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Osteoarthritis (OA) is an obstinate, degradative, and complicated disease that has
drawn much attention worldwide. Characterized by its stubborn symptoms and various
sequela, OA causes much financial burden on both patients and the health system.
What’s more, conventional systematic therapy is not effective enough and causes
multiple side effects. There’s much evidence that nanoparticles have unique properties
such as high penetration, biostability, and large specific surface area. Thus, it is urgent
to exploit novel medications for OA. Nanomaterials have been sufficiently studied,
exploiting diverse nano-drug delivery systems (DDSs) and targeted nano therapeutical
molecules. The nanomaterials are primarily intra-articular injected under the
advantages of high topical concentration and low dosage. After administration, the
DDS and targeted nano therapeutical molecules can specifically react with the
components, including cartilage and synovium of a joint in OA, furthermore
attenuate the chondrocyte apoptosis, matrix degradation, and macrophage
recruitment. Thus, arthritis would be alleviated. The DDSs could load with
conventional anti-inflammatory drugs, antibodies, RNA, and so on, targeting
chondrocytes, synovium, or extracellular matrix (ECM) and releasing the molecules
sequentially. The targeted nano therapeutical molecules could directly get to the
targeted tissue, alleviating the inflammation and promoting tissue healing. This
review will comprehensively collect and evaluate the targeted nanomaterials to
articular cartilage in OA.
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INTRODUCTION

Epidemiologically, the outbreak of osteoarthritis (OA) shows a prejudice of females in gender and the
age more than 65 (Felson et al., 1987; Xia et al., 2014; Szilagyi et al., 2022). Clinical symptoms vary
among patients. Knee damage displays principally, followed by hip and hand joints (Ummarino
et al., 2020). Evidence reveals that obesity, trauma, and genetic factors are related to the appearance
and development of OA (Vina and Kwoh, 2018; Liu et al., 2021). Obesity could not only
metabolically impact OA with a higher level of inflammatory factors but also increase the
burden of the knee and hip joint, resulting in chronic mechanical damage, which means further
progress of OA (Vina and Kwoh, 2018; Ummarino et al., 2020). Joint trauma caused by intense
sports, accidents, and surgeons could also assist the OA pathology (Antoni et al., 2021). Congenital
deficiency, including joint dysplasia and deformity, shows a susceptible trend towards the disease,
attributed to abnormal joint stress and secondary mechanical damage (Vina and Kwoh, 2018).
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Conventionally, the administration of OA is classified into two
categories, including medication and surgeon (Abramoff and
Caldera, 2020; Ummarino et al., 2020). The current clinical
drug treatment mainly refers to non-steroidal anti-
inflammatory drugs and corticosteroids (Abramoff and
Caldera, 2020). However, non-steroidal anti-inflammatory
drugs have obvious adverse reactions involving the
gastrointestinal tract, cardiovascular and cerebrovascular
(Pelletier et al., 2016). While long-term use of corticosteroids
may cause osteoporosis, hypertension, diabetes, etc., (Wernecke
et al., 2015). Furthermore when the above two drugs are taken
orally, due to the clearance of the drugs by the liver and plasma,
higher doses are required to achieve effective blood drug
concentrations, which further increases the possibility of
adverse reactions (Wernecke et al., 2015; Pelletier et al., 2016;
Abramoff and Caldera, 2020; Ummarino et al., 2020).

To overcome the defects above, we need to figure out a novel
drug administration approach based on higher local
concentration and lower systemic dosage. Thus, the efficacy
would be enhanced while the adverse effects would be
alleviated. Nanotechnology has been widely exploited,
introducing various nanomaterials with unique properties such
as high permeate, specifical and long endurance in vivo or in vitro
(Brown et al., 2019; Zhang T. et al., 2020; Ma et al., 2022). Plenty
of evidence shows that nanomaterials could be therapeutic
molecules combining with targeted tissue directly and be drug
delivery systems (DDSs) transporting the drug molecules
specifically (Brown et al., 2019; Ummarino et al., 2020). In
addition, previous studies have demonstrated that
nanomaterials have multiple bio-functions (Zhang et al., 2021)
[anti-tumor (Ma et al., 2022), anti-inflammation (Wang et al.,
2022; Zhang et al., 2022), differentiation promotion (Li S et al.,
2021), immune modulation (Qin et al., 2022), and neuro-
protection (Zhou et al., 2021; Zhu et al., 2022)]

This manuscript comprehensively summarizes the current
OA-targeted nanodrugs, classified by their targeted tissues,
including chondrocytes, the cartilage extracellular matrix
(ECM), synovium matrix, and synovial cells. We also
distinguish the nanodrugs into nano-therapeutic molecules
that directly react with their target and DDSs that specifically
transport the drug molecules embedded in them.

STRUCTURE OF ARTICULAR CARTILAGE
AND SYNOVIUM

Chondrocytes
As is known to all, the joint undertakes the burden of sports with
a series of physiological bases such as articular cartilage,
synovium, and ligaments. Articular cartilage consists of
chondrocyte and ECM, being the major portion of
degradation caused by OA, meanwhile the important target of
the therapeutic molecules.

Generally, chondrocytes participate in osteogenesis via the
process of proliferation and terminal hypertrophic alternation.
Previous investigation has proven that chondrocytes are derived
from mesenchymal stem cells (MSCs) at the embryonic stage,

followed by hypertrophic change (Kronenberg, 2003). The
hypertrophic chondrocytes are endowed with various
functions, including osteogenesis and bone mineralization. The
spatial distribution of chondrocytes is characterized by its regular
occurrence in cartilage lacuna and elimination at the chondro-
osseous junction. Several scholars have studied that the post-
mature chondrocytes are likely to differentiate into osteoblasts
and keep the promising potency by differentiating into multiple
lineages (Yang et al., 2014).

The exclusive presence of chondrocytes in the ECM makes
articular cartilage devoid of vascular vessels and nerves. The fluid
nourishes chondrocytes from synovium and subchondral bone
(Figure 1D) (Armiento et al., 2018; Messina et al., 2019). With
the stagnation of the premature stage, chondrocytes intervene in
the perpetual balance of articular cartilage vitally (Komori, 2020).
Chondrocytes synthesize and secrete collagen, polysaccharides,
and their derivatives to construct ECM.

