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A prominent obstacle to HIV eradication in seropositive individuals is the viral persistence
in latent reservoir cells, which constitute an HIV sanctuary out of reach of highly active
antiretroviral therapies. Thus, the study of molecular mechanisms governing latency is a
very active field that aims at providing solutions to face the reservoirs issue. Since the
past 15 years, another major field in HIV biology focused on the discovery and study
of restriction factors that shape intrinsic immunity, while engaging in a molecular battle
against HIV. Some of these restrictions factors act at early stages of the virus life cycle,
alike SAMHD1 antagonized by the viral protein Vpx, while others are late actors. Until
recently, no such factor was identified in the nucleus and found active at the level of
provirus expression, a crucial step where latency may take place. Today, two studies
highlight Human Silencing Hub (HUSH) as a potential restriction factor that controls viral
expression and is antagonized by Vpx. This Review discusses HUSH restriction in the
light of the actual knowledge of intrinsic immunity and HIV latency.
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Human Immunodeficiency Virus is responsible for the Acquired Immunodeficiency Syndrome.
Since its start in the early 1980s, HIV pandemic claimed about 35 million lives. In 2017, an
estimated 36.9 million people were living with HIV worldwide. Despite a global decline, thanks
to the increased and early access to antiretroviral therapy, in 2017, 1.8 million people were newly
infected and almost 1 million died of AIDS-related illnesses (Global HIV and AIDS Statistics,
2018 fact sheet). Though many battles have been won, as HIV is no longer a death sentence but
a manageable chronic illness in several parts of the world, the war for HIV eradication remains
to win. Statistics above mirror the crucial need for further understanding of HIV biology and its
interaction with the host, to anticipate future challenges in HIV infection control and eradication.

Lately, one major issue of HIV eradication was raised by HIV latency and precisely the
persistence of reservoir cells in infected individuals, despite antiretroviral therapy. Indeed, these
cells harboring integrated but silent viruses were found to be a source for viral rebound following
treatment interruption. Another major field of interest is the study of restriction factors that
counteract the virus at different step of its life cycle and shape intrinsic immunity. Today the
characterization of the Human Silencing Hub (HUSH) complex has created a link between these
two domains of interest. Here, we discuss current knowledge about restriction factors, molecular
mechanisms governing HIV latency, and finally strategies to address latency. The common thread
of these three parts will be a focus on HUSH.

HUSH, A MOLECULAR PLAYER OF INTRINSIC IMMUNITY?

HIV life cycle can be separated in two phases: early and late (Figure 1). The early phase extends
from viral adhesion to integration, whereas late stages start from transcription to budding and
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release of the new particle (Figure 1). Throughout the whole
replication process, HIV faces several barriers set up by the host
cell to protect its integrity. Indeed, various cellular factors are able
to detect viral elements and trigger an antiviral response. It is
the case of sensors like cyclic GMP–AMP synthase (cGAS) and
IFNγ-Inducible protein 16 (IFI16), which can detect HIV viral
cDNA released in the cytoplasm and induce a signaling cascade
resulting in the induction of interferon stimulated genes (ISGs)
(Gao et al., 2013; Jakobsen et al., 2013; Lahaye et al., 2013). HIV
replication is inhibited by interferon (IFN) stimulation in a cell-
type dependent manner, the antiviral response predominantly
relies on type I interferon (IFN-I), including interferon-α (IFN-
α). Myxovirus resistance 2 (MX2), an IFN-α inducible factor,
contributes to the early block of HIV replication, by preventing
nuclear import of the viral cDNA (Figure 1) (Goujon et al., 2013;
Kane et al., 2013; Liu et al., 2013). Moreover, antiviral factors
can incorporate within the viral particle, as for IFN-induced
transmembrane (IFITM) proteins. IFITM 1, 2, and 3, which are
also found on the viral membrane, can hinder viral entry by
interfering with viral fusion (Figure 1) (Lu et al., 2011; Compton
et al., 2014; Tartour et al., 2014).

