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Abstract

Background: Brain-derived neurotrophic factor (BDNF) is believed to be an important regulator of striatal neuron survival,
differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology
of Huntington’s disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated.

Methodology/Principal Findings: In this study, we assessed the relative contributions of multipartite intracellular signaling
pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these
GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure.
The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents
and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a) and
calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365). Interestingly,
inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) and extracellular signal-regulated kinase ERK also
blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase
(NOS), phosphotidylinositol-3-kinase (PI3K), and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA
expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-
dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing
evidence for its contribution to striatal neuron plasticity.

Conclusions: These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important
BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.
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Introduction

Medium-sized spiny striatal neurons (MSNs) comprise .90% of

all striatal neurons and serve the functions of integrating and

transmitting information from the cerebral cortex to the output

nuclei of the basal ganglia [1,2,3]. This circuit is crucial for many

important functions, such as the regulation of voluntary move-

ment, and is also involved in human neurodegenerative and

neuropsychiatric disorders. MSNs are GABAergic and provide

inhibitory input from the striatum to the globus pallidus and

substantia nigra pars reticulata.

The striatum is highly innervated by BDNF-releasing synapses.

BDNF is delivered to the striatum via activity-dependent antero-

grade release from excitatory corticostriatal axons [4,5]. The

importance of BDNF regulation of striatal function is exemplified by

its enhancement of survival and morphological and biochemical

differentiation of striatal neurons in vitro [6,7] and by the phenotype

of forebrain-specific BDNF-knock-out mice (Emx-BDNF, [8])

which have diminished striatal volumes and exhibit behavioural

abnormalities characteristic of striatal dysfunction.

BDNF signaling is mediated primarily by its high affinity

receptor, the receptor tyrosine kinase tropomyosin-related kinase

B (TrkB) (Fig. 1). TrkB activation initiates three major intracellular

signaling cascades: the shc/Frs2 and ras/raf-mediated activation of

a MAPK phosphorylation cascade involving MEK and ERK, the

shc/Frs2 and GAB1-mediated activation of a phoshphotidylinosi-

tol-3-kinase PI3K pathway involving Akt1, and the direct TrkB-

mediated activation of phoshpolipase C gamma (PLCc) which

produces inositol triphosphate (IP3) and diacylglycerol (DAG) and

increases intracellular free calcium [9,10]. BDNF-induced calcium

mobilization has also been shown in some cases to be coupled to

calcium entry via transient receptor potential cation channels

(TRPCs) [11,12]. Downstream calcium-dependent responses to

BDNF involve the activation of calcium-calmodulin-dependent

kinases (CAMKs) [13,14] and nitric oxide synthase (NOS) [15,16].

These various signaling cascades have been shown to mediate

independent as well as coordinate actions that are responsible for

both distinct and overlapping BDNF-dependent functions.

Downstream mechanisms of BDNF signaling include the

initiation of gene transcription. Known mediators of BDNF-
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regulated transcription include the cAMP response element

binding protein (CREB) [14,17] and the ternary complex factor

(TFC) protein Elk-1 [18,19]. The activities of these transcription

factors are positively regulated by phosphorylation, which is a

major mechanism of their conveying BDNF-stimulated responses.

Although previous studies have examined gene regulation by

BDNF globally in selected cell types, this important aspect of

BDNF signaling has never before been addressed in GABAergic

neurons, including those of the striatum. Given the compelling

relevance of this question for striatal biology and human nervous

system disorders, we set out to determine the overall balance of

mechanisms by which BDNF-mediated signaling regulates MSN

gene expression. In order to assess which genes were responsive to

BDNF in striatal cells, BDNF-regulated RNAs were first

determined systematically using high-density microarrays. Subse-

quently, the signal transduction pathways that underlie these

transcriptional responses were dissected using pharmacological

agents and quantitative real-time PCR. The results demonstrate

that BDNF-induced TrkB activation and calcium entry via TRPC

are both required for BDNF transcription effects. Downstream of

TrkB, we further show that the MAPK pathway involving MEK/

ERK activation is a crucial and universal regulator of BDNF-

induced gene expression. In addition, our results suggest that

BDNF-induced RNA responses in MSNs are modulated by PI3K,

NOS, and CAMK in a gene-specific manner.

Materials and Methods

Ethics Statement
All experiments were approved by the local veterinary office

and the Commission for Animal Experimentation of the Canton of

Vaud Switzerland.

Preparation of striatal neuron cultures
Dissociated primary striatal neuron cultures were prepared from

ganglionic eminences of E16 rat embryos as described in [20].

This procedure has been previously demonstrated to yield a high

proportion of neuronal cells expressing MSN markers (e.g. 95–98%

of NeuN-positive cells express high levels of DARPP-32) and

exhibiting an electrophysiologic behavior characteristic of GA-

BAergic neurons [21]. Experimental treatments were performed

between 2–4 weeks in vitro and at least 3 days after a change of

culture medium. BDNF responses were highly consistent between

cultures of these ages (and up to 6 weeks in vitro, data not shown).

Pharmacologic treatments
To study the effects of BDNF on gene expression, striatal cultures

were treated for 3 hours with 50 ng/mL BDNF (R&D Systems) or

vehicle (0.1% BSA in PBS) at 2–4 weeks in vitro unless otherwise

indicated. For pharmacologic inhibitor studies, cells were treated for

30 min prior to BDNF stimulation with wortmannin (100 nM,

Sigma), KN-93 (5 mM, Sigma), PD98059 (50 mM, Sigma), K252a

(200 nM, Sigma), L-NAME (2 mM, Sigma), U0126 (30 mM,

Sigma), FR180204 (100 mM, Calbiochem), cycloheximide

(0.5 ug/ml, Sigma), actinomycin D (2 ug/ml, Sigma), BAPTA-

AM (100 mM, Sigma), or SKF-96365 hydrochloride (100 mM,

Sigma). For calcium experiments, culture medium was replaced

with physiologic solution at pH 7.4 composed of (in mM): 125

NaCl, 25 NaHCO3, 25 glucose, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2,

