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Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact
with their neighbors to form a tumor-permissive and immunosuppressive
microenvironment. Short noncoding RNAs are relevant mediators of the dynamic
crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma
microenvironment. In addition to the ease of combinatorial strategies that are capable of
multimodal modulation for both reversing immune suppression and enhancing antitumor
immunity, their small size provides an opportunity to overcome the limitations of blood-
brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have
been conjugated with various molecules or packed within delivery vehicles for enhanced
tissue-specific delivery and increased payload. Here, we focus on the role of RNA
therapeutics by appraising which types of nucleotides are most effective in immune
modulation, lead therapeutic candidates, and clarify how to optimize delivery of the
therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.

Keywords: noncoding RNAs, tumor microenvironment, microRNA, siRNA, aptamer, antisense
oligonucleotide, glioblastoma
INTRODUCTION

Glioblastoma cells would not survive without close connection and dependence on their adjacent
molecular and cellular components. Multilevel and complicated communication between glioblastoma
cells and nonmalignant cells promotes a permissive microenvironment for gliomagenesis.
The glioblastoma microenvironment can be taken as a local niche comprising glioma cells,
immune cells, parenchymal cells, and their associated molecular factors and subcellular vesicles.
Microglia, a major type of parenchymal cells, contribute significantly to the brain tumor mass
and immunosuppressive microenvironment. In addition, these cells can secrete a number of
factors together with glioblastoma cells and nonneoplastic astrocytes that have an effect on
glioblastoma progression.

Heterogenous molecular factors contribute to the complexity of the glioblastoma
microenvironment and emphasize the importance of local niche influence to the tumor cells.
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An important contributor to these molecular factors is short
noncoding RNAs (ncRNAs) including small noncoding
microRNAs (miRNAs) and small interfering RNAs (siRNAs)
carried by extracellular vehicles (EVs). miRNAs account for a
large portion of the human transcriptome in the glioblastoma
cells and their surrounding cells, and these miRNAs regulate
numerous hallmarks of glioblastoma such as proliferation,
invasion, immune escape and resistance to treatment (1). The
development of various RNA agents including siRNA, antisense
oligonucleotides (ASO), and aptamers for specific gene targeting
and knockdown offers enormous therapeutic potential (2). In
this manuscript, we discuss the current state of knowledge of
miRNA immune regulatory functions and the impact of
immunomodula tory miRNAs on the g l iob las toma
microenvironment. Next, we will review possible use of
miRNAs, their analogue siRNAs, and aptamers as
antiglioblastoma therapeutics. Finally, we will discuss potential
RNA nucleotide therapeutics targeting immunomodulatory
pathways and survey effective strategies for delivery to the
glioblastoma microenvironment.
MIRNAS IN THE GLIOBLASTOMA
MICROENVIRONMENT

miRNA Roles in Glioblastoma
Pathobiology
Our understanding of gene expression modulation evolved upon
the discovery of the role of miRNA as an epigenetic regulator.
miRNAs at 21–23 nucleotide long can suppress target gene
expression by binding to the 3′ untranslated regions (UTRs) of
mRNA with partial complementarity base-pairing (3).
At present, around 2,500 human miRNAs have been identified
that act in this capacity (4). miRNA and mRNA interactions can
be complex: a mRNA can be modulated by multiple miRNAs
and a miRNA can target many different mRNAs. Thus, it is not
surprising that miRNAs play important roles in glioblastoma
initiation and progression. miRNAs have been indicated as
critical regulators of glioblastoma stem cell maintenance (5),
epigenetic regulation (6), tumorigenesis (7), oncogenic pathways,
and migration (8, 9). Furthermore, miRNA is involved in
regulating radio- and chemotherapy resistance and sensitivity
and may serve as biomarkers for diagnosis and outcome (10, 11).

Glioblastoma Cell-Associated miRNAs
Upregulated miRNAs in glioblastoma cells can act as oncogenes
(oncomiRs) and silence onco-suppressor genes. A prototypical
example and one of the first oncomiRs identified is miR-21
which is involved in malignant processes by targeting genes
important for proliferation, cell survival, invasion, and treatment
resistance (12). Other upregulated miRNAs such as the miR-17-
92 cluster, miR-10b, and miR-15b have been investigated in
preclinical studies and shown to be indispensable for tumor
initiation. As such, oncomiR blockade in glioma cells could
activate numerous tumor suppressor genes (13) and also
restore immune surveillance of the glioblastoma (14, 15).
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Liu et al., for example, demonstrated that miR-340-5p
suppression in glioblastoma cell enhanced M2 macrophage
polarization and macrophage recruitment to the glioblastoma
microenvironment (16), suggesting restoration of miR-340-5p
could be a potential strategy to reverse immune suppression
mediated by M2 macrophages.

In contrast, some miRNAs may function as tumor
suppressors and could be therapeutically reconstituted.
For instance, the miR-1, miR-7, miR-34a, miR-124, miR-128,
miR-138, and miR-181 family are a group of suppressor miRNAs
inhibiting glioblastoma progression when they are overexpressed
(8, 17, 18). These miRNAs not only directly target oncogenic/
tumor suppressor pathways in glioma cells but also exert broad
regulatory effects on the immune system. Our group found that
miR-124 inhibited multiple targets in the signal transducer and
activator of transcription 3 (STAT3) signaling pathway and
reversed immune dysfunction of T cells induced by
glioblastoma stem cells (GSCs) (19). We also showed that
miR-138 can target multiple immune checkpoint molecules
such as CTLA-4 and programmed cell death protein 1 (PD-1)
to inhibit tumor-infiltrating Tregs. In vivo administration of
miR-138 suppressed tumor development and significantly
prolonged survival time of immune-competent glioma-bearing
mice, but not immune-deficient mice (20), indicating the pivotal
role of miR-138 in immunological tumor surveillance.