ECM
ECM is the essential part of articular cartilage to accommodate
chondrocytes, composed of fibers, proteoglycans, and
glycoproteins (Carballo et al., 2017). The spatial distribution of
cartilage ECM varies overtly, which means five zones of ECM
with diverse components arranged respectively from surface to
depth (Brown et al., 2019).

Collagen is the domaining fiber constituting the ECM,
classified as collagen II (the predominant one), III, IV, VI, IX,
X, and XI (COL-II, III, IV, VI, IX, X, XI), endowing the
mechanical properties of cartilage such as tenacity and
flexibility (Wilusz et al., 2014; Carballo et al., 2017). Previous
studies show that COL-II takes up about 90% volume of fibrils
and interacts with COL-IX and XI, and further becomes coarser
and cross-linked with the help of leucine-rich proteoglycans and
cartilage oligomeric matrix protein (Brown et al., 2019). COL-IV
constructs micro-fibrils distributed around chondrocytes,
endowing the ECM with the elastic mechanical property. The
COL-IV and X don’t form macromolecular fibrous structures,
mainly located at tangential and calcified zones (van der Kraan
et al., 2001; Foldager et al., 2014). Chondrocytes merely take up
about 2% volume of the articular cartilage, involving the
formation of ECM with the regular releasement of
inflammatory and growth factors while maintaining the
cartilage homeostasis to keep it healthy (Carballo et al., 2017).

Proteoglycans and glycoproteins are also the main
components of cartilage ECM. Glycoproteins constitute
proteoglycans via combining glycosaminoglycans (GAGs) on
their sidechains no less than three. GAGs are bioactive and
comprise chondroitin sulfate (ChS), dermatan sulfate (DS),
heparan sulfate (HS), keratan sulfate (KS), and hyaluronic acid
(HA) (Brown et al., 2019). Aggrecans have the largest quantity in
proteoglycans of ECM, followed by perlecan and laminin
(Maroudas, 1976; Brown et al., 2019). Aggrecans can form
aggregates as core protein via conjugating with HA molecules,
thereby exerting their bio-function in the reticulated structure of
collagens (Schneevoigt et al., 2017; Han et al., 2019).What’s more,
aggrecans can also endow cartilage with the property of elasticity
through the associated water molecules (Schulz and Bader, 2007).
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Synovium
The physiological functions of synovium comprising joint cavity
formation, fluid dynamic accommodation, and chondrocytes’
nutritional transport in an articulation mustn’t be ignored.
Synovium is also a vital component of a joint (Figure 1F)
(Mathiessen and Conaghan, 2017). There are two layers
constituting normal synovium. The outer one is called
subintima, characterized by the vascular and lymphatic vessels
within it, while the inner one is identified by its macrophages and
fibroblasts (Smith, 2011; Mathiessen and Conaghan, 2017).
Taking burdens of immune reactions, macrophages widely
exist in the synovium. In other words, macrophages
phagocytose and polarize, thus proceed an inflammatory
process. As a cyst-like structure formed with synovium, the
synovial cavity contains a small amount of synovial fluid
abundant with HA and water.

Spatial Structure of Cartilage
The spatial structure of articular cartilage is complicated and
orderly, divided into three parts from superficial to deep (Figures
1A–C): the superficial zone where the collagen fibrils are aligned
parallel to the tissue surface, the middle zone where the collagen
fibrils orientation is random, and the deep zone that is adjacent to
subchondral bone in which the fibrils are perpendicular to the
interface (Carballo et al., 2017). Previous studies have shown that
the number of molecules contained in articular cartilage varies
from region to region. The middle zone has the largest charge
because it contains the most negatively charged proteoglycan. In
contrast, the collagen fibers have the highest content in the
superficial zone, giving it a higher function of shear resistance
(Mow and Guo, 2002; Carballo et al., 2017).

PATHOLOGY OF OSTEOARTHRITIS

OA is an obstinate disease characterized by degradation and
various disorders such as joint pain, impaired mobility, and
inflammation, with much attention to public health authorities
and governments worldwide (Reddi et al., 2011; Bottini et al.,
2016; Shah et al., 2020). It is reported that 151 million
individuals have been affected by the disease, leading to a
fiscal burden of $185.5 billion annually in the United States
alone (Brown et al., 2019). OA has become a socioeconomic
problem impacting the residents worldwide due to its
increasing morbidity (Hootman and Helmick, 2006). It has
been widely explored that the risk factors of OA mostly ascribe
to family inheritance, senescence, overweight and joint
trauma, whereas the pathogenesis of OA is still largely
vague (Xia et al., 2014). Currently, it is widely known that
OA is a complicated process in which severe degradation of
articular cartilage is the most notable. The whole joint is
influenced during OA, impairing the synovium, joint
ligaments, and subchondral bone (Abramoff and Caldera,
2020).

ECM Degradation
Degradation of the ECM might appear first during the progression
of OA (Goldring and Goldring, 2010; Mobasheri and Batt, 2016)
(Figure 1E). First, the various metalloproteinases and aggrecanases
in ECM will increase abnormally, and increase the catabolism of
ECM, and cause the gradual degradation of macromolecular
substances such as collagen fibers that maintain the stable
structure of ECM, triggering the destruction of structure and
function of ECM (Bottini et al., 2016).