2 CaCl2 (unless otherwise indicated).

RNA analyses
RNA was extracted using the RNeasy system (Qiagen). For

microarray analyses, one microgram of total RNA of each sample

(n = 4) was used to prepare biotinylated fragmented cRNA, which

was produced and hybridized to Affymetrix Rat Genome 230 2.0

GeneChip microarrays according to the GeneChip Expression

Analysis manual. Gene expression was quantified by robust multi-

array analysis [22] using the R software package affy [23]. All

statistical analyses of gene expression were carried out with the R

software package limma [24] using a false-discovery rate (FDR)

approach to correct for multiple testing [25], with a significance

threshold of FDR p,0.05.

cDNA preparation for quantitative real-time PCR (QPCR)

analysis utilized the High Capacity cDNA RT kit (Applied

Biosystems). Samples were analyzed for BDNF induced transcripts

using Taqman expression assays (Applied Biosystems) as follows:

beta-actin (Actb), Rn00667869_m1; activity regulated cytoskeletal-

associated protein (Arc), Rn00571208_g1; brain-specific angiogen-

esis inhibitor 1-associated protein 2 (Baiap2), Rn00589411_m1;

dual specificity phosphatase 6 (Dusp6), Rn00518185_m1; early

growth response 1 (Egr1), Rn00561138_m1; early growth response

2 (Egr2), Rn00586224_m1; Kruppel-like factor 5 (Klf5),

Rn00821442_g1; Ngfi-A binding protein 2 (Nab2),

Rn01505957_g1; prepronociceptin (Pnoc), Rn00564560_m1; pro-

tein phosphatase 2C, magnesium dependent catalytic subunit

(Ppm2c), Rn00571345_m1; synaptotagmin IV (Syt4),

Rn01157571_m1; tachykinin 1 (Tac1), Rn00562002_m1. Gene

expression measures were derived from biological triplicates/

quadruplicates and technical triplicates performed on a 7900HT

Real-Time PCR System with SDS 2.3 software (Applied Biosys-

tems). Relative expression (V) was calculated by normalization to ß-

actin expression as described in [26]. Criteria for presentation of

specific RNA data were a statistically significant change in

expression in BDNF- versus vehicle-treated cells of at least 30% in

the corresponding experiment.

Figure 1. Schematic representation of possible signaling
pathways by which BDNF regulates mRNA expression in
striatal neurons. Shown are known mechanisms by which BDNF-
regulated signaling has been previously implicated in regulating gene
expression in other cell types. Four main arms of TrkB-dependent
signaling are identified involving PI3K, ERK, CAMK, and NOS (see text).
Pharmacologic agents used in the present study to assess the
contributions of individual branches or molecular entities of these
pathways are indicated. TFCs designates transription factor complexes,
including those containing SRF and TCF/Elk-1, which bind to serum
response elements (SREs) in target gene promoters to mediate
transcriptional activation, and CBP and CREB, which enhance transcrip-
tion via association with cAMP-response element (CRE) motifs.
doi:10.1371/journal.pone.0005292.g001
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Immunostaining, DAF-FM DA staining, and microscopic
image analyses

Cell cultures were washed with cold PBS and fixed with 4%

paraformaldehyde (Fluka) for 15 min at 4uC. Cultures were

subsequently washed with PBS and incubated in a blocking solution

of PBS with 10% normal goat serum (NGS) (Dakocytomation) and

0.1% Triton X-100 (Sigma). Cells were then incubated overnight at

4uC in blocking solution containing primary antibodies: rabbit anti-

GFP (Chemicon, 1:500), rabbit anti-TrkB (Millipore 1:500) and/or

mouse monoclonal anti-Neuronal Nuclei (NeuN) (Chemicon

MAB377 clone A60, 1:400). Secondary antibodies coupled to

fluorophores (Alexa Fluor 488 [1:1,000], goat anti-rabbit IgG Alexa

Fluor 488 [1:500], goat anti-mouse IgG Alexa Fluor 594 [1:500], all

from Invitrogen) were applied for 2 h at room temperature.

For neurite outgrowth analyses, DIV3 primary striatal cultures

were transfected with plasmids encoding enhanced green fluores-

cent protein (EGFP) using NeuroFECT reagent (Genlantis),

resulting in sparse and well-separated EGFP-positive neurons.

Inhibitor treatments began 30 min before BDNF treatments, and

cells were exposed to BDNF for 24 hours. At the end of the BDNF

treatment, cells were fixed and labeled with anti-GFP antibodies as

described above. Images of EGFP-positive cells were acquired with

a Leica DMI 4000 microscope and the length of the longest GFP-

positive process of each neuron was measured with ImageJ software

[27]. For each condition, averages of 85 neurons were analyzed.

For nitric oxide synthase (NOS) activity measurements, 3 week

in vitro primary striatal cultures were preincubated with DMEM

containing DAF-FM DA (Molecular Probes; 10 mM) for 30 min at

37uC. Selected cultures were also pretreated with the NOS

inhibitor L-NAME (2 mM) for 30 min. For each condition a

minimum of 4 images from 4 cultures were taken and analyzed.

Total NO/DAF-FM DA-related fluorescence intensity was

calculated using MetaMorph 7.5 software (Molecular Devices).

Immunoblotting
For analysis of phosphoproteins, primary striatal cultures were

pretreated with pharmacologic inhibitors for 30 min prior to

stimulation with BDNF for 15 min. Cells were harvested in RIPA

buffer (Sigma), containing 16protease inhibitor cocktail (Sigma) and

16 phophatase inhibitor cocktails 1 and 2 (Sigma). Proteins were

separated on 12.5% SDS-polyacrylamide gels and transferred to

nitrocellulose. Membranes were blocked for one hour in 30%

OdysseyH Blocking Buffer in PBS (LI-COR Biosciences) followed by

incubation in primary antibodies diluted in Blocking Buffer with

0.1% Tween-20 overnight at 4uC. Membranes were rinsed with

0.1% Tween-20/PBS followed by incubation in secondary antibody

diluted in Blocking Solution for two hours at RT. After final rinses,

blots were scanned with an OdysseyH Infrared Imager and

densitometric measurements were obtained using Odyssey software

(LI-COR Biosciences). Primary and secondary antibodies comprised:

mouse monoclonal anti-phospho-CREB (Ser133) (Upstate clone 634-

2, 1:1,000), rabbit anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/

Tyr204) (Cell signaling, 1:1,000), rabbit anti-phospho-Akt (Ser473)

(Cell Signaling, 1:1,000), mouse monoclonal anti-phospho-Elk-1 (Ser

383) (Santa Cruz, 1:1,000), goat anti-actin (Santa Cruz, 1:10,000),

mouse monoclonal anti-tubulin (Sigma clone B-5-1-2, 1:10,000),

donkey anti-mouse IRDye 800CW (LI-COR Biosciences, 1:20,000),

donkey anti-rabbit IRDye 680 (LI-COR Biosciences, 1:20,000),

donkey anti-goat IRDye 800CW (LI-COR Biosciences,1:20,000).