One of the key mechanisms for intercellular communication in
the tumor microenvironment are exosomes that contain a wide
variety of miRNAs (12–16, 21). Exosomal miR-21 has been shown
to be an important mediator of immune cell reprogramming by
glioblastoma cells to create a niche favorable for cancer progression
(14). miR-1246 has been identified as the most enriched miRNA in
glioblastoma-derived exosomes and mediates glioblastoma-induced
protumorigenic macrophage formation by targeting TERF2IP and
subsequently activating the STAT3 pathway (22). miR-214-5p,
another glioblastoma-derived exosomal miRNA, mediates
proinflammatory responses by targeting CXCR5 in primary
microglia upon lipopolysaccharide stimulation (23). Furthermore,
exosomal miR-29a and miR-92a from glioblastoma cells promotes
the proliferation and immunosuppressive phenotype of
glioblastoma-infiltrating macrophages (GIMs) by targeting protein
kinase cAMP-dependent type I regulatory subunit alpha and high-
mobility group box transcription factor 1 (24). Given this is an
emerging area of investigation, it is likely that almost every key
pathway and mechanism elucidated for gliomagenesis will have a
network of miRNA control.

Glioblastoma-Infiltrating Macrophages
Associated miRNAs
Secondary to an immunosuppressive microenvironment,
glioblastoma patients are deficient in antitumor immunity
leading to malignant progression and resistance to treatment.
GIMs, the most frequent infiltrating immune cell subset (25),
originate from peripheral blood monocytes in response to
tumor-derived chemokines. Upon entry into the glioblastoma,
the macrophages adopt a M0/M2 phenotype with the capacity to
promote tumor cell invasion and exert immune suppression
through factors like tumor growth factor-b (TGFb) (26, 27).
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We have shown that miR-142-3p, by modulating the TGFb
signaling, inhibits the M2 phenotype of GIMs, and systemic
in vivo administration of miR-142-3p induces antiglioma immune
function (28). Ishii et al. reported that exogenous expression of
miR-130a and miR-145 in myeloid-derived suppressor cells
(MDSCs) decreased tumor metastasis through downregulation
of TGFb receptor II (TbRII) and related immune suppressive
cytokines (29). Reciprocally, GIM-derived exosomal miR-22-3p,
miR-27a-3p, and miR-221-3p can promote the proneural-to-
mesenchymal transition of GSCs by simultaneously targeting
CHD7 (30). miR-21 is also enriched in GIM-derived exosomes
and mediates temozolomide (TMZ) resistance for which the
STAT3 inhibitor pacritinib could overcome this resistance by
downregulating miR-21 (31). Moreover, the downregulation of
miR-21 promotes M1 macrophage polarization (32). As such,
miR-21 deregulation is an operational mechanism in both GIMs
and glioblastoma cells that modulates multiple oncogenic
molecules, and signaling pathway such as STAT3 and anti-
miR-21 strategies could be therapeutically developed.

Astrocyte-Associated miRNAs
In addition to the crosstalk between glioblastoma and immune
cells, astrocytes also contribute to tumor growth, invasion, and
immune suppression (33). For example, miR-19a is transferred
from astrocytes to metastatic cancer cells in the central nervous
system (CNS). Zhang et al. have demonstrated that exosomal
transfer of miR-19a downregulates PTEN and subsequently
promotes cytokine chemokine ligand 2 (CCL2) secretion.
CCL2 recruits macrophages that contribute to immune
resistance (34). Another astrocyte-associated miRNA, miR-10b,
is overexpressed in gliomas and brain metastasis, and this
miRNA can induce astrocyte transformation (13). Targeting
astrocytes and their associated miRNAs is an emerging strategy
for potentially treating CNS tumors.

Oligodendrocyte-Associated miRNAs
Oligodendrocytes have important protecting roles because they
produce myelin for neuron protection. Being a major cell
populat ion in the gl ioblastoma microenvironment,
oligodendrocytes interact with astrocytes and microglia and
participate in the formation of a tumor permissive niche (35,
36). Oligodendrocyte progenitor cells (OPCs) are the largest
proliferating population in the CNS, and together with GIMs, are
enriched at the infiltrating edge (37). Several miRNAs such as
miR-219, miR-129-2, and miR-338 have higher expression at the
infiltrating edge and are involved in oligodendrocyte
differentiation (38). Negative regulators of oligodendrocyte
differentiation such as SOX6, HES5, PDGFRA, and ZFP238 are
suppressed by these miRNAs (39). One of the important
functions of miR-219 is to mediate OPC differentiation to
oligodendrocytes (40). Additionally, miR-219 indirectly
promotes receptor tyrosine kinase signaling activity by
targeting and inhibiting epidermal growth factor receptor
expression. Thus, the evidence points to the involvement of
oligodendrocyte-associated miRNAs in the glioblastoma
microenvironment and warrants further study to determine
Frontiers in Oncology | www.frontiersin.org 3
their exact targets mediating the crosstalk of the OPCs and
tumor cells.