FIGURE 1 | Pathology of OA Joint and Spatial Structure of Cartilage. The spatial structure of cartilage is divided into three parts. The collagens in superficial
zone are aligned parallel to the tissue surface (A). At the same time, they are randomly orientated in the middle zone (B) and are perpendicular to the interface of cartilage
and subchondral bone in deep zone (C). Normal articular cartilage contains chondrocytes and ECM full of collagens, proteoglycans, and glycosaminoglycans (D). In
contrast, the OA cartilage is recognized by the apoptosis of chondrocytes and ECM fragments (E). Normal synovium consists of synovial cells and synovial ECM,
which is similar to cartilage (F). At the same time, the OA synovium is characterized by infiltration of macrophages, multinucleated giant cells, fibrosis, and
angiogenesis (G).
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Furthermore, ECM is damaged by the inflammatory cytokines
(IL-1, IL-6, and TNF), reactive oxygen species (ROS), and
peroxynitrite released by various cells at the lesion (Bottini
et al., 2016). Matrix metalloproteinases (MMPs) are a family
(Winer et al., 2018), relying on Ca2+, Zn+ which are the cofactors
to exert their function of matrix resolution (Wang and Khalil,
2018; Kou et al., 2021). Scholars have classified MMPs into
26 categories, numbered MMP1~26. The substrates of MMP
are almost all the protein components of ECM, so scientists divide
it into collagenase, gelatinase, matrix-degrading, and so on
according to the different substrates (Cui et al., 2017). ROS is
a one-electron reduction product of oxygen, including superoxide
anion, hydrogen peroxide (H2O2), and hydroxyl radicals
(Turrens, 2003; Brieger et al., 2012). ROS are detrimental to
the components of ECM via amino acid modification, peptide
breakage, protein oxidative allostery, and undermining the
structure of macromolecules (Jakubczyk et al., 2020).

Chondrocytes Alteration
The enhanced catabolism of ECM leads to an increase in the
content of matrix fragments and chemokines, which in turn
causes a series of changes in the phenotype of chondrocytes
(Bottini et al., 2016). Chondrocytes have various manifestations
of hypertrophy, terminal differentiation, and apoptosis
(Mobasheri and Batt, 2016). Generally, they show a tendency
to repair the damage.

In the second stage of OA, chondrocytes are stimulated by
arthritis (Figure 1E). Chondrocytes upregulate the secretion of
catabolic enzymes and mediums, enhancing cartilage
degradation, and further promoting the apoptosis of
chondrocytes themselves. Some evidence shows that the
alternation of ECM in OA precedes the changes of osmolality
and ionic microenvironment, leading to dynamic adjust of
chondrocytes (Jeremiasse et al., 2020).

Synovium Inflammation
OA can cause synovium inflammation (Figure 1G). Some
scholars reckon that synovial membranes and fluid are the
keys between systematic inflammation and OA. Topical
arthritis is mainly brought by synovium and synovial fluid via
synthesizing and releasing inflammatory factors (IL-1, IL-6, TNF)
and MMPs. Leading to catabolic loop and cartilage damage,
synovial fluid can also be a biochemical pathway to unravel
the complicated molecular mechanism of OA (Bottini et al.,
2016; Ingale et al., 2021). Many of the synovial cells are
macrophages, the innate immune cells derived from
mononuclear leucocytes (Falconer et al., 2018). Macrophages
exert the inflammatory response via the polarization toward
pro-inflammatory (M1) and anti-inflammatory (M2)
phenotypes (Muñoz et al., 2020). In the context of early-stage
arthritis, the macrophages in the synovium are stimulated by
inflammatory factors such as LPS, IFN-γ, and TNF-α, thus
polarizing towards the M1 phenotype (Cook et al., 2003). The
M1 cells would release evenmore inflammatory factors, including
IL-6, IL-12, IL-23, and TNF-α. Not only that, ROS, NO, MMP-
1,3,13 secreted by M1 cells can harm articular cartilage directly
(Nagai et al., 2003; Haltmayer et al., 2019; Jakubczyk et al., 2020).

The inflammatory and damage factors mentioned above will
recruit more leucocytes, including mononuclear cells and
macrophages, sequentially promote their proliferation and
differentiation towards M1 phenotype macrophages, creating a
vicious cycle (Culemann et al., 2019).

THERAPEUTIC ADMINISTRATION

Route of Administration
Drug molecules need to reach the lesion to perform the
corresponding pharmacological functions, thereby alleviating
symptoms and curing diseases. There are many ways to
administer medicine in the medical profession. The common
ones are oral, subcutaneous injection, intravenous injection,
sublingual administration, etc. As for the drug treatment of
OA, the routes can be divided into two major groups,
including systematic treatment and topical treatment.

Systematic treatment of OA consists of oral and injection
administration with conventional anti-inflammatory medicine
such as NSAIDs, capsaicin, weak opioids, and narcotic analgesics.
It is more conventional but less effective and targeting (Abramoff
and Caldera, 2020).

The topical treatment of OA is intra-articular injection.
Compared with systemic administration, intra-articular
injection administration has the advantages of small systemic
side effects, high local drug concentration, and long drug
retention time. Local injection of hormones and anti-
inflammatory drugs can stabilize cell membranes, reduce
inflammatory exudation and relieve symptoms (Altman and
Barthel, 2011; Brown et al., 2019). Notwithstanding the
universal application of intra-articular injection with the drugs
mentioned above, the blemishes such as rapid drug diminishment
and apparent off-target effects of the drugs are still unignorable
(Brown et al., 2019). In recent years, intra-articular injection of
nano-medicine has gradually entered the public eye. Many
scholars have tried to use nano-medicine. Many nano-DDSs
and nano-medicine have been exploited because of their
strong penetration, high retention, and targeting properties.

Conventional Medicine Has Obvious
Defects
Destruction of the articulation is the most obvious feature during
the OA process, resulting in multiple clinical symptoms,
including inflammation, pain, and restricted movement of
joints (Abramoff and Caldera, 2020). To relieve symptoms and
eliminate the disease, scholars have recommended various
treatment methods of which nonpharmacologic,
pharmacologic, and surgical therapy (Taruc-Uy and Lynch,
2013). Paracetamol, other non-steroidal anti-inflammatory
drugs (NSAIDs), and capsaicin are topically utilized to treat
OA, leading to a wide range of adverse events (AEs) such as
hepatotoxicity, renal damage, and cardiovascular injury.
Meanwhile, a relatively minimal therapeutic effect (Altman
and Barthel, 2011; Taruc-Uy and Lynch, 2013). Paracetamol is
a universally used analgesic-antipyretic, leading to hepatotoxicity
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at a dose of 3.25 g/day, which merely causes little therapeutic
effects. NSAIDs have extensive AEs on digestive, cardiovascular,
and urinary systems, relying on the dose, duration, and age
factors (Altman and Barthel, 2011). Capsaicin can also have
AEs such as irritation, nerve degeneration, and occasional
coughing (Mason et al., 2004; Gibbons et al., 2010; Altman
and Barthel, 2011). Thus, conventional pharmacological
treatment emerges with its defective aspect of high risks of
heterogeneous side effects and low safe dose. Therefore, we
need to find new drugs that can target therapy to increase the
local drug concentration while reducing the dose, achieving the
goal of increasing efficacy and reducing systemic reactions.
Therapeutic nanoparticles (also called nanodrugs) have
gradually been recognized by the medical field, with
unsurpassed targeting, membrane penetrability, thus could
lower the risk brought by high plasma concentration (Brown
et al., 2019).