Enhancer element reporter assays
For CRE activity measurements, a lentiviral vector containing 6

CRE sites fused to a luciferase reporter gene (SIN-6xCRE-luc2CP-

WHV, CRE-Luc) was produced in human embryonic kidney 293T

(HEK293T) cells with a four-plasmid system as described previously

[28]. The virus was resuspended in PBS with 1% BSA and matched

for particle content to 1,500 ng of p24 antigen per milliliter as

measured by ELISA (RETROtek; Gentaur). Primary striatal

cultures were infected at a ratio of 1 ng p24/10,000 cells with

CRE-Luc at DIV9. At 2 weeks in vitro, selected cultures were

pretreated with 50 mM PD98059 for 30 min followed by BDNF

treatment (50 ng/ml) for 90 min. Activity was assessed with the

Promega Luciferase Assay System according to the supplier’s

instructions. Luminescence was measured on a TECAN GenioPro

plate reader in the linear range of the instrument.

For measurements of SRE activity, the Chroma-Glo Luciferase

Assay System (Promega) was used. Primary striatal cultures were

co-transfected at 2 weeks in vitro (using NeuroFECT reagent,

Genlantis) with a plasmid containing 2 SRE enhancer sites and a

minimal promoter fused to a green-emitting luciferase (SIN-cPPT-

SRE-CBG99-WHV) and a plasmid containing the PGK promoter

fused to a red-emitting luciferase (SIN-cPPT-PGK-CBR-WHV),

which was used as a control reporter to normalize for transfection

efficiency. 36 hours after transfection, selected cultures were

pretreated with 50 mM PD98059 for 30 min followed by BDNF

treatment (50 ng/ml) for 90 min. Luminescence was measured on

a TECAN GenioPro plate reader in the linear range of the

instrument.

Acute dissociation of striatal neurons from adult rat brain
4-week-old Sprague–Dawley rats were sacrificed by CO2

inhalation, after which the striata were dissected, minced into

small pieces and digested as described previously [29] with the

following modifications. Minced striatal tissue was treated with

papain (20 U/ml, Sigma) for 30–40 min at 37uC in a gently

rotating chamber, followed by repeated pipetting with a fire-

polished Pasteur pipette. The resultant cells were then transferred

to 12-well tissue culture plates in which they were treated 3 hours

later with BDNF in the presence or absence of the MEK inhibitor

PD98059.

Results

Global analysis of BDNF-induced acute mRNA responses
in cultured striatal neurons

In order to achieve a comprehensive measure of acute gene

expression responses to BDNF in striatal neurons, we used

microarray gene expression profiling to assay global mRNA

expression differences following 3 h treatment of primary striatal

cultures with BDNF. This time point was chosen in order to detect

both immediate early and cumulative acute responses, based on

previous analyses of gene expression in other cell types [30] as well

as preliminary studies of striatal responses in our laboratory (data

not shown). At a cutoff of false-discovery rate-corrected p,0.05

[25], approximately 14% of all microarray probesets (4440/

31042) showed differential expression after BDNF treatment,

comprising 2359 upregulated and 2081 downregulated RNA

probesets (Suppl. Table S1). Overall, BDNF-induced responses

showed large gene-dependent variations in fold induction (or

repression); known immediate-early response genes such as Egr1,

Egr2, and Egr3 showed 15–20-fold changes, whereas the majority

of genes at the above cutoff showed a fold-change below 2.

Notably, however, restricting the analysis to genes regulated more

than 2-fold revealed a higher enrichment of upregulated compared

to downregulated RNAs (166 increased, 46 decreased). Selected

BDNF-responsive genes showing 2-fold or greater regulation are

shown in Table 1.

BDNF-Induced RNAs in Striatum

PLoS ONE | www.plosone.org 3 April 2009 | Volume 4 | Issue 4 | e5292



Table 1. Selected genes regulated by BDNF in striatal neurons.

Probeset ID Gene Symbol Gene Title Log2 FC FDR p value

1370454_at Homer1 homer 1 4.79 1.14E-05

1387306_a_at Egr2 early growth response 2 3.92 1.46E-06

1375043_at Fos FBJ murine osteosarcoma viral oncogene homolog 3.90 1.64E-05

1392791_at Egr3 Early growth response 3 3.61 8.76E-07

1368321_at Egr1 early growth response 1 3.40 1.21E-05

1394039_at Klf5 Kruppel-like factor 5 3.22 2.02E-06

1368359_a_at Vgf VGF nerve growth factor inducible 3.14 1.75E-04

1377727_at Baz1a bromodomain adjacent to zinc finger domain, 1A 3.12 2.95E-06

1372510_at Srxn1 Sulfiredoxin 1 2.44 1.64E-05

1382521_at Gls glutaminase 2.35 7.50E-06

1374925_at Nab2 Ngfi-A binding protein 2 2.28 7.82E-06

1368369_at Pnoc prepronociceptin 2.26 1.51E-06

1368910_at Ppm2c protein phosphatase 2C, magnesium dependent, catalytic subunit 2.22 1.72E-06

1373324_at Dusp14 dual specificity phosphatase 14 2.02 5.06E-07

1368303_at Per2 period homolog 2 (Drosophila) 1.97 7.82E-06

1393638_at Ptger4 Prostaglandin E receptor 4 (subtype EP4) 1.87 4.40E-07

1376569_at Klf2 Kruppel-like factor 2 1.87 1.90E-05

1368650_at Klf10 Kruppel-like factor 10 1.86 1.84E-05

1372417_at Sertad1 SERTA domain containing 1 1.83 8.92E-06

1370805_at Cited1 Cbp/p300-interacting transactivator with Glu/Asp-rich
carboxy-terminal domain 1