Endothelial Cell-Associated miRNAs
Glioblastoma is highly vascularized, and its invasion and
outgrowth rely on a nutrient supply by acquiring new blood
vessel formation (41). Endothelial cell proliferation from the
tumor is a direct measure of its malignancy. GSC-associated
exosomes are capable of inducing angiogenesis of endothelia cells
mediated by miR-21 (42). Some endothelial cell-associated
miRNAs such as miR-145-5p and miR-5096 can transfer
between human microvascular endothelial cells (HMECs) and
glioblastoma cells through gap junctions. In the process, miR-
145-5p is downregulated in early gliomagenesis and acts as a
tumor suppressor when passing from HMECs into glioma cells,
whereas miR-5096 is transferred from glioma cells into HMECs
and promotes angiogenesis (43). Finally, the miR-221/222 cluster
has also been shown to enhance angiogenesis and silencing
attenuates angiogenesis by inhibiting the JAK/STAT pathway
(44). All these targetable miRNAs associated with the various cell
lineages in the glioblastoma microenvironment are depicted
in Figure 1.
SMALL INTERFERING RNAS AND
ANTISENSE OLIGONUCLEOTIDES

In addition to the use of miRNAs, siRNA, which are 21–27 base pair
double-stranded oligonucleotides, are another treatment modality
for inhibiting protein synthesis at the posttranscriptional level.
Although both miRNA and siRNA strategies are capable of BBB
penetration, miRNA has the therapeutic advantage of target
networks which would be beneficial in complex heterogenous
cancers such as glioblastoma. However, miRNA off target effects
remains a substantial concern. In contrast, siRNA approaches have
much greater specificity that is counterbalanced by tumor plasticity
and escape mechanisms.

Potential Candidates of Immune
Modulatory siRNAs Targeting the
Glioblastoma Microenvironment
Vascular Endothelial Growth Factor
Abnormal vasculature is enriched in glioblastoma as a
consequence of upregulated angiogenic factors such as VEGF.
Increased VEGF causes new blood vessels to form within the
tumor via angiogenesis and the associated proliferation of
endothelial cells (45). The resulting vascular networks display
increased vessel permeability and enlarged vessel size that results
in plasma leakage into the tumor tissue and disruption to the
BBB. Together, these abnormalities induce inflammation,
cerebral edema, and increased interstitial pressure. Thus,
antiangiogenic VEGF treatments have been extensively
investigated including monoclonal antibodies such as
bevacizumab and small molecules targeting its receptor
VEGFR (46). These agents have limitations based on short
half-life , l imited efficacy in patient overall survival
August 2021 | Volume 11 | Article 682129
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improvement, and systemic toxicity. Some siRNA formulations
targeting VEGF have been evaluated in early stage clinical trials,
but this have not been advanced further (47, 48).

Programmed Cell Death Protein 1
T cells are present in the glioblastoma microenvironment,
although at lower frequencies than GIMs (25). They have a
profoundly exhausted phenotype characterized by expression of
multiple immune checkpoint ligands (49, 50) likely accounting
for their inability to control tumor growth. The lack of effective
T-cell response is also highlighted by the ineffectiveness of
checkpoint blockade immunotherapy in glioblastoma.
Nonetheless, anti-PD-1 therapy achieves potent antiglioma
activity in mouse glioma activity possibly through the
depletion of PD-1+ macrophages and proinflammatory
polarization in the glioblastoma microenvironment (51). A
RNAi specific to the PD-1/PD-L1 pathway was delivered by a
hemagglutinating virus of Japan-envelope—a nonreplicating
viral vector that was capable of inhibiting immune suppression
and eliciting antiglioma immune responses (52). Similarly,
we showed that miR-138 could downregulate both CTLA-4
Frontiers in Oncology | www.frontiersin.org 4
and PD-1 to inhibit tumor-infiltrating regulatory T cells (Tregs)
and in vivo administration induced tumor reduction and prolonged
the survival of immune syngeneic glioma-bearing mice (20).

Neuroligin 3
Neuronal activity is involved in glioblastomagrowth andprogression
(53). In the normal brain microenvironment, neurons are strong
mitogenic signalers stimulating the growth of neural and
oligodendrocyte precursor cells—an important consideration in the
role of stem/progenitor cells in glioblastoma (54). Elegant studies of
neuronal activity conducted by Venkatesh et al. in xenograft glioma
mouse models show that presynaptic and postsynaptic function is
disrupted in the presence of glioma with microenvironmental
neurolignin 3 (NLGN3) being hijacked to induce signaling through
the PI3K/PTEN/AKT/mTOR pathway (55). Neurons and OPCs
produce NLGN3 by cleavage of ADAM10 sheddase, so the
inhibition of this enzyme blocks NLGN3 secretion into the tumor
microenvironment and suppresses glioma outgrowth in preclinical
models. Therefore, siRNAs targeting NLGN3/ADAM10 are
promising for treating glioblastoma by modulating the interaction
between neuronal cells and tumor cells (56).
FIGURE 1 | Potential miRNAs that can be targeted for immune modulation and therapeutic application in the glioblastoma microenvironment.
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Growth Differentiation Factor
Growth differentiation factor (GDF15) is highly expressed in
glioblastoma as a secreted cytokine participate in regulating
tumor cell proliferation and immunosuppression (57). GDF15
promotes GSC stemness by activating the leukemia inhibitor
factor–STAT3 pathway (58). Thus, it represents a potential
therapeutic target in glioblastoma treatment by siRNA
targeting GDF15 or its cognate receptor GFRAL (the GDNF
family receptor alpha like) (59).