Nanoparticles Have Diverse Unique
Properties
The size of particles significantly affects their physical, chemical,
and biological properties. The size of drug molecules can even
directly affect its pharmacological properties, enhancing its
therapeutic effects, such as anti-tumor, anti-angiogenic, anti-
inflammatory, and proliferation promoting functions. Scholars
endow the medicine with a lower dosage and adverse effects rate
at the nanoscale. Nanodrugs and nano-DDSs possess specific
traits likely to be attributed to their properties of nanoparticles
elaborated below.

The particles’ size and specific surface area affect their
biological properties, including the particles’ penetration,
distribution, and clearance after entering the body. The
smaller the particle size and the larger the specific surface
area, the more likely it will cause adverse reactions.
Nanoparticles may damage normal tissue by generating free
radicals, an effect that intensifies as the size of the
nanoparticles decreases (Gatoo et al., 2014). Some studies have
also suggested that nanoparticles smaller than 50 nm have strong
penetration and can be distributed in almost all tissues, resulting
in enhanced side effects (De Jong et al., 2008; Gatoo et al., 2014).

In vitro experiments have shown that nanoparticles with a size
of about 100 nm are most easily endocytosed by cells (Xu et al.,
2012; Liu et al., 2017). This might be attributed to a better
combination and absorption of surface cluster receptors
resulting from nanoparticles with a size of 100 nm. Thus the
particles trigger invagination of the cell membrane to form
vesicles and mediate endocytosis (Liu et al., 2017). In addition,
studies have shown that nanoparticles in vivo tend to adsorb
various molecules on the surface to form protein coronas (PCs),
thus the size of the particles interacting with the cell membrane is
often larger than the size of the nanoparticles just composited
(Walkey et al., 2012; Sun et al., 2013). There is evidence that the
optimal nanoparticle size for mediating endocytosis in vivo is less
than 34 nm (Choi et al., 2010).

Nanoparticles have different morphologies after synthesis,
including spherical, rod-shaped, tubular, and tetrahedral

(Gatoo et al., 2014). Different shapes of nanoparticles have
different effects on triggering endocytosis (Liu et al., 2017).
Previous studies have confirmed that spherical nanoparticles
better mediate endocytosis and are less toxic (Champion and
Mitragotri, 2006; Lee et al., 2007). At the same time, the higher the
aspect ratio and the more elongated morphology of nanoparticles,
the greater their potential toxicity, which may be because the
longer fibers are not easily cleared by macrophages, causing
inflammation in the tissue (Fubini et al., 2011; Gatoo et al., 2014).

Free radicals, metal ions, etc. on the surface of nanoparticles
can lead to the generation of ROS, triggering different degrees of
toxic reactions, while specific modifications on the surface of
nanoparticles (such as hydrophilic polyethylene glycol and other
surface-active copolymers) can reduce the side effects and
enhance the stability of nanoparticles (Liu et al., 2017).

The charge on the surface of nanoparticles can also affect their
function. For example, positively charged nanoparticles have
higher clearance rates but also have a better affinity for certain
negatively charged biological structures (Gatoo et al., 2014; Liu
et al., 2017; He et al., 2020).

The hydrophobicity of the surface of nanoparticles can also
affect the efficiency of their cellular uptake. Hydrophobic
molecules are more likely to enter the cell membrane and be
endocytosed by cells; nanoparticles with a rough surface have a
stronger interaction with cells, making it easier to enter cells and
mediate endocytosis (Gatoo et al., 2014).

CARTILAGE TARGETED NANODRUGS

Chondrocytes Targeted Nanodrugs
Chondrocytes undertake the burden of the generation of ECM
and renewal of its components, attributed to their unique
existence in ECM (Figure 1D). Researchers have investigated
a variety of nanodrugs to treat OA to ease the symptoms,
eliminate the cause of the disease, and improve the quality of
daily life (Figure 2).

Various therapeutic molecules could decline the inflammatory
reaction and ease the symptoms of OA. Still, they are restricted by
their off-target effects and low concentration in joint. Previous
studies have proved that nanoparticles could be designed as a
medication delivery system (Table 1). Cationic polyethylenimine

