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Organocatalytic enantio- and diastereoselective
cycloetherification via dynamic kinetic resolution of
chiral cyanohydrins
Naoki Yoneda1, Yuki Fujii1, Akira Matsumoto1, Keisuke Asano 1 & Seijiro Matsubara 1

Enantioselective approaches to synthesize six-membered oxacycles with multiple stereogenic

centres are in high demand to enable the discovery of new therapeutic agents. Here we

present a concise organocatalytic cycloetherification for the highly enantio- and diaster-

eoselective synthesis of tetrahydropyrans involving simultaneous construction of two chiral

centres, one of which is fully substituted. This method involves dynamic kinetic resolution of

reversibly generated chiral cyanohydrins. A chiral bifunctional organocatalyst selectively

recognizes a specific chair-like conformation of the intermediate, in which the small

steric effect of the linear cyano group as well as its anomeric effect play important roles in

controlling stereoselectivity. The products offer additional utility as synthetic intermediates

because the cyano group can be further transformed into a variety of important functional

groups. This strategy provides a platform to design efficient approaches to obtain a wide

range of optically active tetrahydropyrans, which are otherwise synthetically challenging

materials.
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The relative stereochemistry of saturated six-membered
cyclic compounds has become one of the most established
concepts in the conformational analysis of organic mole-

cules since the pioneering work of Barton1 and Hassel2. The
saturated rings generally adopt stable chair conformations of
unstrained sp3 hybrid atoms, with bulky substituents preferring
to reside in equatorial positions to minimize steric clashes.
Effective orbital interactions can also stereoelectronically control
the relative configurations. Additionally, the absolute configura-
tions of these frameworks are also a good opportunity for inter-
action with chiral hosts. In fact, optically active tetrahydropyrans
(saturated six-membered oxacycles) are ubiquitous scaffolds in a
wide range of bioactive compounds3–6, and their biological
activities are strongly affected by their absolute stereochemistry.
Thus, optically active derivatives are expected to have unexploited
pharmaceutical activities; however, the lack of a simple robust
method for their enantioselective synthesis has limited their
development. In particular, as the enantio- and diastereoselective
construction of multiple stereocentres in a single operation often
poses a formidable challenge, it remains desirable to develop a
concise, efficient method for the asymmetric installation of more
than one chiral centre in tetrahydropyrans.

Cycloetherification of secondary or tertiary alcohols bearing an
unsaturated moiety affords oxacycles containing two stereogenic
centres via kinetic resolution of the racemic alcohols7–9 (Fig. 1a).
Cyclization via dynamic kinetic resolution involving epimeriza-
tion of chiral alcohols, enabling quantitative yields of the desired
product, is more desirable; however, it has not yet been achieved.
Epimerization of tertiary alcohols, which cannot be oxidized,
requires especially harsh reaction conditions that are not suitable
for asymmetric catalysis. To realize the cyclization of chiral
tertiary alcohols via dynamic kinetic resolution, we propose a
process involving reversible addition of a carbon nucleophile
to ketones followed by cyclization10, leading to the efficient
simultaneous construction of two stereogenic centres, including a
tetrasubstituted chiral carbon (Fig. 1b). Furthermore, to accom-
plish the stereoselective construction of a tetrasubstituted chiral
centre, which has been a long-standing challenge in organic
synthesis11–13, we aimed to use a small electronegative carbon
nucleophile. These features favour the introduction of the
substituent adjacent to the heteroatom in an axial position in a
six-membered oxacycle, enabling weaker 1,3-diaxial interactions

as well as a favourable orbital interaction with the oxygen atom
(anomeric effect)14.

Results
Reaction design. Based on the previously mentioned concepts,
we selected hydrogen cyanide as a suitable carbon nucleophile
because the stereoselective cyanation of ketones is an efficient
method to construct tetrasubstituted chiral centres15–31, and the
cyano group is known to have a small A value (conformational
energy)32 and is capable of inducing an anomeric effect because
of its electronegativity33–35. The diverse chemistry of the cyano
group also expands the utility of the resulting products as syn-
thetic intermediates36, 37. Thus, the proposed dynamic kinetic
resolution of chiral cyanohydrin intermediates, which are gen-
erated reversibly in situ, accompanied by an asymmetric intra-
molecular oxy-Michael addition38–48 mediated by bifunctional
organocatalysts49–53, should enable a concise enantioselective
synthesis of tetrahydropyrans with two chiral centres, including
one fully substituted stereogenic centre (Fig. 2a). A chiral
bifunctional organocatalyst can hydrogen bond to a specific
conformation from the isomers generated during interconver-
sions between both enantiomers of the intermediates in various
conformations54. This complex immediately catalyses the sub-
sequent asymmetric oxy-Michael addition from the recognized
chair-like conformation with the cyano group in the axial posi-
tion (A), also favoured by the weak 1,3-diaxial interactions and
anomeric effect, to simultaneously generate two stereogenic
centres (Fig. 2b). The resulting cyclic structures are found in a
variety of bioactive agents3–6; the functionality of the cyano group
has not only been used for further transformations in the
synthesis of important compounds55–60, but also plays a major
role in their biological activities61–63.