O6-Methylguanine-DNA Methyltransferase
Temozolomide (TMZ) is the standard-of-care for glioblastoma
and the other brain tumors, but many patients show limited
response due to unmethylated O6-methylguanine-DNA
methyltransferase (MGMT). Efforts to inhibit MGMT activity
by systemic delivery of a siRNA have been made to silence the
TMZ resistance gene MGMT. Wang et al. developed a MGMT
siRNA nanoparticle that when combined with TMZ was found
to reduce tumor growth and significantly extending survival in a
GSC xenograft model relative to TMZ monotherapy (60).
Like MGMT, other DNA damage response mediators such as
ataxia-telangiectasia-mutated, ataxia-terlangiectasia-Rad3-
related, DNA-dependent protein kinase, and poly-ADP-ribose
polymerase could also be targeted with a siRNAs, which
represent novel strategies for overcoming chemotherapy
resistance (61–64).

c-MET
The immunosuppressive potency of the glioblastoma
microenvironment may be a function of tumor invasiveness and
epithelial-mesenchymal transition (EMT), in which c-MET plays a
key role. c-MET was recently shown to mediate EMT via activation
of Wnt/b-catenin signaling (65). MiR-128-3p targeting c-MET
inhibited glioblastoma migration and invasion and enhanced
TMZ therapeutic efficacy in vivo (66). Other miRNAs such as
miR-34a, miR-144-3p, and miR-562 have been reported to exert
activity against glioblastoma proliferation and invasion by also
targeting c-MET (66–68). Hence, these therapeutic miRNAs and
c-MET siRNAs could be used to treat glioblastoma by means of
suppressing tumor invasion and EMT.

Chitinase-3-Like-1
GIM mediate immunosuppression is mediated by the chitinase-
3-like-1 (CHI3L1)/Gal3-PI3K/ATK/mTOR axis. Chen et al.
showed that inhibiting CHI3L1 complexes reversed GIM
immunosuppression and delayed tumor progression (69). In
other cancer models, genetic ablation of CHI3L1 in vivo
reduced macrophage recruitment and increased effector T-cell
infiltration in the tumor (70). Thus, siRNA targeting CHI3L1 is
another potential therapy that could be beneficial to
glioblastoma patients.

TGFb
Overactivation of TGFb signaling plays a critical role in
reprogramming the glioblastoma to be immune suppressive
and mediates immune escape and treatment resistance. In the
glioblastoma microenvironment, a variety of dysfunctional
Frontiers in Oncology | www.frontiersin.org 5
cellular components and their interaction such as tumor, T,
myeloid and NK cells are governed by the TGFb signaling
pathway. Consequently, the anti-TGFb latency-associated
peptide antibody can enhance antitumor immune responses in
murine glioblastoma models (71); miR-142-3p targeting the
TGFbR1 on M2 macrophages results in glioblastoma growth
inhibition (28), and targeting the TGFb-integrin axis improves
NK cell antiglioblastoma activity (72). Anti-TGFb RNA
therapeutic represents a promising treatment avenue to be
investigated in glioblastoma patients. A recent study showed
that antisense oligonucleotides specifically targeting TGFb1 and
TGFb2 exerts strong antiglioblastoma activity in vitro and
in vivo (73).

S100A
S100A gene family members can modulate EMT, GSC stemness,
and immune cell infiltration and are candidate therapeutic
targets for glioblastoma patients (74). S100A4 is the most
studied as a central player controlling EMT, stemness, and
neutrophil infiltration. Its depletion downregulates the
glioblastoma progression and treatment resistance (75, 76).
Several microRNAs such as miR-124 (77), miR-149-3p (78),
and miR-520c (79) have been identified as targeting S100A4, and
their mimics resulted in antiglioblastoma activity in vivo.
Therefore, these suppressor miRNAs and siRNAs targeting
S100A4 could also be explored for therapeutic activity in
glioblastoma patients.
TARGETING STRATEGIES

Antisense Oligonucleotides (ASOs)
Antisense oligonucleotides (ASOs) bind sequences specifically by
Watson-Crick base pairing to the target RNA and regulate protein
expression through RNase H mediated degradation and ribosome
blockage by steric hindrance (80, 81). Significant advancement of
oligonucleotide chemistry and numerous delivery platforms
enhance ASO development and clinical application. Recently, the
FDA has approved a few nucleic acid-based drugs, which
stimulates greater interest in ASO therapeutic development.
Currently, a variety of ASO drugs are being tested in clinical
trials to treat cancer, infectious, and neurodegenerative diseases
(82). Some ASO drugs target oncomiRs that promote
tumorigenesis and metastasis. For example, RG-012, an anti-
miR-21 ASO for Alport syndrome is being evaluated to ascertain
if it decreases the rate of progression of renal fibrosis (83).
Cobomarsen (MRG-106) is a miR-155 inhibitory ASO presently
in phase II trials treating T cell leukemia and lymphoma (84). The
anti-miR-21 and anti-miR-155 ASO strategy have been tested in
preclinical models and showed potent anti-glioma efficacy (85, 86).
Therefore, these anti–oncomiR ASOs can potentially be applied for
the treatment of glioblastoma patients that have miR–21 andmiR–
155 dysregulation.