FIGURE 2 | Cartilage Targeted nanodrugs. Cartilage-Targeted
nanodrugs can be divided into nano therapeutical molecules and nano-drug
delivery systems (DDSs). Both of them can specifically react with the
components of cartilage, mediating the OA treatment procedure.
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(PEI) is a vital approach to delivering drugs to the lesion site.
Scholars modified a targeting ligand (Chondrocyte-homing
peptide, CAP) on the PEI to reduce the toxicity and dose
meanwhile assemble the pharmaceutical molecule (Bottini
et al., 2016). Lipid-based carriers are also recognized as a
conventional nano-delivery tool to load hydrophobic
therapeutic molecules, while polymeric nanoparticles can
encapsulate multiple medicines targeting chondrocytes (de
Silva et al., 1979). For instance, in 2019, Cho, H. et al.
successfully loaded protein kinase D inhibitor (PKDi) onto
nanosomes, creating PKDi-Nano. PKDi can specifically ease
the inflammatory reaction primarily caused by PKD, while the
clinical application is restricted by its off-target effects and low
cellular internalization. PKDi-Nano can significantly decline the
defects above and reduce the inflammation damage via the
nuclear factor kappa-light-chain enhancer of the activated
B cells (NF-κB) pathway. The lipid-based nanosome endows
PKDi with stability, leading to a relatively long-time NF-κB
pathway activation. Thus, the restoration of chondrocytes
would be enhanced (Cho et al., 2019). Some scholars
synthesized cationic liposomes via film dispersion and loaded
microRNA-140, demonstrating that CL@miR-140 could
successfully lead to chondrocyte remedy. After the
nanomaterial gets to the chondrocytes, the DDS could release
and transport the miR-140 into the cells. Thus, the mRNA could
specifically upregulate the COL2A1 mRNA, modulating COL-II
synthesis (He K et al., 2021). In 2022, Velot É et al. synthesized
agro-based rapeseed liposomes carried transforming growth
factor (TGF)-β1 (Lipo@TGF-β1) (Velot et al., 2022). The
liposomes encapsulated the TGF-β1, endowing it with
biostability, a long half-life, and good penetration in cartilage.
Then the TGF-β1 would bind with chondrocytes receptors to
mediate several signaling pathways (ERK/p-38 MAPK/Smad),
which retains the chondrocytes’ articular phenotype. Other
nanoparticles can also be used to target chondrocytes. In 2019,

Ouyang, Z. et al. (Ouyang et al., 2019) successfully synthesized
Gd2(CO3)3 core-based nanoparticles, then anchored a cartilage-
targeting peptide and loaded hesperetin (Hes) into the
nanoparticles, forming a chondrocyte-targeted drug delivery
system called Hes-Gd2(CO3)3@PDA-PEG-DWpeptide
(HGdPDW). The scholars demonstrated that HGdPDW could
specifically inhibit chondrocyte TLR-2 to alleviate the
degeneration via TLR-2/NF-κB/Akt signaling pathway.
Exosomes have been exploited for OA therapy as well. In
2017, Cosenza, S. et al. successfully synthesized mesenchymal
stem cells derived exosomes and confirmed the protective
function of OA cartilage (Cosenza et al., 2017). In 2020, Kim,
Y. et al. (Kim et al., 2020) demonstrated that exosomes from
mesenchymal stem cells (MSC-exosomes) could be used as a
targeting drug delivery system for chondrocytes. The MSC-
exosomes could specifically protect chondrocytes via multiple
methods, such as downregulating the inflammatory factors
secretion, declining the expression of prostaglandin E2
(PGE2), or reducing the binding affinity of transcription factor
c-jun activating protein-1 (AP-1) and NF-κB. In 2020, Sirong, S.
et al. (Sirong et al., 2020) verified that the tetrahedral framework
nucleic acids loaded with wogonin (TFNAs@wogonin) could
restrain the inflammation with chondrocytes apoptosis
attenuation as well as chondrogenic marker expression
enhancement.

Several scholars have also shown that nanoparticles can be
used directly as therapeutic molecules or as carriers and effectors
simultaneously (Table 1). The previous investigation revealed
that insulin-like growth factor 1 (IGF-1) could upregulate the
synthesis of ChS-rich aggregating proteoglycans even at the
relatively high concentration of inflammatory factors such as
IL-1 and TNF-α, indicating that IGF-1 has the potential to ease
arthritis (McQuillan et al., 1986; Tyler, 1989). In 2014, the
heparin-binding (HpB) domain of human EGF was assembled
on IGF-1, creating HpB-IGF-1 nanomaterial by Loffredo et al.

TABLE 1 | Chondrocyte targeted nanomaterials.

Name Type Mechanism Citation

CAP-PEI Drug delivery
system

Utilize the nanoparticles’ inherent properties of high penetration, stability and compatibility
to deliver therapeutic molecules

Bottini et al. (2016)

PKDi-Nano Specifically modified DDSs could obtain targeting Cho et al. (2019)
CL@miR-140 He K et al. (2021)
Lipo@TGF-β1 Velot et al. (2022)
HGdPDW Ouyang et al. (2019)
MSC-exosome Kim et al. (2020)
TFNAs@wogonin Sirong et al. (2020)
IGF-1 Therapeutic

molecule
Promote chondrocytes to synthesize ECM components (Loffredo et al., 2014; Geiger

et al., 2018)
ChS Enhance chondrocytes proliferation and migration Hsu et al. (2022)
SeCS Reduce apoptosis of chondrocytes Wang et al. (2020)
3′-SL Inhibit apoptosis, enhance synthesis of chondrocytes Baek et al. (2021)
RXRα modulator K-
80003

Target chondrocyte nuclear receptor RXRα Li S et al. (2021)

CircSERPINE2 Target miR-1271-5p and ERG Shen et al. (2019)
Circ_0020093 Inhibit miR-23b Feng et al. (2021)
CircPDE4B Regulate p-38/MAPK signaling pathway Shen et al. (2021)
CYTOR The knock of CYTOR could reverse anti-OA drug effects, indicating CYTOR to be a

