments previ-

ously placed—until at least 70% of the structure is rebuilt. In a benchmark set

of nine maps ranging from 3.1 to 4.8 Å resolution, six structures were

completely interpreted using this approach. Fig. 3 shows one such example,

the determination of the structure of the contractile sheath of the type VI

secretion system (Kudryashev et al., 2015). This approach has also been used

in the structure determination of several domains of the Coronavirus spike

protein trimer (Walls et al., 2016).

Helixhunter and SSEhunter were a pair of tools originally intended for

quantitative detection of alpha helices and beta sheets in early subnanometer

A

B

C

Fig. 3 Modeling a 3.5 Å cryoEM map of VipA/B (Kudryashev et al., 2015). (A) The 3.5 Å
reconstruction (EMDB2699) of VipA/B, the contractile sheath of the type VI secretion
system. (B) A model of the two protein components, built using Rosetta de novo build-
ing followed by optimization with RosettaCM (PDB 3J9G). (C) A close-up view of the
asymmetric unit model, shown in density. The two panels on the right show regions
of relatively low local resolution; Rosetta de novo allowed placement of the models
in these regions.
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resolution cryoEM maps (Baker, Ju, & Chiu, 2007; Jiang, Baker, Ludtke, &

Chiu, 2001). Beyond secondary structure element identification, the

skeletonization algorithm in SSEhunter provides secondary structure ele-

ment connectivity. Subsequently, the Gorgon molecular modeling toolkit

(Baker et al., 2011) was developed to utilize a graph matching approach

to find the correspondence between the location, position, and connectivity

of secondary structure elements found in the density map with those

predicted in the sequence. This approach was useful for general protein

topology determination in medium-high and medium resolution cryoEM

density maps. While they are able to produce a gross protein topology, they

are still from being “perfect.”Relatedly, EM-fold (Lindert et al., 2009) iden-

tifies secondary structure elements in medium-resolution density maps;

however, it attempts to register sequence to these elements using a combi-

nation of density fit and the Rosetta force field.

Pathwalking treats de novo modeling as a computational optimization

problem (Baker, Baker, Hryc, Ju, & Chiu, 2012). It nearly automatically

determines plausible topologies as an instance of the travelling salesman prob-

lem (TSP): “pseudoatoms” are placed into a map corresponding to regions

of high density, then a TSP solver finds a minimal path through these pseu-

doatoms, where the cost function is related to the deviation from the ideal

Cα–Cα distance. On a wide variety of cases—even as low as 6 Å

resolution—this approach successfully determines the topology of a protein

(Baker, Rees, Ludtke, Chiu, & Baker, 2012). Several benchmark examples

of cryoEMmaps drawn from EMDB have been used to demonstrate its appli-

cability and relative accuracy for modeling their protein components (Baker

et al., 2011). Fig. 4 shows the case of a rotavirus capsid protein map where the

topology trace is very accurate and most errors in the Cα positions occur

where the map is not as well resolved. Of note, this method does not directly

use any sequence and/or protein topology information apart from the number

of amino acids in the protein and the ideal Cα–Cα distance. Not even the

cryoEM density is explicitly used to limit topological assignment. As such,

subsequent optimization of an initial pathwalker model by COOT, Rosetta,

or phenix is needed to improve overall model quality. Pathwalker, distributed

with EMAN2, now offers improved de novomodeling performance with the

incorporation of density filtering, geometry filtering, improved pseudoatom

placement, automatic secondary structure element assignment, and iterative

model refinement from a fully automated command-line utility (Chen,

Baldwin, Ludtke, & Baker, 2016).

While many cryoEM structural models have been built solely using one

of the above approaches, some of the more recent structures are large,
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complex, and have variable resolution throughout the map, necessitating

the use of multiple modeling techniques. For instance, the inositol-1,4,5-

trisphosphate receptor (IP3R1), a tetrameric cation channel, has 10 discrete

structural domains arranged over 2750 amino acids per polypeptide chain

(Fan et al., 2015). Among these domains, only �600 residues have a

corresponding high-resolution crystallographic structure. Building a model

of such a large protein (Fig. 5) requires the use of a cocktail of modeling

methods including sequence prediction (Cole, Barber, & Barton, 2008;

Kelley & Sternberg, 2009), secondary structure element localization (Baker

et al., 2007), homology modeling (Topf, Baker, Marti-Renom, Chiu, &

Sali, 2006; Webb & Sali, 2014), rigid body and flexible fitting (Jiang et al.,

2001; Pettersen et al., 2004;Wriggers & Chacon, 2001), and de novo model-

ing (Baker, Baker, et al., 2012; Baker, Rees, et al., 2012; Emsley et al., 2010).