Restriction Factors
However, even before the establishment of the interferon
response, a group of cellular factors have the capacity to directly
interrupt diverse stages of the viral replication cycle (Figure 1).
These antiviral factors constitute the cellular intrinsic defense
and in order to escape from their control, lentiviruses evolved
ingenious tools, namely auxiliary proteins (Figures 1, 2). Though
dispensable for viral replication, at least in vitro, auxiliary or
accessory proteins have the ability to specifically inactivate a small
group of these cellular antiviral factors, termed restriction factors.
The notion of “restriction factor” was first mentioned in the 70s,
when the protective effect of Friend virus susceptibility protein
1 (Fv1) against MLV was discovered (Lilly, 1970; Pincus et al.,
1971; Rowe et al., 1973). Years later, primate lentiviruses were
found sensitive to such antiviral factors, yet the exact definition of
a restriction factor is still debated. Indeed, diverse cellular factors
are able to block HIV replication as well as other viruses, a set of
criteria was therefore proposed to distinguish restriction factors
from resistance factors (Harris et al., 2012; Malim and Bieniasz,
2012; Doyle et al., 2015).

Generally, at least two features are shared by restriction
factors: (i) cell-autonomous antiviral activity, i.e., the ability
to inhibit viral replication without the need of cell to cell
communication; (ii) direct interaction with the pathogen, which
in turn can escape restriction either by changing the interaction
surface or inducing the targeted inactivation of the restriction
factor. Due to this direct interaction and as a result of host-
pathogen co-evolution, most restriction factors evolved under
positive selection, i.e., the spread of protein-altering mutations.
Moreover, as they are tightly linked to the cellular defense
mechanism, some restriction factors can be IFN-inducible.
To date only five restriction factors have been identified:
Apolipoprotein B mRNA-Editing enzyme, Catalytic polypeptide-
like 3G (APOBEC3G) (Sheehy et al., 2002; Conticello et al., 2003;
Harris et al., 2003; Mangeat et al., 2003; Zhang et al., 2003),

Tripartite motif-containing protein 5 (TRIM5α) (Stremlau et al.,
2004, 2006; Black and Aiken, 2010), Bone Stromal Tumor protein
2 (BST2)/Tetherin (Neil et al., 2008; Van Damme et al., 2008),
Sterile Alpha Motif domain and HD domain-containing protein 1
(SAMHD1) (Hrecka et al., 2011; Laguette et al., 2011) and Serine
Incorporator 3 and 5 (Serinc3/5) (Matheson et al., 2015; Rosa
et al., 2015; Usami et al., 2015).

Apolipoprotein B mRNA-editing enzyme, catalytic
polypeptide-like 3G and SAMHD1 are both active at early
stages of HIV replication (Figure 1). SAMHD1 blocks the
reverse transcription step by decreasing the pool of intracellular
deoxynucleoside triphosphates (dNTP) (Goldstone et al., 2011;
Hrecka et al., 2011; Laguette et al., 2011; Baldauf et al., 2012;
Descours et al., 2012; Lahouassa et al., 2012), whereas the cytidine
deaminase APOBEC3G, incorporates into the viral particle and
induces C to U hyper-mutations on the viral DNA during reverse
transcription, hence resulting in viral genes alteration (Sheehy
et al., 2002; Conticello et al., 2003; Harris et al., 2003; Mangeat
et al., 2003; Zhang et al., 2003). However, thanks to its auxiliary
proteins, HIV is able to evade these two restriction factors
(Figure 1). Indeed, Vif prevents the packaging of APOBEC3G
by inducing its polyubiquitination, resulting in its subsequent
proteasomal degradation (Sheehy et al., 2002, 2003; Mariani
et al., 2003; Yu et al., 2003; Mehle et al., 2004) (Figures 1, 2).
On the other hand, Vpx, which is unique to HIV-2 and not
encoded by HIV-1, uses the same strategy to trigger SAMHD1
proteasomal degradation (Hrecka et al., 2011; Laguette et al.,
2011) (Figures 1, 2). APOBEC3G and SAMHD1 both harbor
signs of positive selection as a result of direct contact with viral
proteins (Sawyer et al., 2004; Laguette et al., 2012). Although
both SAMHD1 and APOBEC3G are constitutively expressed in
many cell types, their expression can also be induced by IFN
stimulation (Lafuse et al., 1995; Li et al., 2000; Sarkis et al., 2006;
Tanaka et al., 2006; Stopak et al., 2007; Riess et al., 2017).

Alike APOBEC3G and SAMHD1, Tetherin/BST2, which is
active at late stages of viral replication (Figure 1), can also be
induced by IFN stimulation. BST2 prevents the release of viral
particles from the producer cell by retaining virions on the
cell surface. HIV-1 auxiliary protein Vpu helps the virus evade
BST2 by down-regulating and sequestrating it away from viral
budding sites (Neil et al., 2008; Van Damme et al., 2008). As a
consequence of this viral antagonism, BST2 was shown to have
evolved under positive selection (Gupta et al., 2009; McNatt et al.,
2009; Lim et al., 2010).