Aptamers
Aptamers are short oligonucleotides that possess a 3–D distinct
structure for their target recognition and binding. Systematic
August 2021 | Volume 11 | Article 682129
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Evolution of Ligands by EXponential enrichment (SELEX) is the
most used screening approach to identify specific aptamers
binding a target with high affinity and selectivity.
Their relatively small molecular weight (one–tenth that of
monoclonal antibody) makes them more accessible to the
glioblastoma microenvironment (87). In addition, aptamers are
called chemical antibodies since they can be derived completely
using chemical synthesis. Moreover, the low immunogenicity
and long shelf life are advantageous features of aptamers for
clinical application. Oligonucleotide aptamers are synthesized
and assembled with cell–free automation enabling rapid and
cost–effective production with minimal variation between
batches. However, for clinical utility, they require further
chemical modification for improving their in vivo half–life
because of fast renal excretion and nuclease degradation.
These modifications should have minimal effect on the affinity
and specificity of the aptamers, and simultaneously improve
their stability. Some promising modifications include inverted
thymidine capping on the terminals, two hydroxyl group
modifications in the ribose ring, the phosphodiester bond
replacement and PEGylation (88). De La Fuente et al.
identified several human and mouse specific RNA aptamers
using tumor–associated myeloid cells as the targets via SELEX.
These aptamers were specific to tumor–associated MDSCs in
several cancer lineages including glioblastoma and had high
binding affinity—highlighting their application as therapeutics
targeting to the tumor microenvironment (89). Conjugating
these MDSC–specific aptamers to a tumoricidal agent could
significantly improve their potency.

Conjugates of Aptamer and siRNA
Nucleotide aptamers and siRNAs share the same nucleic acid
units, so base pair annealing, or covalent linkage can create an
aptamer–siRNA chimera. These chimeras have great advantages
Frontiers in Oncology | www.frontiersin.org 6
over protein and cellular products: single component simplicity,
small size, and easy manufacturing (90, 91). They also have less
immunogenicity because the human immune system does not
recognize nucleic acids as foreign molecules (92). Additionally,
the siRNA portion in the chimeras can still be recognized and
processed by Dicer with no compromised efficacy, resulting in
their target mRNA degradation and protein depletion (93).
The first aptamer–siRNA chimera designated PSMA aptamer–
Plk1 siRNA was constructed in 2006. Since then, a number of
aptamer–siRNA chimeras have been made with improved
stability, targetting specificity and in vivo efficacy (94). A list of
the examples for targeted RNAi potentially applicable to the
glioblastoma and its associated microenvironment are presented
in Table 1.

Aptamer–siRNA Therapeutic
Overcoming Resistance to Immune
Checkpoint Blockade
In spite of significant successes of immune checkpoint blockade
(ICB) in treating cancer patients, thus far, this immunotherapy
approach has minimal efficacy for the vast majority of
glioblastoma patients secondary to a wide variety of
mechanisms such as mutations in the antigen presentation
pathway and the IFN–g signaling pathway (106). Protein
tyrosine phosphatase (PTPN2) has been identified by in vivo
CRISPR screening as a new target–mediating resistance to ICB
immunotherapy. Knockdown of PTPN2 results in enhanced ICB
therapeutic efficacy by promoting antigen presentation and
IFN–g signaling in tumor cells (107). PTPN2 is overexpressed
in glioblastoma and its expression associates with IDH wild–type
expression and the mesenchymal subtype that indicates a worse
prognosis. Furthermore, there is an inverse relationship between
PTPN2 and an inflammatory response in glioblastoma (108).
Thus, we believe that a PTPN2 siRNA–tumor–specific aptamer
TABLE 1 | Summary of aptamer–siRNA chimeras potentially applicable to the glioblastoma.

Formulation Aptamer
target

Target gene Outcome Reference

Aptamer–siRNA
chimera

CTLA4 STAT3 Apoptosis of tumor cells and suppression of T–cell lymphoma outgrowth in immunodeficient
mice

Hermann (95)

Aptamer–siRNA
chimera

EpCAM PLK1 Inhibition of EpCAM+ breast cancer growth in xenograft models Gilboa–Geffen (96)

Aptamer dimer–
siRNA chimera

4–1BB mTOR complex
1 (mTORC1)

Inhibition of mTORC1 signaling in CD8+ effector T cells to induce a T–cell memory response
and protective immunity by 4–1BB aptamer dimer activation

Berezhnoy (97)

Aptamer–siRNA
chimera

avb3
integrin

Elongation factor 2 Inhibition of cell proliferation and the induction of apoptosis specifically in multiple cancer
lineages including glioblastoma

Hussain (98)

Aptamer dimer–
siRNA

4–1BB CD25, Axin–1 Anti–tumor activity mediated by enhanced CD8+ T cell memory response in multiple
syngeneic mouse models

Rajagopalan (99)

Aptamer–siRNA
chimera

Nucleolin SLUG/NRP1 Suppression of tumor cell invasion, growth, and angiogenesis Lai (100)

Dox–aptamer–
siRNA chimera

EpCAM Survivin Prolonged survival in mice bearing chemoresistant breast tumor Wang (101) and
Subramanian (102)

Aptamer–siRNA
chimera

PDGFRb STAT3 Inhibition of glioma cell growth and angiogenesis in vivo in a xenograft mouse model Esposito (103)

Aptamer–siRNA
chimera

PDGFRa STAT3 Inhibition of glioma cell viability Yoon (104)

Aptamer–siRNA
chimera

EpCAM PKCI Inhibition of PRKCI amplified ovarian cancer cell proliferation and xenograft model tumor
growth

Rehmani (105)
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therapeutic may provide an important strategy to overcome ICB
resistance of glioblastoma patients.