As such, modeling of these types of complexes requires a more complex

strategy that integrates the various software packages and utilizes other

structural data. Such integrative methods will likely prove commonplace as

cryoEM is applied to large multisubunit molecular machines.

3. MODEL OPTIMIZATION

Once an initial model is constructed, or if a high-resolution homol-

ogous structure is already known, the next step in structure determination is

model optimization. In this case, the task is to move atom positions to

improve agreement to data, improve model geometry (eg, eliminating

A B C D

Fig. 4 Modeling a 3.8 Å cryoEM map of VP6 of rotavirus. (A) A segmented density map
of a capsid protein subunit of rotavirus (VP6) determined at 3.8 Å (EMDB1460). (B) A de
novo model built by pathwalker superimposed on the density map. (C) A crystal struc-
ture of the same protein (PDB 1QHD). (D) A Cα rms deviation between the cryoEMmodel
and crystal structure with the most and least deviation in red (gray in the print version)
and blue (dark gray in the print version), respectively. These figures are kindly provided by
Matthew L. Baker reproduced after Baker M.R. et al. (2012).
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clashes and unreasonable torsions), or some combination of both. Specifi-

cally, this step aims to optimize protein coordinates to minimize a target

function E¼Egeom +w �Edata, where Egeom assesses the geometric goodness

of a model, Edata assesses model-map agreement, and w is a weighing factor

controlling the relative contributions of geometry and agreement to data in

optimization. This section describes a number of different tools for model

optimization, which vary in the functional form of Egeom and Edata, the

parameter space describing protein motion, and the types of movements

used to optimize E. Consequently, these methods may vary quite a bit in
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Fig. 5 Modeling IP3R1 from a 4.7 Å cryoEM map (EMDB6369) (Fan et al., 2015). (A) The
model (PDB 3JAV) was built using a variety of modeling protocols, shown from two
views. The model is of the entire tetramer with 85% chain connectivity per chain, partly
due to the presence of isoforms at the SI, SII, and SIII sites causing specimen heteroge-
neity and partly due to the limitedmap resolution. (B) The annotation of the 10 structural
domains of a single IP3R1 subunit with 2700 amino acids. (C) A schematic of the
corresponding domains in the linear sequence. Reproduced from Fan, G., Baker, M. L.,
Wang, Z., Baker, M. R., Sinyagovskiy, P. A., Chiu, W., et al. (2015). Gating machinery of
InsP3R channels revealed by electron cryomicroscopy. Nature, 527, 336–341 and provided
by Matthew L. Baker.
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terms of recommended resolutions, magnitude of movements, and runtime

of the corresponding approaches. This section gives an overview of each of

these methods, when they may best be used and how to interpret the

resulting output.

As with the de novo section above, several of the tools commonly used in

model refinement are based on tools originally developed for X-ray crystal-

lography. In particular, both Phenix.refine (Afonine et al., 2012) and

Refmac have been commonly used (eg, phenix.refine was used to refine

the first cryoEM structure of epsilon15 bacteriophage capsid (Baker et al.,

2013)). In using these crystallographic tools, the data are first processed as

if it were crystal data, assigning an artificial unit cell and symmetry to the

data, and computing reciprocal space intensities and phases from the real-

space density. Then, refinement is carried against a function that takes into

account both Fourier intensities and phases of the data. The geometry func-

tion used by both is a relatively simple macromolecular energy function that

takes into account stereochemistry and steric clashes, with optional support

for torsional potentials or user-defined “restraints.” Generally, function

optimization consists of cycles of minimization, but may also include dis-

crete rotamer optimization or cycles of simulated annealing. Consequently,

these refinement methods are fast, but tend to make relatively small motions

from the starting model, leading to a small “radius of convergence”; that is

they are unable to correct errors in the starting model of large magnitude.

However, they are quite widely used to improve model geometry and

improve fit of models to data.

Much like the use of crystallographic tools for de novo model building,

one weakness of these tools is that they may not perform particularly well

when used at medium-high resolutions. However, there have been a num-

ber of recent advances for refinement against low-resolution data. One such

approach employs secondary structure element restraints (Nicholls, Long, &

Murshudov, 2012), where secondary structure elements in the initial model

are identified, and harmonic constraints are used to maintain backbone

hydrogen bond patterning throughout optimization, ensuring backbone

hydrogen bond patterning stays intact even as refinement moves the struc-

ture far from the starting point. Alternately, some approaches make use of

“reference-model restraints,” where atom-pair distances or torsions from

a related high-resolution structure are applied, rigidifying the structure dur-

ing the course of optimization (Headd et al., 2012). In this way, refinement

fills in ambiguity in the experimental data by enforcing agreement with

high-resolution crystallographic data of a related structure. In both
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approaches, one can think of the restraints as adding additional restraints into

Egeom in the equation above.