1.82 4.38E-07

1368124_at Dusp5 dual specificity phosphatase 5 1.81 1.72E-06

1368106_at Plk2 polo-like kinase 2 (Drosophila) 1.79 1.66E-05

1378407_at Trim9 Tripartite motif protein 9 1.78 8.13E-06

1373624_at Rassf8 Ras association (RalGDS/AF-6) domain family 8 1.78 3.04E-06

1387662_at Syt4 synaptotagmin IV 1.77 3.42E-05

1372459_at Vasp vasodilator-stimulated phosphoprotein 1.76 5.37E-06

1388792_at Gadd45g growth arrest and DNA-damage-inducible 45 gamma 1.73 3.04E-06

1372389_at Ier2 immediate early response 2 1.73 1.72E-06

1378519_at Cpne1 Copine I 1.71 1.21E-05

1387391_at Cdkn1a cyclin-dependent kinase inhibitor 1A 1.70 8.72E-05

1387068_at Arc activity regulated cytoskeletal-associated protein 1.66 1.93E-04

1383697_at Slc5a3 Solute carrier family 5 (inositol transporters), member 3 1.65 1.06E-04

1368947_at Gadd45a growth arrest and DNA-damage-inducible 45 alpha 1.58 5.06E-07

1388858_at Map2k3 mitogen activated protein kinase kinase 3 1.56 5.17E-06

1398483_at Rgs17 Regulator of G-protein signaling 17 1.56 1.59E-05

1385592_at Bcor Bcl6 interacting corepressor 1.49 1.95E-04

1369303_at Crh corticotropin releasing hormone 1.48 1.21E-04

1387276_at Ania4 activity and neurotransmitter-induced early gene protein 4 1.44 2.98E-06

1370074_at Baiap2 brain-specific angiogenesis inhibitor 1-associated protein 2 1.43 9.61E-06

1373093_at Errfi1 ERBB receptor feedback inhibitor 1 1.42 1.76E-04

1379375_at Pdgfa Platelet derived growth factor, alpha 1.41 2.52E-06

1393172_at Nab1 Ngfi-A binding protein 1 1.41 2.95E-06

1389263_at Rai14 retinoic acid induced 14 1.40 2.00E-05

1397363_at Pvrl3 poliovirus receptor-related 3 1.39 2.30E-05

1378447_at Thrap1 Thyroid hormone receptor associated protein 1 1.37 2.95E-05

1378081_at Tgfb1i4 Transforming growth factor beta 1 induced transcript 4 1.31 1.10E-05

1387442_at Egr4 early growth response 4 1.30 9.98E-04

1387060_at Klf6 Kruppel-like factor 6 1.28 1.55E-05

1370333_a_at Igf1 insulin-like growth factor 1 1.27 6.16E-05

BDNF-Induced RNAs in Striatum
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Upregulated genes included many transcription factors, consis-

tent with immediate early gene responses. The set of upregulated

genes nonetheless shows some nervous system specificity, including

the upregulation of RNAs modulating synaptic function, including

Homer1, Arc, Syt4, and Pnoc. Both upregulated and downreg-

ulated genes included RNAs involved in metabolism (e.g.

sulforedoxin 1 [Srxn1], glutaminase [Gls], phosphofructokinase

[Pfkl]). Downregulated genes include receptors and ion channel

subunits, such as the voltage-dependent calcium channel beta-3

subunit (Cacnb3), the GluR5 ionotropic glutamate receptor

subunit (Grik5), the orphan G-protein coupled receptor Gpr6,

and the Y1 neuropeptide Y receptor (Npy1r).

BDNF-induced genes have different temporal response
profiles

Acute signal-induced gene regulation in the nervous system

often has many temporal components [31]. We therefore asked

whether BDNF-induced gene expression responses in striatal

neurons would have heterogeneous temporal profiles. We assessed

selected gene expression responses to BDNF by QPCR after 0.5,

1, 3, 6 and 12 h of BDNF exposure (Fig. 2). Indeed, we were able

to discriminate three temporal profiles of gene induction: one

showing maximal induction within 1 h and rapidly returning to

baseline (despite continued BDNF exposure, e.g. Egr1, Egr2 and

Arc), one showing less rapid induction (within 3–6 hours) and

declining to baseline within 12 hours (e.g. Ppm2c, Nab2, Klf5 and

Baiap2), and a third rising slowly to maximum (requiring 6 hours)

but showing sustained induction through 12 h of treatment (e.g.

Syt4, Pnoc). Genes whose induction shows different temporal

profiles may be regulated by different BDNF-induced mecha-

nisms; conversely, genes showing similar induction profiles may be

regulated by common mechanisms and potentially subserve

related functions (see below).

Transcriptional responses to BDNF require TrkB and
calcium

We next assessed the extent to which striatal neuron gene

expression responses to BDNF might be conveyed by its high-

affinity receptor TrkB. Immunocytochemical staining of primary

cultures for TrkB showed a uniform labeling of all NeuN-positive

cells, confirming a constitutive expression of this BDNF receptor in

our cultured striatal neurons (Fig. 3A). We then examined the

TrkB-dependence of BDNF responses pharmacologically. 30-min

pretreatment with the Trk antagonist K252a (200 nM) was

sufficient to block BDNF-induced gene expression as compared

to vehicle-treated controls (Fig. 3B). These data show that TrkB is

the major mediator for acute BDNF-induced effects on striatal

gene expression.

We then assessed whether gene expression responses to BDNF

in striatal cells are calcium-dependent. Removal of extracellular

calcium or incubation with the intracellular calcium chelator

BAPTA-AM for 30 min prior to BDNF stimulation blocked the

induction of gene expression responses (Fig. 4A). In order to assess

whether TRPC activation contributes to the calcium-mediated

effects of BDNF, responses were assessed after 30 min pretreat-

ment with the TRPC antagonist SKF96365 (100 mM) [11].

SKF96365 also blocked BDNF-induced gene expression for all

genes tested (Fig. 4B). These results indicate that BDNF-induced

striatal gene transcription requires calcium and TRPCs.

BDNF-mediated MEK/ERK activation is universally
required for gene induction while PI3K, CAMK and NOS
activation co-regulate induction on a gene-specific basis

Given that BDNF is known to activate multiple intracellular

signaling cascades (Fig. 1), we asked which of these were important

for BDNF-mediated gene expression responses in striatal neurons.