Tripartite motif-containing protein 5 is a E3-ubiquitin
ligase which can also be IFN-induced (Sakuma et al., 2007;
Carthagena et al., 2008). It inhibits viral replication by
binding the capsid and accelerating its proteasomal degradation,
thus inducing premature uncoating which prevents reverse
transcription (Stremlau et al., 2004, 2006; Black and Aiken,
2010). Interestingly and in contrast to the factors described
above, TRIM5α is not targeted by a viral protein. Instead,
retroviruses evade its restriction through capsid mutation, hence
altering the interaction surface and avoiding recognition by
TRIM5α (Hatziioannou et al., 2006; Kamada et al., 2006).
This also explains why rhesus monkey but not human
TRIM5α inhibits HIV replication (Stremlau et al., 2004, 2006;
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FIGURE 1 | Host antiviral factors and viral agonists. Following virion adhesion to the cellular receptor and coreceptor, HIV enters the cell through fusion of its
envelope with the cellular membrane. The capsid is therefore destabilized and Reverse transcription (RT) is triggered, allowing the synthesis of a double stranded
DNA (dsDNA) using the viral single stranded RNA (ssRNA) as a matrix. Viral DNA along with other viral proteins including Vpr, Matrix (MA) and Integrase (IN) form the
pre-integration complex (PIC), which is imported into the nucleus thanks to Nuclear Localization Signals (NLS) (Brown et al., 1987). This nuclear import step is critical
as it allows HIV to infect non-dividing cells, in contrast to other retroviruses such as HTLV, which requires nuclear membrane destabilization. After viral DNA
integration, viral genes are transcribed by the cellular machinery and the viral protein Tat; various forms of spliced RNAs are exported from the nucleus for translation.
Unspliced RNAs are escorted by the viral protein Rev and will constitute the viral genome of the newly assembled virion. Finally, immature viral particles bud at the
membrane packaging both viral and cellular factors. Constitutively expressed antiviral restriction factors are in red, others are in black. Restriction factors might be
antagonized by viral auxiliary proteins, shown in green, some being specific to HIV-1/SIVcpz (Vpu), other to HIV-2/SIVmac/SIVsmm (Vpx).

Black and Aiken, 2010). TRIM5α is therefore an important
barrier for cross-species transmission, which also evolved under
positive selection (Sawyer et al., 2005; Tareen et al., 2009).

Based on their features and compared to the previously
described factors, Serinc 3 and 5 are intriguing. Serinc 3 and 5
are both packaged into new virions and inhibit viral fusion with
the target cell (Matheson et al., 2015; Rosa et al., 2015; Usami
et al., 2015). HIV-1 uses Nef to evade Serinc 3/5 and induces
its down-regulation. Nef dramatically increases virions infectivity
by preventing Serinc3/5 incorporation through its removal from
cell surface (Matheson et al., 2015; Rosa et al., 2015; Usami
et al., 2015). Serinc 3/5 is not up-regulated by IFN and despite
its interaction with Nef, no sign of molecular arm race were
found in Serinc3/5, meaning no recent virus-host co-evolution
(Murrell et al., 2016).

The Molecular Arm Race: Adapt to Thrive
Interaction with pathogens, including viruses, profoundly shaped
the evolutionary history of human intrinsic immunity and

particularly that of restriction factors, which very often are in
direct contact with these threats (Duggal and Emerman, 2012).
Restriction factors represent a selective pressure on viruses but
once these viruses mutate to escape restriction, adapted cellular
factors then provide a fitness advantage to their host. Therefore,
a competition for continuous adaptation arises between the
virus and its host, termed “the molecular arms race.” Such
genetic conflicts between host and viral proteins frequently
results in events of “positive selection,” meaning an excess of
non-synonymous mutations (dN) compared to synonymous
mutations (dS). Positively selected sites often correspond to the
interaction interface between host and viral factors, such sites are
found in TRIM5α, APOBEC3G, Tetherin/BST2, and SAMHD1
(Sawyer et al., 2004, 2005; McNatt et al., 2009; Lim et al., 2010;
Laguette et al., 2012).