promising target drug
Wang et al. (2021)
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(Loffredo et al., 2014) The HpB-IGF-1 obtained much more
stability than single IGF-1. Geiger, BC et al. (Geiger et al.,
2018) also modified the IGF-1 with PAMAM dendrimer,
endowing the nanoparticles with higher levels of residence
time. In 2014 Jain A et al. (Jain et al., 2014) composited
diacerein-loaded liposomes and then spliced them onto ChS,
thus creating a nanoparticle with anti-inflammation and
targeting functions. Further, in 2022, Hsc, HC. et al. (Hsu
et al., 2022) demonstrated that ChS could enhance
chondrocytes proliferation and migration via inhibiting AKT/
NF-κB pathway and inducing β-catenin. Taken together, ChS is a
promising chondrocyte-targeted nanodrug.Wang, L. et al. (Wang
et al., 2020) cultured Kashin-Beck disease (KBD) chondrocytes
with nano-Se (SeCS) and consequently found that SeCS could
reduce the apoptosis of KBD chondrocytes with the upregulation
of carbohydrate sulfotransferase 12 and 15 (CHST-12, 15) uronyl
2-O-sulfotransferase (UST) on protein and mRNA level. The
scholars firstly demonstrated that the concentration of Se in RA,
OA, and KBD is significantly lower than that in control,
indicating that the deficiency of Se may be a cause of RA, OA,
and KBD. They treated KBD chondrocytes with SeCS and showed
that the viability and ultrastructure were improved. The Western
blot and q-PCR showed that CHST-12, 15 and UST were
obviously upregulated on both protein and mRNA levels. It
shows SeCS may recue the KBD/OA chondrocytes via
modulating the expression of CHST-12, 15 and UST in them.
D’Atri, D. et al. (D’Atri et al., 2021) proved that NGs
(nanoghosts) could be both a multifunctional DDS and a
targeting medication towards inflammatory chondrocytes in
OA via a proof-of-concept experiment. A recent research
studied by Baek, A. et al. (Baek et al., 2021) has shown that
3′-Sialyllactose (3′-SL) could reduce arthritis induced by IL-1β
via various pathways, including reducing the level of ROS,
inhibiting apoptosis of chondrocytes genetically, promoting
chondrocytes synthesizing and secreting matrix components. It
has been previously studied that a nuclear receptor, Retinoid X
receptor α (RXRα), is widely expressed in chondrocytes (Collins-
Racie et al., 2009; Ratneswaran et al., 2017). Thus, some scholars
demonstrated that RXRα modulator K-80003 could alleviate the
degradation of cartilage and synovium inflammation utilizing the
property. (Li H et al., 2021).

Recently, the inherent properties of targeting,
biocompatibility, and specific bio-functions of nucleic acid are
drawing attention in the field. Current studies have proposed
using circular RNAs (circRNAs) as targeted drugs that can inhibit
the genes associated with the process of OA. Shen, S et al. (Shen
et al., 2019) demonstrated that the circRNA (CircSERPINE2)
could target the OA chondrocytes via targeting miR-1271-5p and
E26 transformation-specific-related genes (ERG). The scholars
firstly confirmed that CircSERPINE2 was relatively low in OA
cartilage, then they treated the cells with CircSERPINE2.
Eventually, they concluded that the drug-treated group
downregulated MMPs expression, which was related to the
degradation during the OA process. Feng, M. et al. (Feng
et al., 2021) found that circ_0020093 could ease the
degradation and apoptosis brought by IL-1β, a key
inflammatory factor. The scholars found that

circ_0020093 and SPRY1 expressions declined in IL-1β-
induced OA chondrocytes. Further, they demonstrated that
circ_0020093 could upregulate the SPRY1 expression via
targeting miR-23b inhibition, which could alleviate the
apoptosis induced by IL-1β. In a word, circ_0020093 can
target the miR-23b/SPRY1 axis in chondrocytes, leading to the
prevention of OA apoptosis. Shen, S. et al. (Shen et al., 2021)
concluded that circPDE4B could lower the degradation and
upregulate the repairment of articular cartilage via a series of
experiments. Like the study mentioned above, circPDE4B was
also downregulated in OA chondrocytes. The researchers further
demonstrated that circPDE4B could promote RIC8 guanine-
nucleotide exchange factor A (RIC8A) degradation, both of
them participated in OA process. Eventually, the scholars
confirmed that circPDE4B/RIC8A could regulate p-38/MAPK
signaling pathway in chondrocytes. The overexpression of
circPDE4B would inhibit the pathway, resulting in the decline
of MMP and enhancement of cell viability. Long non-coding
RNA (lncRNA) induced by icariin is also confirmed to promote
proliferation and repress the loss of chondrocytes in an
inflammatory microenvironment. Cytoskeleton regulator RNA
(CYTOR) is a kind of lncRNA,Wang, G. et al. (Wang et al., 2021)
demonstrated that the CYTOR knockdown could reverse the
anti-OA drug’s protective effect in chondrocytes, indicating
CYTOR to be a promising chondrocyte-targeted nanodrug
for OA.

ECM Targeted Nanodrugs
ECM is secreted by chondrocytes which are the only kind of cells
showing presence in articular cartilage and is mainly composed of
fibers (collagen), proteoglycans, and glycoproteins (Carballo
et al., 2017). Those macromolecules could be the specific
ligands for targeting nanodrugs. In this section, we will
primarily describe the proteoglycan and collagen-targeted
nanodrugs (Table 2).

Collagen Targeted Nanodrugs
Collagen is the major fiber in the ECM of cartilage. More
precisely, collagen II (COL-II) is the predominant one. Thus,
various targeted drugs could bind with COL-II specifically.
Previous studies have confirmed that a six amino acid peptide
(sequence WYRGRL) has the properties of binding COL-II and
conjugating with therapeutic molecules, thus fabricating an
ECM-targeted nanodrug. The scholars utilized phage display
of peptide library to select appropriate ligands of the ECM.
Eventually, they obtained the purpose via the selection of
COL-II targeted WYRGRL with five rounds of bioplanning. In
addition, they sequentially demonstrated that the peptide could
significantly enhance the target effect for OA cartilage
(Rothenfluh et al., 2008). Antibodies to COL-II can also
enhance the reactivity of cartilage-targeted nanodrugs with
ECM. Cho, H. and his colleagues have deeply investigated the
area. The team conjugated COL-II antibody with liposomal
nanomaterial to diagnose and rehabilitate OA in 2013. They
utilized nanosomes to encapsulate the fluorescence and conjugate
COL-II antibody to detect the OA at an early stage (Cho et al.,
2014; Cho et al., 2015). The above researches performed by Cho,
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H. et al. indicate that the nanomaterials can promisingly deliver
therapeutic molecules towards COL-II, thus targeting the OA
lesion.

Polysaccharide and Its Derivatives Targeted
Nanodrugs
Glycosaminoglycan (GAG) is widely distributed in ECM of
cartilage, including hyaluronic acid (HA), chondroitin sulfate
(ChS), and so on. Negatively charged glycosaminoglycans are
enriched in the cartilage ECM and form cross-linked
proteoglycans to form a negatively charged network structure
(Shapiro et al., 2002; Palmer et al., 2006). Some previous studies
have demonstrated that the negative charge of ECM is a
promising targeting lesion for OA treatment. Researchers
targeted the negatively charged proteoglycans in ECM by
modulating different nanomaterials’ zeta potential (Brown
et al., 2019).