Probeset ID Gene Symbol Gene Title Log2 FC FDR p value

1389355_at Ier5 immediate early response 5 1.23 2.14E-05

1368782_at Sstr2 somatostatin receptor 2 1.23 4.73E-05

1369067_at Nr4a3 nuclear receptor subfamily 4, group A, member 3 1.21 4.43E-05

1377064_at Dusp6 dual specificity phosphatase 6 1.16 2.64E-05

1373257_at RGD1307215 similar to protein phosphatase 1, regulatory subunit 1C; thymocyte ARPP 1.08 1.14E-05

1374139_at Cdr2 cerebellar degeneration-related 2 1.08 5.24E-05

1387087_at Cebpb CCAAT/enhancer binding protein (C/EBP), beta 1.08 3.87E-04

1367743_at Pfkl phosphofructokinase, liver, B-type 21.09 1.52E-02

1370922_at Ctxn cortexin 21.12 1.37E-02

1369128_at Grik5 glutamate receptor, ionotropic, kainate 5 21.12 1.74E-02

1375149_at Lrrc4b leucine rich repeat containing 4B 21.14 1.02E-02

1368449_at Centa1 centaurin, alpha 1 21.17 2.46E-02

1388785_at Dnalc4 dynein, axonemal, light chain 4 21.17 4.19E-04

1369792_at Gpr6 G protein-coupled receptor 6 21.19 7.57E-05

1390828_at Npy1r neuropeptide Y receptor Y1 21.25 7.65E-05

1367868_at Adrm1 adhesion regulating molecule 1 21.33 4.69E-02

1387042_at Cacnb3 calcium channel, voltage-dependent, beta 3 subunit 21.38 3.41E-02

1375978_at Fcho1 FCH domain only 1 21.41 1.08E-02

1370381_at Pnrc1 proline rich 2 21.55 2.64E-05

1368459_at Gdf10 growth differentiation factor 10 21.63 1.36E-04

doi:10.1371/journal.pone.0005292.t001

Table 1. cont.
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In order to test the contribution of each pathway, we targeted each

by using specific pharmacological inhibitors (as shown in Fig. 1

and Suppl. Fig. S1). For all genes tested, the MEK1/2 inhibitor

PD98059 (50 mM) exhibited significant blockade of BDNF-

induced expression (Fig. 5). This MEK dependence was further

confirmed with a second MEK1/2 inhibitor U0126 (30 mM,

Suppl. Fig. S2). MEK-dependent effects of BDNF are largely

believed to be mediated through ERK activation [12]. In order to

verify the ERK dependence of RNA induction in striatal MSNs,

we assessed the effect of the ERK1/2 inhibitor FR180204

(100 mM) on BDNF-induced gene expression (Fig. 6).

FR180204, like the MEK inhibitors, resulted in strong, universal

blockade of transcriptional responses to BDNF for all genes tested.

We thus conclude that MEK and ERK activation comprises a

major central pathway of short-term BDNF-dependent transcrip-

tional responses in striatal neurons.

In contrast to the universal effects of MEK and ERK blockade,

inhibitors of PI3K (wortmannin, 100 nM), NOS (L-NAME,

2 mM), and CAMK (KN-93, 5 mM) showed gene-specific actions.

Whereas the BDNF-regulated expression of Klf5, Syt4, Nab2 and

Ppm2c was blocked only by MEK inhibition, other genes showed

modulation by two or more pathways. BDNF-mediated induction

of Egr1 and Dusp6 were blocked by either MEK or PI3K

inhibition. Egr2 and Arc induction was diminished by MEK,

PI3K or NOS inhibition. Baiap2 induction was reduced by

inhibitors of either MEK or NOS. BDNF stimulation of Pnoc

expression was inhibited by MEK, CAMK, or NOS inhibition.

These results indicate gene-specific roles for PI3K, NOS, and

Figure 2. Varying temporal expression profiles of BDNF-mediated gene induction in E16 rat-derived striatal neurons. Transcriptional
responses to BDNF show 3 different temporal profiles in cultured striatal neurons. The first group, represented by Egr1, Egr2 and Arc, shows a large
and rapid increase within 1 hour and return back to baseline at approximately the 6th hour of treatment. The second set, represented by Ppm2c,
Nab2, Klf5 and Baiap2, shows a more gradual and moderate fold increase rising to a peak within 3–6 hours after treatment and decreasing to near
baseline levels within 12 hours. The third group, represented by Syt4 and Pnoc, is slower to respond, requiring approximately 6 hours to reach peak
levels, which remain elevated through the 12th hour of treatment. X axis represents hours of continuous BDNF treatment; Y axis represents b-actin-
normalized fold change; error bars represent SEM for n = 5 biological replicates assayed in triplicate for each condition.
doi:10.1371/journal.pone.0005292.g002
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CAMK in the modulation of striatal BDNF responses in concert

with necessary activation of MEK and ERK.

BDNF-mediated activation of nuclear transcription
factors Elk-1 and CREB is MEK-dependent

Previous studies have shown that several DNA-binding tran-

scription factors are phosphorylated in a BDNF-dependent manner

and that their activities are required for BDNF-induced gene

expression [14,32]. To assess whether the phosphorylation and

activation of such factors in striatal neurons is dependent on MEK

and ERK, we tested whether these effects were sensitive to

pharmacologic inhibition of the MAPK cascade. The MEK1/2

inhibitor PD98059 was able to block the BDNF-induced phos-

phorylation of the SRF-associated TCF protein Elk-1 (Fig. 7A) and

the CRE-binding protein CREB (Fig. 7B). Enhancer-reporter

constructs also show a BDNF-induced regulation of SRE- and

CRE-associated transcriptional activity which is sensitive to

pharmacologic inhibition of the MAPK cascade, as measured using

the activation of SRE- and CRE-driven luciferase expression in

striatal neurons (Fig. 7C,D). These results suggest that MEK/ERK

activation is important for both SRF/TCF- and CREB-dependent

gene expression initiated by BDNF in striatal cells.