Another target mediating ICB resistance is A–to–I editing of
interferon–inducible RNA species (ADAR1) that encodes an
adenosine deaminase that inhibits the sensing of endogenous
double–stranded RNAs (dsRNAs), and subsequently hinders
antitumor immunity. Thus, ADAR1 inhibition can improve
patient responses when combined with PD–1 blockade by
overcoming the resistance mechanism of nonresponding to
endogenous dsRNAs (109). ADAR1 is found highly active in
glioma tissues and cells and essential for the maintenance of
gliomagenesis (110), so we propose that ADAR1 can be a
potential target inhibited by tumor cell specific aptamer–
ADAR1 siRNA conjugates.

Neoantigen Induction in Glioma Cells by
Aptamer–siRNA
One of the major challenges in developing effective cancer
immunotherapy is to identify tumor–specific and immunogenic
neoantigens to stimulate a robust and durable immune response.
There are several approaches to induce neoantigens in tumor
cells in situ by aptamer–siRNAs specific to unique pathways that
trigger the expression of neoantigens. The first pathway is
nonsense–mediated messenger RNA decay (NMD), which is a
highly conserved surveillance mechanism in mammal cells that
prevents the translation of mRNAs with a premature stopping
codon. NMD inhibition using tumor–specific oligonucleotide
aptamer–targeted delivery of siRNAs to NMD–associated
molecules such as SMG1 and UPF2 results in the expression of
de novo antigens encoded by the premature stopping codon–
containing mRNAs and their immune–mediated tumor rejection
in metastatic and subcutaneous tumor models (111). This
strategy is readily applicable to human glioblastoma as NMD
pathway is important for gliomagenesis detection (112) and
SMG1 mRNA expression is present in glioma cells
(TCGA_GBM data). The second one is to target the
transporter associated with antigen processing (TAP). Genetic
ablation results in drastically enhanced presentation of new
MHC class I–restricted epitopes independent of TAP. These
induced new antigen epitopes formMHC–peptide complexes for
engaging and activating CD8+ T cells capable of killing TAP–
deficient tumor cells. Administration of TAP siRNAs conjugated
to a tumor–targeting nucleolin aptamer (AS1411) has been
shown to exert antitumor activity in multiple mouse tumor
models (113). Both TAP and nucleolin are expressed in
gliomas, making AS1411 and TAP siRNA conjugates an
appealing candidate of the RNA–based immune therapy for
treating glioblastoma patients with preclinical efforts underway
by our group.

Aptamer–siRNA Targeting STAT3
Signaling in the Tumor Microenvironment
STAT3 has been shown to be a signaling hub in tumor cells as
well as tumor–associated immune cells (114, 115). In the
glioblastoma microenvironment, STAT3 is persistently activated
in glioma cells, myeloid, and T cells and promotes tumor cell
Frontiers in Oncology | www.frontiersin.org 7
survival, proliferation, invasion, and immunosuppression
(26, 116, 117). Due to CTLA4 upregulation on tumor–
infiltrating CD8+ T cells, a CTLA4‐targeting aptamer STAT3
siRNA chimera was created that triggers CD8+ T cell reactivation
in the tumor microenvironment. Additionally, this chimera
inhibits tumor–infiltrating Tregs and shows significant
antitumor efficacy in multiple primary and metastatic tumor
models (95). The Yu group has generated a DNA aptamer
CpG1668–STAT3 siRNA chimera linked by a C3 carbon
chain, which preserved the immunostimulatory properties of
CpG1668 and at the same time does not interfere with Dicer
processing of siRNA, thereby contributing to synergistic
antitumor effects (118). Other aptamers have been tested
including: (1) a STAT3 siRNA that successfully induces
antitumor effects in glioblastoma when conjugated with a PDR3
aptamer against PDGFRa (104), and (2) a PDGFRb–specific
aptamer–siRNA chimera designated Gin4.T–STAT3 that could
efficiently antagonize STAT3 in PDGFRb+ GBM xenografts
(103, 119).

Aptamer–siRNAs Targeting Highly
Enriched Chemokines and Cytokines in
the Glioblastoma Microenvironment
Two major ce l l component s in the g l iob l a s toma
microenvironment responsible for tumor escape from immune
surveillance include GSCs and GIMs (26, 116, 120). Osteopontin
(OPN), a key molecule–mediating immune suppression in this
setting, is highly expressed in both GSCs and GIMs. It is a
secreted phosphoprotein chemokine that also operates
intracellularly with both forms playing important roles in
tumor growth and metastasis (121). Our data indicate that
highly expressed OPN in the glioblastoma microenvironment
is indispensable for macrophage infiltration. We have further
shown that both tumor–derived OPN and nontumor–derived
OPN are essential for glioblastoma development. A deficiency of
OPN in either glioblastoma cells or immune cells results in a
marked reduction in numbers of immune suppressive M2
macrophages and enhanced T–cell effector function (87). As
such, OPN is an attractive therapeutic target specific to the
glioblastoma microenvironment. Interestingly, periostin
sharing the same RGD functional motif with OPN is secreted
from GSCs and correlates with GIM infiltration in human
glioblastoma. Periostin depletion diminishes the tumor
supportive M2 type of GIMs in xenografts (122). CCL2,
another chemokine highly enriched in the gl ioma
microenvironment, is important for attracting both CCR2+Ly–
6C+ monocytic MDSCs and CCR4+ Tregs. CD163+ GIMs are a
major source producing CCL2 in the glioblastoma
microenvironment (123). GIM–derived CCL8 contributes to
the stemness maintenance and invasion of glioblastoma cells
through ERK1/2 pathway and its blockade significantly decreases
invasion of glioma cells (124). Boeck et al. have also shown that
IL–33 is another important chemokine–mediating GIM
infiltration since its expression correlates with GIM density in
human and mouse glioma tissues. Furthermore, both
intracellular and secreted isoforms of IL–33 upregulate other
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chemokines that collectively recruit and transform peripheral
innate immune cells to create an immunosuppressive
environment (125). Bispecific aptamer siRNA conjugates to the
aforementioned chemokines are plausible strategies and could
be developed.