Optimization of reaction conditions. We initially investigated a
model system consisting of bis-ketone 1a, acetone cyanohydrin
(2) and 10mol % of cyclohexanediamine-based aminothiourea
catalyst 4a in CH2Cl2 at 25 °C. As expected, the tetrahydropyran
product was obtained quantitatively with excellent enantio- and
diastereoselectivity (Table 1, entry 1). Catalyst 4a, bearing a
piperidyl group, was shown to be more effective to obtain higher
reactivity and stereoselectivity than catalyst 4b (Table 1, entries 1
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Fig. 1 Simultaneous construction of two stereogenic centres in tetrahydropyrans. a Cycloetherification via kinetic resolution of racemic alcohols.
b Cycloetherification via dynamic kinetic resolution involving reversible addition of a carbon nucleophile to ketones
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and 2). Catalyst 4c, which has a significantly less basic nitrogen
atom, was not active, implying that the bifunctionality of catalysts
containing amino and thiourea groups is important in this
transformation (see also Supplementary Fig. 1–3). Cinchona
alkaloid-derived aminothiourea catalysts were also shown to be
effective, albeit with slightly lower reactivities and stereo-
selectivities (Table 1, entries 4–7). Alternative cyanide sources
were also investigated. Trimethylsilyl cyanide in the presence of
2-propanol, which is known to generate hydrogen cyanide
in situ29, gave the same stereoselectivity but a slightly lower yield
(Table 1, entry 8). The use of trimethylsilyl cyanide alone afforded
the product with the same stereoselectivity but a much lower yield
(Table 1, entry 9). Solvent optimization studies identified CH2Cl2,
CHCl3, and hydrocarbon solvents as affording especially high
stereoselectivities with good yields (Table 1, entries 1, 10–12),
while the use of polar solvents, which generally decrease anomeric
effects, gave decreased yields and diastereoselectivities albeit with
high enantioselectivities observed for both diastereomers
(Table 1, entries 13–17). The reaction could also be carried out
using a smaller amount of 2 and lower catalyst loading of 4a,
giving the same excellent stereoselectivity with a slight decrease of
yield (Table 1, entry 18).

Substrate scope. With the optimized conditions (10 mol % cat-
alyst 4a in CH2Cl2 at 25 °C) in hand, we then explored the
substrate scope (Fig. 3; see also Supplementary Fig. 4–6). Both
electron-rich and -poor enones were tolerated, affording the
corresponding products in high yields with good stereo-
selectivities (Fig. 3, 3b and 3c; see also Supplementary Fig. 7). An

enone bearing a heterocyclic ring gave comparable results (Fig. 3,
3d), and an aliphatic enone provided the product in moderate
yield with good stereoselectivity (Fig. 3, 3e). Furthermore, an α,β-
unsaturated thioester, which is useful for further transforma-
tions40, afforded the product in good yield with high stereo-
selectivity (Fig. 3, 3f). We went on to investigate the substituents
that could be tolerated on the ketone (varying R’). A range of
electron-rich and -poor aryl and heteroaryl ketones was tolerated,
giving moderate to good yields, high enantioselectivities, and
excellent diastereoselectivities (Fig. 3, 3g–3j). Aliphatic ketones
were also successfully transformed, affording the desired products
with high enantioselectivities and maintaining excellent diaster-
eoselectivities (Fig. 3, 3k–3n). It is noteworthy that the methyl-
substituted ketone yielded the corresponding tetrahydropyran
with high enantio- and diastereoselectivities despite the relatively
small difference in size between methyl and cyano groups, rein-
forcing that assistance was provided by the anomeric effect
(Fig. 3, 3n; see also Supplementary Fig. 8).