Several methods have been developed to perform model optimization in

real space instead. One advantage of real-space optimization is “locality”: if a

map contains contaminants not present in the model (eg, detergents or

amphipoles), when the data are converted to reciprocal space, these contam-

inants will affect the entirety of reciprocal space, but only the affected

regions when refining in real space (Brunger & Rice, 1997), as local regions

in real space contribute globally in reciprocal space. Similar advantages in

real-space optimization arise when optimization is carried out with only par-

tial models. This effect may be ameliorated by masking relevant regions

before converting the data to reciprocal space, but this requires that a mask

be defined a priori. Much like the crystallographic methods, these

approaches also need methods to deal with the relatively low resolution

of the data, typically using the same additional terms outlined earlier,

improving the sensitivity of Egeom.

One such real-space optimization routine is based on the phenix crystal-

lographic refinement software, called phenix.real_space_refine. This opti-

mization protocol ensures optimal fit-to-density, while maintaining good

stereochemistry and rotamer assignments. It is very efficient (generally tak-

ing minutes or less even for very large systems) but suffers from the same

limitation (of having a small radius of convergence) as its crystallographic

counterpart. One recent example where this approach was successfully

employed was in structure determination of the brome mosaic virus: an

all-atom model was optimized into a 3.8 Å cryoEM density map, resulting

in outstanding MolProbity statistics (Chen et al., 2010) compared to the

input model or the previously determined 3.4 Å X-ray crystal structure of

the same virus particle (Wang et al., 2014) (Table 1).

Another real-space optimization tool makes use of Rosetta (DiMaio

et al., 2015). By replacing the relatively coarse-grained crystallographic

Egeom with a richer, physically realistic potential that accounts for the hydro-

phobic effect, hydrogen bonding, electrostatics, and torsional preferences,

the number of effective degrees of freedom during optimization is dra-

matically limited. This allows for optimization to move the structure

significantly while energetically favorable interactions are maintained.

Rosetta-based optimization makes use of a combination of minimization

and Monte Carlo sampling of both backbone and sidechain conformations,

where extensive minimization after each Monte Carlo sampling step

allows exploration of a relatively large portion of conformational space.
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Table 1 MolProbity Statistics Comparing the cryoEM Map-Derived Models of Brome Mosaic Virus Before and After Real-Space Optimization
(RSO) (PDB 3J7L) and the Corresponding X-ray Structure (PDB 1JS9) (Wang et al., 2014)

Asymmetric Unit 3 Subunits
CryoEM 477 Residues at
3.8 Å Resolution After RSO

CryoEM 477 Residues at
3.8 Å Resolution Before RSO

X-ray (PDB id: 1JS9) 503
Residues at 3.4 Å Resolution

Density agreement Correlation coefficient 0.84 0.76 0.68

All-atom contacts Clash score (all atoms) 13.35 97th Percentile 16.02 97th Percentile 31.77 78th Percentile

Protein geometry Poor rotamers 0 0% 172 46% 181 49%

Ramachandran Outliers 12 2.55% 48 10% 44 9%

Ramachandran favored 434 92.14% 345 69% 351 71%

MolProbity score 2.11 100th Percentile 3.82 46th Percentile 4.1 21st Percentile

Cβ deviations 0 0% 0 0% 0 0%

Bad backbone bonds 0 0% 1 0.05% 0 0%

Bad backbone angles 0 0% 8 0.32% 5 0.2%

Percentile values in the table based on deposited structures at the reported resolution.
A complete asymmetric unit was analyzed, but the number of amino acids varies due to resolvability in the density map (EMDB6000). In addition, cross-correlation values
were computed between the map and the model for the asymmetric unit. Percentiles were calculated based on the deposited structures at the reported resolution.

http://firstglance.jmol.org/fg.htm?mol=3J7L
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This sampling and energy function allow for larger conformational changes

during optimization, however, it also comes at increased computational

cost. One further advantage of Rosetta is the symmetric degrees of freedom

are explicitly represented rather than restrained with noncrystallographic

symmetry restraints. This further reduces degrees of freedom as well as

improving performance on very highly symmetric systems (for example,

icosahedral viral capsids). An example of the types of movement that may

be obtained from this optimization protocol is shown in Fig. 6.