MEK is also required for BDNF-induced mRNA responses
in adult striatal neurons

Whereas the above studies were performed in cells cultured

from embryonic rat brain, we wished to explore whether ERK also

played a major role in the BDNF-mediated regulation of gene

expression in the mature striatum. We thus assessed the effects of

BDNF on striatal neurons dissociated from adult rat brain (at

postnatal day 30). For a high proportion of genes tested, the

dissociation procedure itself increased expression such that the

detection of BDNF-related induction could no longer be

measured. Nonetheless, for all three genes whose expression

remained BDNF-responsive (Egr1, Arc, and Nab2), BDNF-

mediated induction was MEK-dependent (Fig. 8). These data

indicate that MEK/ERK activation is also an important mediator

of striatal gene regulation in the adult brain.

De novo MEK/ERK-dependent transcription is important
for the BDNF-regulated structural plasticity of striatal
neurons

Previous studies have suggested that BDNF may be an

important mediator of structural aspects of neuronal plasticity

[33,34,35]. In the context of the present results, we wished to

explore whether BDNF-induced regulation of striatal gene

expression might contribute to such an effect in striatal cells. To

address this question, we first assessed changes in neurite

morphology in cultured striatal neurons following exposure to

BDNF. Whereas we observed no apparent BDNF-induced

neuritic spine formation in our cultured striatal cells (data not

shown), we observed a significant BDNF-dependent increase in

axon length (as assessed by length of longest neuronal process;

Fig. 9B,C). Further testing showed that this BDNF-induced

change in cellular morphology was dependent on de novo gene

and protein expression, as demonstrated by its sensitivity to

transcriptional and translational inhibitors (actinomycin D and

cyclohexamide, respectively Fig. 9B). Moreover, the neurite

Figure 3. Striatal gene expression responses to BDNF require TrkB. (A) Cultured E16 striatal neurons uniformly express TrkB receptors, as
shown by co-immunolabeling for TrkB and the neuronal marker NeuN. Scale bar: 100 mm. (B) The TrkB dependence of BDNF-induced gene expression
is demonstrated by blockade of this response by the specific Trk inhibitor K252a (200 nM). 30 min pretreatment of K252a results in near-complete
inhibition of BDNF-induced gene expression for all genes tested. Scale of Y axis is b-actin-normalized expression values (V); error bars represent SEM
for n = 4 biological replicates assayed in triplicate for each condition. *p,0.03 compared with all other treatments (Student’s t-test). K252a also
reduced the basal expression of DUSP6.
doi:10.1371/journal.pone.0005292.g003
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Figure 4. Calcium-dependence of gene expression responses to BDNF in E16 rat primary striatal neurons. (A) Treatment with the cell-
permeable calcium chelator BAPTA-AM (100 mM) or omission of calcium from the culture medium completely inhibited BDNF-induced gene
expression *p,0.006 compared with all other treatments (Student’s t-test). The Y axis represents b-actin-normalized expression values (V); error bars

BDNF-Induced RNAs in Striatum

PLoS ONE | www.plosone.org 8 April 2009 | Volume 4 | Issue 4 | e5292



outgrowth-promoting effect of BDNF was also dependent on

MEK activation, as shown by its complete blockade by PD98059

(Fig. 9C). Therefore, we provide evidence that important

structural plasticity effects of BDNF in striatal neurons are

mediated by MEK-dependent signaling pathways involving

transcriptional regulation.

Discussion

In this study, we elucidate mechanisms underlying BDNF-

induced gene expression and show their importance for the

molecular and structural plasticity of striatal neurons. Although

BDNF has been heavily implicated as an important regulator of

striatal function, a comprehensive genome-wide study of BDNF’s

transcriptomic effects in these cells has not previously been

reported. We therefore performed a systematic assessment of

early-phase gene expression responses to BDNF in striatal neurons

using microarray analysis and subsequently studied the signaling

pathways regulating BDNF responses using pharmacologic

manipulations followed by QRT-PCR. Our chosen approach to

block these signaling pathways with small molecules avoids the

potential for non-BDNF-dependent effects of genetic manipulation

and allows tight temporal regulation of the inhibition. Although

the MEK inhibitors used for our study could potentially inhibit

ERK5, the final conclusion that a MEK/ERK signaling pathway

underlies BDNF’s effects remains unchanged. Moreover, the

specific implication of MEK1/2 and ERK1/2 are further

supported by the observation of the same effects using a selective

ERK1/2 inhibitor.

These analyses indicate that MEK and ERK serve as

gatekeepers for BDNF-induced gene expression in striatal cells.

We also show that BDNF-mediated transcriptional activation in

striatal cells requires TrkB receptors and intracellular and

extracellular calcium. Moreover, we observe that PI3K, CAMK

and NOS modulate BDNF responses in a gene-specific manner in

these GABAergic neurons.

This first transcriptome-wide analysis of the proximal gene-

induction effects of BDNF in striatal cells comprises an important

advance which complements previous studies of individual gene

responses and complex phenotypes. Moreover, the evidence for a

heavy reliance of BDNF-mediated gene expression responses on

MEK/ERK and TRPC discloses important new aspects of the

mechanisms underlying BDNF-associated neuronal plasticity.

While the extensive analysis of gene expression responses in

striatal cells is new, we will elaborate in the following paragraphs

how the present results compare with previous data collected

mainly in non-striatal cell types.

The specific genes shown to be BDNF-responsive in striatal

neurons are generally concordant with previous findings in other

neural cells and tissues [19,30]. The heterogeneous timing of

BDNF-initiated transcriptional responses into several temporal

phases is also consistent with previous studies which have shown

several waves of BDNF-induced gene expression in cultured

cerebellar granule cells [30]. Where differences are observed

between the specific gene responses measured in our system and

those of previous studies, some of these are undoubtedly biological

(e.g. due to differences neuronal type), while others may be

technical (e.g. due to the use of different microarrays). However,

we interpret the fact that specific and distinct nervous system-

related mRNAs are induced in striatal cells (both in this and

previous studies such as [36]) to suggest the former, i.e. to support

that gene induction by BDNF exhibits some cell-type specificity. In

either case, our results provide a basis for further testing of

neuronal-type-specific BDNF effects.

Our results indicate that BDNF-induced gene expression is

important for its structural remodeling of striatal neurons, as

assessed by its neurite-outgrowth-promoting activity. Although we

have not examined the contributions of individual BDNF-induced

genes to neurite outgrowth in the present study, previous data

suggests that effectors might include Pnoc [30], Egrs [37], Vasp

[38], Cdkn1a/p21, Arc [39], PDGF [40] and IGF1 [41].