Bispecific Aptamers to Elicit
Antitumor Immunity
Bispecific aptamers, composed of two aptamers, exhibit concurrent
binding to two different entities such as antigens. Absence of
costimulatory signal in the tumor microenvironment results T–
cell energy (126). Accordingly, an aptamer specific to 4–1BB
receptor has been developed to target and activate tumor–
infiltrating T cells (127). Pastor et al. generated the first bispecific
aptamers consisting of a bivalent 4–1BB aptamer and a tumor–
specific PSMA aptamer, enhancing the conjugate delivery to the
tumor niche and activation of costimulatory responses. Profound
antitumor activity of a 4–1BB–PSMA aptamer chimera has been
observed in multiple immune competent mouse models including
colon cancer and melanoma lung metastasis when administered
systemically (128). A similar strategy could be considered for
glioblastoma but would require the selection of a subset of
patients that express a given tumor antigen. Other bispecific
aptamers have been engineered to specifically target CD28–
expressing T cells in multidrug resistance–associated protein 1
melanoma that triggered prolonged survival of tumor–bearing
mice. The associated immune mechanism included reactivation
of tumor–infiltrating T cells via CD28 costimulation by CD28
aptamer binding and crosslinking (95). Schrand et al. synthesized
another bivalent aptamer by fusing an agonistic 4–1BB aptamer
with an aptamer specific to VEGF and showed effective targeting of
the stroma in the tumor microenvironment. This 4–1BB–VEGF
aptamer was capable of inducing the activation and expansion of
CD8+ effector T cells and promoting T memory cell differentiation
that prevented tumor recurrence across cancer lineages (129). Since
VEGF expression is a common feature of glioblastoma, a strategy
in which T cells are activated and expanded may induce glioma
Frontiers in Oncology | www.frontiersin.org 8
cell–specific killing (130), but this will require preclinical testing. A
list of the examples for bispecific aptamers potentially applicable to
the glioblastoma and its associated microenvironment is presented
in Table 2.

RNA Nanocarrier Delivery Systems
Aptamer–siRNA chimeras and bispecific aptamers are one of the
most efficient strategies for target delivery modules because of
their high specificity and binding affinity, fully automated
synthesis, and great potential for clinical application.
Nonetheless, a major obstacle needs to be overcome for
delivery of siRNAs into the cytoplasm of the targeted tumor
and/or immune cells. One hurdle for the efficient delivery of
aptamer–siRNA chimeras to the cytoplasm is the negative charge
of nucleotides and endosomal degradation. A strategy that could
overcome this limitation is to embed the cell–specific aptamers
into siRNA encapsulating nanoparticles, which improve the
delivery efficacy of naked siRNAs passing through the
cellular barriers.

Natural Nanocarriers
Many cell types in the glioblastoma microenvironment interact
with each other through microvesicles and exosomes (137). As a
natural system of miRNA delivery, these vesicles can be secreted
from genetically engineered miRNA overexpressing cells or
generated from exosomes transfected with miRNAs (138, 139).
Glioblastoma cells or stem cells, for example, could be genetically
modified to express exogenous tumor suppressor miRNAs and the
elaborated exosomes with the tumor–suppressor miRNA used as a
therapeutic product. Proof–of–principal preclinical studies using
this type of strategy have been shown to reduce the tumor burden
and have potential clinical utility (140). Although there are other
contents in the exosomes such as other RNA and protein
molecules, this composition can be altered by the cell status and
signaling stimuli (141). As such, these natural vesicles may be an
excellent RNAi carrier system (142). Continuing efforts are
warranted to improve capacity of these exosome nanocarriers
TABLE 2 | Summary of bispecific aptamers applicable to the glioblastoma treatment.

Formulation Targeting
aptamer

Effector aptamer Outcome Reference

Aptamer–aptamer MRP1 CD28 Inhibition of tumor growth of melanoma–bearing mice Soldevilla (126)
Aptamer dimer–aptamer 4–1BB VEGF Induction of potent antitumor immunity against multiple tumor types including

glioma.
Schrand (129)

Aptamer–aptamer EpCAM CD44 Suppression of intraperitoneal ovarian cancer outgrowth much more significantly
than single aptamers

Zheng (131)

Aptamer–aptamer CD3 Liver cancer specific
TLS11a

Effective inhibition of liver tumor growth and survival extension via binding
hepatoma cells and T cells

Hu (132)

Aptamer dimer–aptamer 4–1BB osteopontin Increased median survival of glioma bearing mice with enhanced effector T cell
infiltration

Wei (87)

Aptamer–siRNA chimera Nucleolin SLUG/NRP1 Synergistic inhibition of lung cancer cell invasion, tumor growth, and
angiogenesis

Lai (100)

Aptamer dimer–aptamer
dimer

CD16 Mucin 1 Recruitment of CD16+ immune cells to the MUC1+ tumor cells and
enhancement of the immune cytotoxicity

Li (133) and
Boltz (134)

Aptamer–aptamer MRP1 ICOS Strong antitumor immunity in combination with CTLA–4 blockade Soldevilla (135)
Aptamer–aptamer CD62L PTK7 Linkage of T cells and tumor cells that induces tumor specific killing Yang (130)
Aptamer–aptamer–gold
nanocarrier

Nucleolin c–MET Enhanced anti–gastric and lung cancer efficacy Lee (136)
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for passing the BBB and efficient delivery of their siRNA cargo to
the glioblastoma microenvironment.