Another tool, DireX (Schroder, Levitt, & Brunger, 2010), uses ideas from

crystallographic refinement methods as well, but instead is applied in real

space, and—to address the poor data-to-parameters ratio of typical crystal

refinement—makes use of referencemodel restraints. However, unlike typical

crystallographic refinement programs, these restraints are allowed to change

during the course of model optimization. The restraints very slowly adapt

to the current model in the course of model optimization, with two met-

aparameters describing the “stiffness” and “speed” at which these constraints

adapt. By exploring the results of refinement over various settings of these

metaparameters, an optimal setting may be identified. A key advantage of

Deposited structure Rosetta refined

Lo
op

 B
Lo

op
 A

Fig. 6 The types of motion possible during Rosetta optimization. (Left) Two different
regions of relatively low local resolution in the 3.4 Å resolution map of TRPV1; Rosetta
refinement (right two panels) allows for significant conformational difference from the
deposited structure (left two panels). (Right) Despite the significant backbone move-
ment in the course of optimization, an ensemble of low energy models, resulting from
independent trajectories, are well converged.
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these adaptable constraints is that they identify a “minimally perturbed

conformation,” only violating constraints in the initial model if there is

sufficient evidence from the data that these constraints should not hold. Con-

sequently, the approach can allow for relatively large motions during optimi-

zation and often works reasonably well at low resolution if a corresponding

high-resolution structure is known (Chen, Madan, et al., 2013). Fig. 7 illus-

trates an application of this approach in the determination of several different

forms of F-actin refined against cryoEM data (Galkin et al., 2015).

Another class of tools is based on molecular dynamics guided by exper-

imental data. The most commonly used tool is MDFF (Trabuco, Villa,

Mitra, Frank, & Schulten, 2008), which combines the VMD molecular

dynamics package with a score term assessing the agreement of a model

to real-space density. Like Rosetta, the rich, physically realistic force field

makes the approach well suited to modeling large conformational changes,

as it maintains physically realistic geometry. Oneweakness of this approach is

that it may be time consuming, particularly if explicit solvent molecules are

used, due to the increased number of interactions introduced by explicit

A B C

Fig. 7 An example of model optimization using DireX to model distinct conformational
states of F-actin from a 4.8 Å cryoEM map (Galkin, Orlova, Vos, Schroder, & Egelman,
2015). (A) A 4.8 Å resolution reconstruction of F-actin (EMDB6179) into which a model
has been built and optimized (PDB 3J8I). (B and C) Two alternate, low-occupancy con-
formations of actin, titled T1 and T2, into which the initial model has been refined. Even
though the data are of relatively low resolution, DireX attempts to maintain as many
contacts as possible during refinement.
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solvent molecules and the long equilibration time consequently necessary.

However, it may be parallelized to run in a reasonable amount of wall clock

time. To date, it is often preferred for modeling large conformational

changes subject to medium-resolution density maps, as in the ribosome

(Trabuco et al., 2008) and HIV capsid (Zhao et al., 2013).

Finally, FlexEM is another method that approaches the problem hierar-

chically (Topf et al., 2008). A protein system is first broken into rigid bodies,

which are refined, and then full flexibility is allowed. The score function

used is similar to that of crystallographic force fields, however, the initial

rigid-body refinement step has relatively few parameters, and thus allows

for large motions of the system.

4. MODEL VALIDATION

Once after model optimization is completed, the final steps are model

selection and model validation. Model validation attempts to assess the accu-

racy of the refined model. This is desirable for several reasons, and model

validation may be used to address several different questions that arise during

model building. One may want to estimate the absolute accuracy of a model fit

to data. Alternately, one may want to compare models to find the most accu-

rate, either to select models from stochastic refinement trajectories, or to

tune parameters of model building, such as the weight on the experimental

data in refinement. Finally, one may wish to see if the model is improved

following optimization and identify when optimization can be stopped

(if there is no more improvement).

This section is broadly divided into two parts: validation using model

geometry and validation using model-map agreement. However, for both

measures, a key to validating models is the use of independent data, that is,

data that is not used in optimization—not optimized against—in order to

evaluate accuracy of a model. While the agreement of model to data used

in fitting is informative, it does not identify overfitting, fitting to noise in

the original reconstruction. To identify overfitting, independent data are

required (DiMaio, Zhang, Chiu, & Baker, 2013). This is critically important

at near-atomic resolutions, as—at these resolutions—it is much easier to

trace models incorrectly that fit the data well. Only by assessing the agree-

ment to independent data can we be sure that we are improving the model.