Mechanisms of short-term BDNF-mediated changes in gene

expression have also been explored previously in various non-

striatal primary cell types. Previous studies in periodontal

cementoblasts and in primary hippocampal cultures also support

that short-term BDNF-induced transcriptional activation relies

heavily on MEK but not PI3K signaling [19,42]. Studies in TrkB

mutant mice, however, indicated that the MEK/ERK pathway

was less important for BDNF-induced transcriptional regulation

than calcium-dependent mechanisms including CAMK [43].

Studies examining the regulation of individual striatal genes have

previously ascribed an important role to PI3K [36]. While we

examined the expression of different RNAs, our findings are

consistent with these previous data in the respect that we also

detect significant effects of the PI3K inhibitor wortmannin in the

BDNF-mediated regulation of certain genes in primary striatal

neurons.

Our results demonstrate requirements of extracellular calcium

and TRPC channels in BDNF responses, a perspective also

supported by other recent studies [44,45]. To our knowledge,

however, this is the first report to demonstrate TRPC dependence

of the BDNF-mediated regulation of specific genes. Beyond

CAMK-dependent phosphorylation of the transcriptional activa-

tor CREB, other known calcium-dependent intracellular mecha-

nisms of BDNF-regulated gene expression include regulation of

chromatin structure via NO-mediated nitrosylation of histone

deacetylase 2 [16]. Although other downstream calcium-depen-

dent mechanisms have not specifically been addressed in the

present study, our results suggest that CAMK and NOS comprise

modulatory, rather than universal, regulatory mechanisms of

BDNF-mediated gene induction in striatal cells. However, the

major calcium-dependence of BDNF-mediated gene induction

observed in our experiments indicates that other calcium-

dependent mechanisms are also important for striatal gene

expression responses to BDNF. One pathway of potential cross-

talk between calcium and MEK/ERK in striatal neurons is the

known positive effect of calcium-calmodulin on raf activation [46].

Nonetheless, a deeper understanding of combinatorial (or

synergistic) effects of various arms of the BDNF signaling cascade

may be essential to deciphering new key aspects of gene regulation

via BDNF and TrkB in striatal cells.

The present study focuses on early short-term gene expression

effects of BDNF. However, it will also be important to determine

how BDNF regulates long-term striatal gene expression on a

genome-wide scale, and through which molecular pathways.

Previous evidence shows that BDNF is a major regulator of striatal

development and the specification of medium spiny striatal

projection cells [4], including the regulation of MSN-enriched

represent SEM for n = 4 biological replicates assayed in triplicate for each condition. (B) The TRPC channel antagonist SKF-96365 hydrochloride
(100 mM) also inhibits BDNF-mediated gene expression responses. The Y axis represents b-actin-normalized expression values (V); error bars represent
SEM for n = 4 biological replicates assayed in triplicate for each condition. *p,0.002 compared with all other treatments (Student’s t-test).
doi:10.1371/journal.pone.0005292.g004
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genes such as DARPP-32 [36,47]. Moreover, in addition to

phenotype specification and plasticity, it will be important to

ascribe neuroprotective activities of BDNF in striatal cells to

particular gene expression effects.

Another aspect of BDNF’s modulation of striatal transcription

which is uncovered by the present experiments is the negative

regulation of the expression of a considerable number of genes.

Although we are not able to ascribe a specific function to this set of

downregulated RNAs at present, it is intriguing to note that they

include RNAs encoding signaling and intracellular transport

proteins that could be important for fine-tuning neuronal input.

In addition to the regulation of striatal neuron differentiation,

corticostriatal BDNF signaling has been implicated in the etiology

and treatment of neurodegenerative and neuropsychiatric disor-

ders including drug addiction [48], depression [49,50], schizo-

phrenia [51], and Huntington’s disease (HD) [52,53,54,55]. Of

particular interest to us is the finding that the striatal gene

expression profile of forebrain-specific conditional BDNF null-

mutant mice exhibits a strong relationship to that of human HD

caudate [56]. Although HD-related striatal cell loss [57],

abnormalities in BDNF gene transcription [58] or BDNF

transport [59] could be sufficient to explain this similarity, it will

also be important to explore whether postsynaptic striatal

responses to BDNF may contribute to the pathophysiology of

HD. The present results provide a basis for further assessment of

abnormalities of BDNF-dependent gene expression in striatal cells

and its potential involvement in HD or clinically relevant human

brain disorders.

Supporting Information

Figure S1 BDNF-mediated activation of ERK, PI3K and NOS

in E16 rat ganglionic eminence cultures and their effective

blockade with pharmacologic inhibitors. (A) Stimulation with

Figure 5. Pharmacological dissection of signaling mechanisms responsible for gene expression responses to BDNF in E16 rat
striatal neurons. Y axis represents b-actin normalized expression values (V); error bars represent SEM for n = 4 biological replicates assayed in
triplicate for each condition. X axis shows inclusion of vehicle alone (VEH) or inhibitor (PD = MEK inhibitor PD98059 (50 mM), WO = PI3K inhibitor
wortmannin (100 nM), KN = CAMK inhibitor KN-93 (5 mM), NAME = NOS inhibitor L-NAME (2 mM). Cutoff criterion for inhibition, indicated by ., is a
statistically significant [p,0.05 by Student’s t-test] diminution of .30% relative to vehicle+BDNF treated expression. BDNF-induced gene expression
was inhibited by the specific MEK1/2 inhibitor PD98059 (PD) for all genes tested. The expression of some RNAs also showed sensitivity to PI3K, NOS or
CAMK inhibitors. Data demonstrating the efficacious blockade of MEK, PI3K and NOS by these inhibitors under our experimental conditions are
presented in Suppl. Fig. 1.
doi:10.1371/journal.pone.0005292.g005

Figure 6. MEK-dependent effects on BDNF-induced gene expression are attributable to ERK. The specific ERK1/2 inhibitor FR180204
(100 mM) exhibited significant blockade of BDNF-induced gene expression in E16 rat ganglionic eminence cultures for all genes tested. Y axis
represents b-actin normalized expression values (V) *p,0.05 (Student’s t-test) compared to all other conditions. Error bars represent SEM. n = 3–4
biological replicates assayed in triplicate for each condition.
doi:10.1371/journal.pone.0005292.g006
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BDNF (50 ng/ml) increases in the phosphorylation of Akt (at