He, T. et al. successfully confirmed that nano-Avidin (mAv)
covalently conjugating drugs can lead to fast penetration and long
maintain time in cartilage via reversibly integrating with the
aggrecans with a negative charge (He et al., 2020). What’s more,
Ebada, HM. et al. and Lei, Y. et al. composited two cationic
liposomes named rhein hydrophobic ion pairing integrated solid
lipid nanoparticles (RH-SLNs) and rapamycin-
liposome–incorporating hyaluronic acid-based HMs (RAPA@
Lipo@HMs) as DDSs to target negatively charged ECM of
cartilage (Ebada et al., 2022; Lei et al., 2022).

Other Multiple Components Targeted Nanodrugs
The microenvironment of arthritis cartilage is different from the
normal. For instance, some enzyme and inflammatory factors
may be upregulated, and the pH may be lower. Therefore, the
scholars can synthesize new nanoparticles which have a stronger
response to the arthritis cartilage. Lan, Q. et al. produced a novel
nano-DDS including two specific motifs that target the OA lesion,
a conventional anti-inflammatory drug, and a biomaterial
scaffold that releases the drug continuously. The scholars
utilized poly (2-ethyl-2-oxazoline)-poly (ε-caprolactone) (PLL)
to endow the nanomaterial with pH-response. Then they
conjugated a specific peptide substrate of MMP-13 enzyme to
obtain MMP-response. Taken together, the nanomaterial could
specifically release its loaded therapeutic molecules in OA lesions
(Lan et al., 2020). An ROS-responsive drug release system, also
called boronate-stabilized polyphenol-poloxamer (PPNP)
assembled dexamethasone (DEX) nanodrug, was exploited by
Li, X. et al., in 2021. PPNP was reported to obtain limited ROS-

response. It can deliver drug molecules to OA lesions, then the
relatively high level of ROS could break the PPNP delivery
system, leading to a drug release. The scholars demonstrated
that the nanomaterial was highly sensitive in a 37°C, 50 × 10−6 M
H2O2 environment (high ROS microenvironment in vitro),
leading to 85% releasement of DEX (Li X et al., 2021).

SYNOVIUM TARGETED NANODRUGS

Synovium Cells Targeted Nanodrugs
Synovium consists of two layers which are divided into inner and
outer ones. The inner one contains synovial cells, while the outer
one gathers macrophages, fibroblasts, and capillaries (Mathiessen
and Conaghan, 2017). Thus, nanomaterials can target the
synovium in arthritis by exploiting the cells mentioned above
(Figure 3) (Table 3).

Plenty of DDSs have been explored to improve the drug
treatment effect on synovium, such as polymers,
polysaccharides, carbon-nanotubes, micelles, liposomes, and
lipids (Brown et al., 2019). Macrophages play an important
role in arthritis and are widely distributed in the synovium,
mediating phagocytosis and polarization. Thus, macrophages
are involved in the occurrence, development, and outcome of
synovial inflammation in OA. In 2000, Barrera, P. et al. (Barrera
et al., 2000) took advantage of the feature induced by
macrophages, compositing nano-liposomal preparations that
could be phagocytosed by macrophages and induce apoptosis
via the NF-κB pathway. The researchers found that the injection
of the clodronate liposomes results in the depletion of synovial

TABLE 2 | ECM targeted nanomaterials.

Name Type Mechanism Citation

WYRGRL Drug delivery system Specifically interact with COL-II Rothenfluh et al. (2008)
COL-II antibody (Cho et al., 2014; Cho et al., 2015)
mAV Target the negative charge of the ECM He et al. (2020)
RH-SLNs Ebada et al. (2022)
RAPA@Lipo@HMs Lei et al. (2022)
PLL Stimulated by OA environment Lan et al. (2020)
PPNP Li H et al. (2021)

FIGURE 3 | Synovium Targeted Nanodrugs. The synovium-targeted
nanodrugs can also be classified into therapeutical molecules and DDSs. They
can be phagocytosed by macrophages in the synovium, react with HA, or be
activated by lower pH caused by OA.
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macrophages. Then they discovered that the expression of
intercellular adhesion molecule 1 (ICAM-1) and vascular cell
adhesion molecule 1 (VCAM-1), two factors in synovitis, were
downregulated after the clodronate liposomes treatment, further
confirming the anti-inflammation effect via macrophage
depletion. In 2015, Kim, MJ. et al. (Kim et al., 2015) used
nano-thiolated glycol chitosan to package the siRNA,
specifically modulating the Notch 1 pathway. The scholars
demonstrated that the LPS-induced macrophages internalized
the nanoparticles, the siRNA then specifically inhibited Notch
1 pathway, reducing the level of relevant mRNA (detected by real-
time PCR). Thus, the activation of macrophages in the synovium
is inhibited. In the same year, Jain, S. et al. (Jain et al., 2015)
exploited alginate-decorated IL-10 plasmid nanoparticles which
specifically bind macrophages in the synovium via Fc and
neuropilin-1 receptors. The alginate-based nanoparticles could
target macrophages, and then the plasmid could induce
M2 polarization, alleviating arthritis. In 2020, Zhang, L. et al.
(Zhang L et al., 2020) exploited a nano-tube delivery system
mediated by yeast cell wall particles (YCWP) and loaded with
miR365 antagomir, which could be specifically recognized and
phagocytosed by macrophages after oral administration. In vitro
experiment showed that macrophages successfully engulfed the
miR365 antagomir/NPs-YCWP, sequentially downregulated
inflammatory factors and upregulated Nr1D2. They also
demonstrated that the nanoparticle could alleviate the OA of
mice. Taken together, we can confirm that miR365 antagomir/
NPs-YCWP could target synovial macrophages for OA therapy.
In 2022, Gui, T. et al. exploited a superoxide dismutase-loaded
porous polymersomes (SOD-NPs) that mainly accumulated in
synovium tissue and reduced ROS production, further preventing
the catabolism. The scholars firstly discovered that SOD-NPs
were mainly distributed in synovial tissue in vivo. Then they
demonstrated that synovial cells endocytosed SOD-NPs, leading
to declining ROS, MMP, and other inflammatory factors. Thus,
they confirmed that SOD-NPs could target OA synovial cells (Gui
et al., 2022).