MolProbity, a widely used model validation metric used in both crystal-

lography and with NMR-derived models, assesses the geometry of a protein

model (Chen et al., 2010). More specifically, it looks at certain geometric
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features of amodel and compares them to the expected values of such features,

as derived from very high-resolution crystal structures. Such features include

bond-length and bond-angle distributions, backbone torsional distributions

(specifically, counting the number of “allowed” and “favored” backbone

dihedrals, which are seen in<2% and<0.05% of residues in high-resolution

structures, respectively), sidechain rotamer distributions (counting the num-

ber of rotamers seen with <0.3% frequency in high-resolution structures),

and atom pairs closer than the sum of their van derWaals radii. For eachmet-

ric, a corresponding Z-score is computed, and linear regression is used to

compute an aggregate score. This aggregate score is trained to predict the

resolution of data at which a particular structure was solved using only

the geometry of the model itself. The resulting “MolProbity score” can very

loosely be thought of in terms ofmap resolution,wheremodels scoring under

2 are of high quality, while models scoring higher than 4 are of relatively low

quality. MolProbity reports (Chen et al., 2010) also describe the ranking of

the examined structure relative to all the other structures in the PDB deter-

mined at the equivalent resolution (Table 1).

It is also important to point out that for many of the model optimization

methods outlined in the previous section, the geometric data are not con-

sidered “independent data” for the purposes of validation. Both Rosetta and

phenix.refine (when run in a certain mode) restrain sidechains to rotameric

identity for example. This is not a weakness of these approaches; indeed, at

low resolution such incorporation may be necessary, and given two other-

wise equivalent models, the one with better geometry is more likely to be

correct. However, for these approaches it is important to realize that these

measures are not independent data for assessing overfitting or for parameter

tuning.

One may also want to validate models based on fit between model and

experimental data. This is often done by evaluating the Fourier shell corre-

lation (FSC) between a model and the corresponding map, quantifying the

fit by calculating the correlation betweenmodel andmap in reciprocal space,

in the complex plane. One advantage of this measure over something like

real-space correlation is that the measure is independent of dampened inten-

sities in high-resolution shells (real-space correlation is sensitive to this

effect). This measure is often computationally corrected during the recon-

struction process, and so an assessment measure that ignores this is preferred.

In the near-atomic resolution regime, the FSC in high-resolution shells

alone is most informative as to the accuracy of the high-resolution details

of the model (DiMaio et al., 2015).
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There are several different ways in which this measure is used to generate

an independent validation measure. All compute a “free FSC” analogous to

theRfree measure in X-ray crystallography: the agreement of model and map

on a subset of data held aside during refinement. In crystallography, the Rfree

measure omits a subset (generally 5–10%) of reciprocal space intensities from
refinement and evaluates their agreement to the model as refinement pro-

gresses. Since it is now a common practice to produce two independent

maps from two independent sets of raw particle images to assess map

resolution (Chen, McMullan, et al., 2013; Henderson et al., 2012), one can

generate two independent models from the two independent maps. These

two independent models can be compared against the two maps by either

FSC or variance of the backbone between the two models (Rosenthal &

Henderson, 2003). In addition, one can compute the FSC between the

model derived from one map relative to the other independently deter-

mined map (Wang et al., 2014). It has been shown that FSC equal to 0.5

is a practical measure of the agreement between the model and map. If this

measure exceeds the gold standard map resolution (Henderson et al., 2012;

Scheres & Chen, 2012), it would imply that the model is overfitted. These

multiple crosschecks should provide consistent results to assure that the

model is not overfitted in each case. Fig. 8 shows an example application

of this model validation metric in the 3.8 Å cryoEM structure of brome

BA

Fig. 8 Model validation of a 3.8 Å cryoEM map of brome mosaic virus (EMDB6000)
(Wang et al., 2014) by (A) deviation between two independent models at the Cα level
(PDB 3J7M and PDB 3J7N). (B) FSC between model and experimental map from two
independent data sets. These figures are reproduced from Wang, Z., Hryc, C. F., Bammes,
B., Afonine, P. V., Jakana, J., Chen, D. H., et al. (2014). An atomic model of brome mosaic
virus using direct electron detection and real-space optimization. Nature Communications,
5, 4808 and kindly provided by Corey F. Hryc.
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mosaic virus (Wang et al., 2014). This validation approach is additionally

informative for tuning the relativeweight of experimental data and geometric

data during the optimization process. It is very much analogous to the Rfree

measure inX-ray crystallography: the agreement of model andmap on a sub-

set of data held aside during refinement. To deal with the somewhat reduced

resolution, it is also proposed to perform additional refinement against the

reconstruction of the entire data set (Brown et al., 2015), however, this final

refinement is no longer independentwith respect to the “independentmap.”