Other types of natural modifications include conjugation to
chitosan, a natural polysaccharide composed of repeating N–
acetyl–glucosamine and glucosamine units. The cationic charge
of chitosan can rapidly form complexes with negatively charged
nucleic acids. Furthermore, highly reactive amino and hydroxyl
groups of chitosan allow for chemical modification and linkage
of cognate ligands (143). Noh et al. demonstrated that systemic
administration of EGFL6 siRNA—chitosan nanoparticles were
delivered to endothelial ovarian cancer cells and markedly
inhibited tumor progression (144).

For effective glioblastoma therapy, nanoparticles that are
delivered systemically must have tumor and/or immune
specificity with little measurable side effects. More recently,
RNA nanocarriers have gained attention as a versatile natural
platform of nanoassembly and construction. The three–strand
packaging RNA complex in the polyhedra bacteriophage phi29 is
self–assembled and highly dynamic. This unique feature is
utilized to generate a variety of RNA nanoparticles with a wide
range of specific sizes and shapes. The pRNA–3WJ motif is a
three–RNA–strand scaffold that is capable of targeting
intracranial gliomas in mice (145).

Synthetic Nanocarriers
Lipid–formulated nanoparticles have intensively been utilized in
laboratory studies and clinical trials for RNA therapeutics
delivery because of the ease of manufacturing and high
biocompatibility (146). Sun et al. developed a novel liposome
system simultaneously delivering survivin siRNA and paclitaxel
to the glioblastoma. Specifically, a CD133–specific RNA aptamer
and a low–density lipoprotein receptor–related protein were
integrated into the exterior membrane of the liposomes,
resulting in dual targeting ability to bind glioblastoma cells and
endothelial cells in the tumor microenvironment. This lipid
nanoformulation could enrich in the tumor niche via
efficiently binding to the low–density lipoprotein receptor
expressing endothelial cells, and selectively induce apoptosis of
CD133+ GSCs as well as endothelial stroma cells (147). Another
similar liposome siRNA delivery carrier has been developed to
treat breast cancer by means of CD44 aptamer targeting. These
liposomes were found to efficiently inhibit CD44+ tumor
outgrowth in vivo (148). CD44 is also found overexpressed in
glioma cells and a common GSC surface marker (149). As such,
an anti–CD44 aptamer–equipped siRNA liposome delivery
system may be applicable to glioblastoma.

A critical determinant of successful delivery of RNA is the
prevention of nuclease degradation. Polymeric nanocarriers have
been extensively utilized for the protection ofmiRNAs and siRNAs
due to their positive charge (150). Recently, cationic polymers were
broadly used to form stable complexes with negatively charged
RNA.Among them, polyethyleneimine is themost commonly used
for nucleic acid delivery, but its clinical application is hampered by
its inherent toxicity. One alternative approach is to use hybrid
polymers such as PEI–chitosan hybrid nanocarriers that show an
improved safety profile (151). Another strategy is to link
polyethyleneimine polyplexes with brain–targeting rabies virus
Frontiers in Oncology | www.frontiersin.org 9
glycoprotein. These nanoparticles have shown both effective brain
tumor targeting and low toxicity (152).
CONCLUSION AND FUTURE
PERSPECTIVE

Despite enormous and continuous efforts for developing new and
combinational treatment strategies for glioblastoma, there has been
minimal improvement in survival. The brain tumor
microenvironment is a key driver that promotes and regulates
tumor initiation andprogress andmediates the treatment resistance
in both primary and metastatic brain malignancies. Molecular
dissection into the protumorigenic functions of single elements of
the brain tumormicroenvironment has resulted in the discovery of
a number of promising noncoding RNA therapeutic targets. These
RNA therapeutics includemiRNAs, siRNAs, and aptamers and are
emerging as a novel avenue to treat brain cancer patients. Since
miRNAs can act upon multiple targets and pathways regulating
immune suppression and chemoresistance, they may be more
effective in treating the malignancies such as glioblastoma that are
highly heterogeneous. Nonetheless, one major challenge remains
for clinical application for treating glioblastoma is the ability of an
agent to cross the BBB. This issue is alleviated by their small
molecular weight and compact size, which can be further
enhanced with nanocarrier–specific targeted delivery.
Increasingly sophisticated nanoparticle systems, also relying on
targeting moieties for BBB penetration and/or improved target cell
transfection efficacy, may provide an avenue toward clinical
application. On the other hand, it should be noted that too
complicated systems based on multiple components may prohibit
drug approval and transition into the clinic.

The unique characteristics of aptamers make them highly
attractive for targeted therapy of glioblastoma and the other
malignancies. A given aptamer can be conjugated to another
aptamer, siRNA or miRNA, which leads to the production of
multimodal chimeric therapeutics with novel functions enabling
simultaneous targeting of numerous molecules and cell subsets
in the glioblastoma microenvironment. Their small size and
simple structure may have key advantages superior for passing
through the BBB and gaining access to the brain tumor when
administered systemically.
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