Mechanistic insights. The absolute configuration of 3a was
determined by X-ray analysis (Fig. 3, see Supplementary Fig. 122
for details), and the configurations of all other materials were
assigned analogously. As expected, the cyano group is located in
the axial position of the chair-like oxacycle, consistent with our
rationale for the reaction design (Fig. 2b). Additionally, to
examine whether cyanohydrin formation proceeded enantiose-
lectively in the presence of a chiral bifunctional catalyst27, 28, we
carried out a reaction using ketone 5, which lacks an α,β-unsa-
turated carbonyl moiety, under the optimized conditions (Fig. 4).
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While the cyanohydrin could not be isolated from the reaction
using acetone cyanohydrin (2) because of the reversibility of
ketone cyanation, the reaction using trimethylsilyl cyanide affor-
ded the cyanosilylation product 7 with an enantioselectivity of
only 17% ee (see also Table 1, entry 9 and Supplementary Fig. 9).
These results imply that the enantioselectivity of the formation of
3 was not determined in the nucleophilic 1,2-addition step to form
the cyanohydrin, but in a concerted manner via dynamic kinetic
resolution involving the asymmetric oxy-Michael addition of the
cyanohydrins, one enantiomer of which was selectively recognized
and activated by the bifunctional organocatalyst.

Transformation of the product. The ability of the cyano group
to be transformed into various functional groups36, 37 further
increases the value of our products as synthetic intermediates.
Reaction of the cyano group enables a range of functional groups
to be installed at the tetrasubstituted chiral centre in the phar-
maceutically important tetrahydropyrans. The cyano group of 3a
was converted to an aminomethyl group by treatment with
lithium aluminium hydride, giving 9 after restoration of the
carbonyl moiety without erosion of the optical purity (Fig. 5).
Reaction with diisobutylaluminium hydride transformed the
cyano group to a formyl group, a useful handle for further

Table 1 Optimization of reaction conditions
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Entry Catalyst Solvent Yield (%) dr ee (%)

1 4a CH2Cl2 99 > 20:1 97
2 4b CH2Cl2 95 14:1 –97
3 4c CH2Cl2 < 1 — —
4 4d CH2Cl2 89 14:1 –92
5 4e CH2Cl2 69 17:1 –94
6 4f CH2Cl2 72 11:1 93
7 4g CH2Cl2 82 10:1 94
8a 4a CH2Cl2 84 > 20:1 97
9b 4a CH2Cl2 14 > 20:1 97
10 4a CHCl3 93 > 20:1 97
11 4a Benzene 93 > 20:1 95
12 4a Toluene 90 > 20:1 95
13 4a Et2O 59 20:1 93
14 4a THF 15 20:1 96
15 4a EtOAc 38 17:1 94
16 4a CH3CN 54 3.6:1 95 (93d)
17 4a EtOH 23 9.2:1 96 (88d)
18c 4a CH2Cl2 84 > 20:1 96

Reactions were run using 1a (0.15 mmol), 2 (0.30mmol), catalyst (0.015 mmol), and solvent (0.30ml). Yields represent material isolated after silica gel column chromatography. Diastereomeric ratios
(dr) were determined by 1H NMR spectroscopy
aReaction was run using trimethylsilyl cyanide (0.30mmol) with 2-propanol (0.30mmol) instead of 2
bReaction was run using trimethylsilyl cyanide (0.30mmol) instead of 2
cReaction was run using 0.18 mmol of 2 and 0.0075mmol of 4a for 48 h
dValues are for minor diastereomers
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transformation, affording 11 in good yield while maintaining the
enantiomeric excess.

Discussion
We demonstrated a concise organocatalytic cycloetherification for
the highly enantio- and diastereoselective synthesis of tetra-
hydropyrans with two chiral centres, one of which is a fully
substituted stereogenic carbon centre. This method features an
asymmetric intramolecular oxy-Michael addition and dynamic
kinetic resolution involving reversible generation of chiral cya-
nohydrins. The proposed rationale for this transformation entails
a chiral bifunctional organocatalyst selectively recognizing a
specific chair-like conformation of the intermediate. The weak
steric interaction and anomeric effect induced by the cyano group
also play important roles in the control of stereoselectivity. The
reaction products are useful synthetic intermediates because the