Alternatively, another approach (Falkner & Schroder, 2013), rather than

using two different reconstructions, instead truncates the full reconstruction

at some particular resolution (at the point where the FSC of two indepen-

dent maps is 0.5). Fitting is carried out against this truncated reconstruction,

while the truncated high-resolution information is used as an independent

validation set. The advantage of the latter approach is that independent maps

are not required. However, both techniques have been successfully

employed in order to detect overfitting.

A final method for map validation, EMRinger (Barad et al., 2015), also

comes from X-ray crystallography. This method, outlined in Fig. 9, iden-

tifies the fraction of amino acids with “rotameric sidechain density.” While

conceptually it may seem to be similar to rotamer probabilities reported by

BA

Fig. 9 (A) A schematic of the use of EMRinger for model validation (Barad et al., 2015).
Given a backbone model and a density map, EMRinger considers all possible positions
for a putative Cγ and identifies density peaks at a given threshold; the fractions of these
peaks over the whole structure, which are rotameric are used to assess the quality of the
model. (B) The results of EMRinger analysis on a sample system: the x-axis plots various
density value cutoffs and the y-axis shows the EMRinger Z-score. Higher values are bet-
ter, with Z-score of >2 indicating high-quality structures. These figures are reproduced
from Barad, B. A., Echols, N., Wang, R. Y., Cheng, Y., DiMaio, F., Adams, P. D., et al.
(2015). EMRinger: Side chain-directed model and map validation for 3D cryo-electron
microscopy. Nature Methods, 12, 943–946.
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MolProbity, it actually is quite different. It measures whether density is

rotameric for a particular sidechain, that is, by looking along the Cα–Cβ
vector of each residue, and identifying if the putative Cγ peak is rotameric.

In doing so, it ignores whether the modeled sidechain is actually rotameric.

Instead, it identifies backbone placements where sidechain density seems

reasonable; incorrectly placed backbone will have nonrotameric sidechain

density, even if the modeled sidechain is rotameric. Important to note is that

this measure only depends upon the placement of backbone atoms, and it

can be thought of as an orthogonal measure to those above.

5. DISCUSSION

This reviewprovides a detailed viewof the steps required in going from

a cryoEM map to all-atom model. As illustrated, there are a wide variety of

tools, eachwith tradeoffs in termsofmost effective resolutions, run time, con-

formational state explored.However, thesemethods show that it is possible to

obtain accurate, all-atom reconstructions from cryoEM density.

We have primarily focused on the determination of a single model that

best explains the data. However, the reality is that—as an averaging

method—a single cryoEM reconstruction may contain many different con-

formations of individual molecules. It might then make sense to consider

fitting ensembles of models to cryoEM reconstructions. However, as

X-ray crystallographic methods show us (Terwilliger et al., 2012), it is dif-

ficult to do this for two reasons: it introduces a significant number of param-

eters to optimization, and it is difficult to separate out the effects of

uncertainty from conformational variability. An open challenge in future

years remains how to represent and validate the various conformations pos-

sibly seen in different frequencies in a single molecular machine.

Finally, with the relatively low resolution of cryoEM reconstructions

compared to those in crystallography, it is important to assess the accuracy

of computed models. This is commonly done in several ways: by exploring

the space of solutions consistent with data (DiMaio et al., 2015), by looking

at consistency in models fit to independent datasets (DiMaio et al., 2013;

Wang et al., 2014), and by explicitly fitting models that contain uncertainty

(Pintilie, Chen, Haase-Pettingell, King, & Chiu, 2016), essentially putting

error bars on generated models. The question is still an open one; however,

as there is no consensus on the best way to compute or to represent uncer-

tainty of a model given a reconstruction. So far, all the modeling is based on

the assumption of the density map being correct and having an isotropic res-

olution. It has been shown in numerous cases that resolutions are
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nonuniform throughout the map. It will be very important in the future to

explore this problemmore rigorously. Accounting for the uncertainty of the

model and the map is key to interpreting the biology of the corresponding

system and planning next set of experiments based on the structures.
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