Nanoparticles can also directly react with targeting tissue, thus
unleashing its treatment function. In 2012, Whitmire, RE. et al.
(Whitmire et al., 2012) fabricated novel self-assembled
nanoparticles, forming a submicron-scale structure that can
bind interleukin-1 receptor antagonist (IL-Ra). The IL-Ra is

the natural protein inhibitor of IL-1, thus could be a
therapeutic molecule for OA. The scholars demonstrated that
IL-Ra could specifically bind with IL-1 receptor on synoviocytes,
endowing the nanoparticles with synoviocyte targeting and
arthritis easement capacity. Inflamed synovium may show a
higher presence of angiogenic endothelial cells, thus improving
the level of integrin-αvβ3. Early in 2009, Zhou, H. et al. (Zhou
et al., 2009) demonstrated that nanoparticles modified with
peptidomimetic vitronectin antagonists complementary with
integrin-αvβ3. While in 2021, Ciregia, F. et al. (Ciregia et al.,
2021) confirmed that integrin-αβwas expressed on fibroblast-like
synoviocytes (FLSs) as a receptor, allowing its ligand, vitronectin,
to bind with itself specifically, thus mediating an arthritis-
eliminating process.

Synovial Fluid Targeted Nanodrugs
Synovial fluid is mainly secreted by synovial cells, consists of
water, hyaluronic acid (HA), complement, polysaccharides, and
cytokines. Multiple targeted nanomaterials have been endowed
with the properties of high specificity towards synovial fluid and
penetration through synovium layers (Table 3).

Synovial fluid contains a lot of HAs, an acidic
mucopolysaccharide, lubricating joints and reducing the
friction between articular cartilage. A review published by
Altman, R et al. (Altman et al., 2019) has already shown that
HA could specifically bind with its surface receptors, including
CD44, toll-like receptor (TLR), ICAM-1, and layilin (LAYN).
Murakami, T et al. (Murakami et al., 2019) previously
corroborated that HA potentially reduces the apoptosis of
chondrocytes via CD44, indicating CD44 could be an ideal
targeted molecule for HA. Ragni, E. et al. (Ragni et al., 2019)
demonstrated that CD44, a kind of receptor of HA, has the
property of recruitment of extracellular vesicles (EVs) with
CD44 markers. The statistics indicated that at the
concentration of 2 mg/L of HA, the uptake of the EVs
mediating by synoviocytes could be significantly improved.
The research further explored the recruitment brought by the
interaction between HA and CD44.

Like cartilage ECM, the composition of synovial fluid during
OA changes, which leads to a lower pH and higher level of
inflammatory factors (IL-1, IL-6, TNF, etc.). Hu, B. et al. (Hu
et al., 2020) synthesized lactic-co-glycolic acid (PLGA)

TABLE 3 | Synovium targeted nanomaterials.

Name Type Mechanism Citation

Nano-liposomal preparation Drug delivery
system

Phagocytosed by macrophages and induce apoptosis via the NF-κB
pathway

Barrera et al. (2000)

Nano-thiolated glycol chitosan
packaged siRNA

Influence the polarization of macrophages via Notch 1 pathway Kim et al. (2015)

miR365 antagomir/NPs-YCWP Phagocytosed by macrophages, downregulated inflammatory factors
and upregulated Nr1D2

Zhang L et al. (2020)

SOD-NPs Endocytosed by synovial cells Gui et al. (2022)
IL-Ra modified nanoparticle Therapeutic

molecule
Target synoviocytes via interacting with IL-1 receptors Whitmire et al. (2012)

Vitronectin Interact with FLSs via integrin-αβ (Zhou et al., 2009; Ciregia et al.,
2021)

Rh-PLGA-NPs@NH Drug delivery
system

Stimulated by OA environment Hu et al. (2020)
PAA-MSNs He M et al. (2021)
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nanoparticles (NPs) loaded with rhein (Rh) and NHHCO (NH)
(Rh-PLGA-NPs@NH). The Rh-PLGA-NPs@NH releases more
therapeutic molecules in low pH synovial fluid environment
which often shows in OA. He, M. et al. (He M et al., 2021)
also designed a novel DDS consisting of pH-responsive
polyacrylic acid (PAA) and mesoporous silica nanoparticles
(MSNs). Therefore, the DDS could be more active in the
acidic environment in OA, releasing more therapeutic
molecules and improving the retention level of the medicine.

CONCLUSION AND DISCUSSION

The exploitation of targeted nano-medicine for OA has been for
several years. In these years, many researchers have synthesized
different nanoparticles. These nanoparticles are used to construct
DDSs for the targeted conveyance of medication or directly
fabricate targeted nanodrugs. The above-mentioned two
methods achieve the same goal through different approaches
eventually increasing the concentration of the drug in the local
lesion, the retention time of the drug, and reducing the side effects
and the dosage of the drugs.

For targeted tissues, targeted nano-medicine for chondrocytes
and cartilage matrix has been developed in large quantities. In
contrast, the corresponding targeted nano-medicine for synovial
matrix, synovial fluid, and synovial cells is still in urgent need of
development. The main targets of ECM-targeted nanodrugs are

collagen fibers and glycosaminoglycans, and collagen fibers are
mainly COL-II. However, ECM contains a large amount of other
collagen, so the development of these collagen fibers targeted
nanodrugs still needs improvement.

When reviewing the literature in related fields, the author
found the following problems. ①The synovial matrix and
cartilage matrix are similar in composition. Can the targeted
nano-drugs targeting the cartilage matrix also target the synovial
matrix?②The pH of synovial fluid and ECM can be lower in OA
at the same time. Can the targeting of the drugs be carried out
towards both sites?
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