H3CO

CN
Ph

ORTEP drawing of 3a

S
O

O

O

O

Me

CN CN
Ph Ph

3a
99 %

>20:1 dr
97 % ee

3d
99 %

>20:1 dr
97 % ee

3g
55 %

>20:1 dr
98 % ee

3h
89 %

>20:1 dr
94 % ee

3i
75 %

>20:1 dr
91 % ee

3m
99 %

>20:1 dr
82 % ee

3l
99 %

>20:1 dr
95 % ee

3k
59 %

>20:1 dr
94 % ee

3n
99 %

19:1 dr
93 % ee

3j*
46 %

>20:1 dr
95 % ee

3e
58 %

14:1 dr
91 % ee

3f
70 %

>20:1 dr
96 % ee

PhPhPhPh

F

CNCN CN

CN

Me
O

OPh

CNCNCN
n-Peni-Prt-Bu

O

O

O

O

O

O PhPhPh

CN S

OO

OO

O O

OCH3

O O

3b
99 %

>20:1 dr
97 % ee

3c
89 %

>20:1 dr
93 % ee

O

OPh O

O
CN CN

Ph Ph

F3C

O

O

O O

R’
R’

3

4a (10 mol %)

(2, 2.0 equiv)
CN

CN

R O

O

HO

CH2Cl2, 25 °C, 24 h

1

R

O

CN

PhS

O
Ph

Fig. 3 Substrate scope. Reactions were run using 1 (0.15 mmol), 2 (0.30mmol), and 4a (0.015mmol) in CH2Cl2 (0.30ml). Yields represent material
isolated after silica gel column chromatography. Diastereomeric ratios (dr) were determined by 1H NMR spectroscopy. *Reaction was run for 72 h

O

Ph

5 6
<1 %

CN
(2, 2.0 equiv)

4a (10 mol %)

CH2Cl2, 25 °C, 24 h

CH2Cl2, 25 °C, 24 h

HO

Ph

CNHO

O

Ph

5 7
36 %

17 % ee

TMSCN (2.0 equiv)

4a (10 mol %)

Ph

CNTMSO

Fig. 4 Cyanohydrin formation under the optimized conditions. Reactions
were run using 5 (0.15 mmol), 2 or trimethylsilylcyanide (0.30mmol), and
4a (0.015mmol) in CH2Cl2 (0.30ml)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01099-x ARTICLE

NATURE COMMUNICATIONS |8:  1397 |DOI: 10.1038/s41467-017-01099-x |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cyano group can be further transformed into various functional
groups to realize products that have potential as pharmaceutical
agents. The current strategy provides an efficient route to a wide
range of tetrahydropyran derivatives that are otherwise difficult to
access, which will facilitate their evaluation. Further studies
regarding the application of this methodology to expand the
range of accessible optically active tetrahydropyrans bearing other
substitution patterns are currently ongoing in our laboratory and
will be reported in due course.

Methods
General procedure for the asymmetric synthesis of tetrahydropyrans 3. To a
5-ml vial were added sequentially α,β-unsaturated substrate 1 (0.15 mmol), CH2Cl2
(0.30 ml), bifunctional catalyst 4a (0.015 mmol), and acetone cyanohydrin (2,
0.30 mmol). The mixture was stirred in an oil bath maintained at 25 °C for 24 h.
The reaction mixture was subsequently diluted with hexane/EtOAc (1:1, v/v),
passed through a short silica gel pad to remove 4a, and concentrated in vacuo to
give the crude tetrahydropyrans 3. Purification of the crude products by flash silica
gel column chromatography using CH2Cl2/hexane (3:1, v/v) and then hexane/
EtOAc (3:1–10:1, v/v) as an eluent afforded the corresponding tetrahydropyrans 3.

Data availability. Additional data supporting the findings described in this
manuscript are available in the Supplementary Information. For full character-
ization data of new compounds and experimental details, see Supplementary
Methods. For the 1H and 13C NMR spectra of new compounds, see Supplementary
Figs. 10–99. For HPLC chromatogram profiles of the reaction products, see Sup-
plementary Figs. 100–121. For an ORTEP drawing of 3a, see Supplementary
Fig. 122. X-ray crystallographic data have also been deposited at the Cambridge
Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) with the accession code
CCDC 1566029. All other data are available from the authors upon reasonable
request.
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with diisobutylaluminium hydride (0.40mmol) in CH2Cl2 (1.0 ml). Synthesis of 11: 10 (0.056mmol) was treated with pyridinium chlorochromate
(0.17 mmol) in CH2Cl2 (2.0ml)
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