Ser473) within 15 min. 30-min pretreatment with the PI3K

inhibitor wortmannin (100 nM, WO) prevented BDNF induced

Akt phosphorylation, whereas the MEK1/2 inhibitors PD98059

(50 mM, PD) or U0126 (30 mM, U) had no effect. (B) Stimulation

with BDNF (50 ng/ml) increased the phosphorylation of Erk1/2

(Thr202/Tyr204) within 15 min. 30-min pretreatment with

MEK1/2 inhibitor PD98059 (50 mM) or U0126 (30 mM)

prevented BDNF-induced ERK phosphorylation, whereas the

PI3K inhibitors wortmannin (100 nM, WO) had no effect. (C)

BDNF-mediated activation of NOS was detected with DAF-FM

DA after stimulation with BDNF (50 ng/ml for 30 min). 30 min

pretreatment with NOS inhibitor L-NAME (2 mM) prevented

NO formation *p,0.00006 (Student’s t-test). Y axis represents the

mean fluorescence intensity of the NO signal calculated as

described in Experimental Procedures. Error bars represent

SEM for n = 16–21.

Found at: doi:10.1371/journal.pone.0005292.s001 (0.34 MB TIF)

Figure 7. BDNF-induced activation of ELK and CREB is MEK-dependent. (A,B) Stimulation of E16 rat ganglionic eminence cultures with BDNF
(50 ng/ml) for 15 min, results in increased phosphorylation of ELK1 at Ser 383 and CREB at Ser133. 30 min pretreatment with the specific MEK1/2
inhibitor PD98059 blocked BDNF-induced phosphorylation. Phosphorylation of ELK and CREB is shown by representative immunoblots, with
quantitation summarized in the bar graphs. Error bars represent SEM for n = 3–4. *p,0.05 compared to other conditions (Student’s t-test).
Representative immunoblot images are shown below the bar graphs. (C) A SRE-luciferase promoter reporter assay for Elk1/TCF-mediated
transcriptional activity (see Materials and Methods) showed increased SRE-dependent transcriptional activity after BDNF treatment (50 ng/ml for
90 min). SRE-dependent gene expression was blocked by 30 min pretreatment with the specific MEK1/2 inhibitor PD98059 (50 mM). Y axis represents
percentage luminescence ratio of SRE signal to normalization control PGK promoter signal; Error bars represent SEM for n = 3–4. *p,0.05 compared
to other conditions (Student’s t-test). (D) A CRE-luciferase promoter reporter assay for CREB activation (see Experimental Procedures) also showed
increased CRE-dependent transcriptional activity after BDNF treatment (50 ng/ml for 90 min). CRE-dependent gene expression was blocked by
30 min pretreatment with the specific MEK1/2 inhibitor PD98059 (50 mM). Y axis represents relative luminescence units (RLU); Error bars represent
SEM for n = 5. *p,0.05 compared to other conditions (Student’s t-test).
doi:10.1371/journal.pone.0005292.g007
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Figure 8. Adult striatal neurons show similar MEK dependence of BDNF-induced gene expression responses. Neurons acutely
dissociated from 30-day-old rat striata were exposed to 50 ng/ml BDNF with or without the specific MEK inhibitor PD98059 (50 mM). BDNF-induced
expression of Egr1, Arc and Nab2 RNAs is blocked by PD98059, indicating that MAPK is a required mediator of BDNF-induced gene expression in the
adult brain. Y axis scale represents b-actin-normalized expression values (V); error bars represent SEM. Egr1 and Arc show significantly higher
expression in BDNF-treated cells than in vehicle-treated, PD98059-treated or PD98059+BDNF-treated cells *p,0.05 (Student’s t-test). Nab2 expression
is significantly induced by BDNF e p,0.05 (Student’s t-test) and this induction blocked by PD98059 treatment (‘‘nc’’ indicates no significant change
in Nab expression in PD98059+BDNF-treated versus PD98059-treated cells [p.0.05 by Student’s t-test]). n = 3–4 biological replicates assayed in
triplicate for each condition.
doi:10.1371/journal.pone.0005292.g008

Figure 9. MAPK and new transcription are required for BDNF-induced striatal neurite outgrowth. (A) Examples of E16 rat ganglionic
eminence-derived neurons transfected with EGFP vector and either stimulated with BDNF for 24 h or untreated. Scale bar: 0.5 mm. (B,C) Length of
longest neurite of individual striatal cells treated with BDNF for 24 h, presented as mean6SEM of neurite length in millimeters). **p,0.001, *p,0.05
compared to untreated cells (Student’s t-test). Treatment with cycloheximide (0.5 ug/ml) or actinomycin D (2 ug/ml) starting 30 min prior to BDNF
exposure prevented BDNF-induced neurite outgrowth (B). Numbers of cells analyzed (panel B): Control = 150, BDNF = 160, ACT = 85, ACT+BDNF = 93,
CHX = 60, CHX+BDNF = 65. Treatment with PD98059 also prevented BDNF-induced neurite outgrowth (C). Numbers of cells analyzed (panel C):
Control = 65, BDNF = 90, PD = 50, PD+BDNF = 63.
doi:10.1371/journal.pone.0005292.g009
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Figure S2 MEK1/2 inhibitor U0126 also inhibits BDNF-

induced gene expression. The specific MEK1/2 inhibitor U0126

(30 mM) exhibited significant blockade of BDNF induced gene

expression in E16 rat ganglionic eminence cultures for all genes

tested. Y axis scale represents b-actin normalized expression value

(V); treatment with BDNF alone induces significantly higher

expression than all other conditions *p,0.02 (Student’s t-test).

Error bars represent SEM for n = 4 biological replicates assayed in

triplicate for each condition.

Found at: doi:10.1371/journal.pone.0005292.s002 (0.24 MB TIF)

Table S1 RNA changes in striatal neurons after 3 h treatment

with BDNF. Data for all microarray probesets meeting criteria of

FDR p,0.05 are shown (see text).

Found at: doi:10.1371/journal.pone.0005292.s003 (1.49 MB

XLS)
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