Nonetheless, due to constrains related to their cellular role,
positive selection is not the only strategy used by hosts’ factors
to cope with viral escape, other events such as polymorphism,
gene duplication and various innovations including the presence
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FIGURE 2 | HIV auxiliary proteins hijack the ubiquitin-proteasome pathway. HIV auxiliary proteins hijack different Cullin-RING Ligases (CRLs). CRLs share the same
architecture, they are built on a Cullin scaffold (purple) binding a RING-box protein (RBX1 or 2, green) along with adaptor proteins (blue and orange) which allow
substrate recognition. Vif induces APOBEC3G and F degradation by usurping the E3 ubiquitin ligase Cul5, Vif mimicks the adaptor SOCS (not represented) and
directly interacts with the adaptors Elongin B and C. In contrast, HIV-1 Vpu hijacks the E3 ubiquitin ligase Cul1 through interaction with the βTrCP adaptor.
HIV-2/SIVsmm Vpx uses the same strategy and binds the adaptor DCAF1 to recruit the E3 ubiquitin ligase Cul4A and induces proteasomal degradation of SAMHD1.
Cul4A-DDB1DCAF1 ubiquitin ligase is also hijacked by HIV-1 Vpr to target the Uracyl DNA Glycosylase (UNG2) (Ahn et al., 2010).

of different isoforms are observed, alike APOBEC3 family
which counts seven paralogs with cytosine deaminase activity.
Although less active against HIV than APOBEC3G, APOBEC3D,
F, and H show restricting activities but only APOBEC3F and
one haplotype of APOBEC3H were found counteracted by Vif
(Wiegand et al., 2004; Liu et al., 2005; Binka et al., 2012). On the
other hand, despite lower fidelity of their reverse transcriptase
resulting in higher mutation rates, viruses also evolve under
tight constrains, a consequence of their small genome size and
overlapping open reading frames (ORFs). Some viral proteins
can also have several roles and interact with both viral and
cellular factors. Furthermore, in order to antagonize a single
restriction factor, in addition to direct binding of the target,
a viral protein may require interaction with a secondary host
factor. It is the case of viral-induced proteasomal degradation of
cellular factors, which relies on the hijacking of cellular ubiquitin
ligases, especially Cullin-RING Ligases (CRLs) in the case of
HIV (Figure 2). For instance, Vpx requires the DDB1-Cullin4-
associated factor 1 (DCAF1) as an adaptor to hijack the Cul4A

ubiquitin ligase (Figure 2) (Le Rouzic et al., 2007; Sharova et al.,
2008; Srivastava et al., 2008).

Viral protein R (Vpr), a paralog of Vpx usurps the same
ubiquitin ligase but does not degrade SAMHD1. Instead Vpr has
different functions among them the mysterious induction of cell-
cycle arrest in dividing cells (He et al., 1995; Jowett et al., 1995; Re
et al., 1995; Le Rouzic et al., 2007; Wen et al., 2007; Sharova et al.,
2008; Srivastava et al., 2008).

SAMHD1 Antagonism by Vpx
Viral protein R and X (Vpx) were identified in the early 90’s, they
are incorporated into the viral particle and thus present at early
stages of viral replication (Henderson et al., 1988; Kappes et al.,
1988; Cohen et al., 1990a,b). These two proteins share the same
three-helix bundle structure and are both able to bind DCAF1
through residues within the third α-helix (Figure 3A).

Vpr and vpx genes are thought to originate from complex
events of duplication and/or recombination of one common
precursor gene (Sharp et al., 1996; Tristem et al., 1998), but in
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FIGURE 3 | Structure comparison and origin of Vpr and Vpx. (A) Structural similarities. Alignment of the 3D PDB structures of HIV-1 Vpr (red) and SIVsmm Vpx
(blue). Three α-helix structures are separated with loops and two flexible regions at both Nter and Cter ends. One residue critical for DCAF1 binding is represented
on each structure, Q65 on HIV-1 Vpr and Q76 on SIVsmm Vpx. In contrast to Vpr, Vpx is stabilized by a zinc finger motif [PDB:1M8L (Morellet et al., 2003), SIVsmm
Vpx (PDB: 4cc9 (Schwefel et al., 2014)]. (B) Schematic representation of a Vpx/Vpr phylogenic tree. Vpx are in the blue box, Vpr are in the pink, based on (Lim et al.,
2012).

contrast to vpr which is found in all primate lineages, its paralog,
vpx, is only present in two lineages: HIV-2/SIVsmm/SIVmac and
SIVrcm/SIVmnd2 from red-capped monkeys and from mandrill
(Figure 3B) (Beer et al., 2001; Hu et al., 2003).

Interestingly, despite divergence of their sequences, vpx
genes from different lineages cluster together away from their
homologous vpr genes from the same lineage (Figure 3B).
Furthermore, though these two proteins hijack the same
ubiquitin ligase, Vpr and Vpx bear different functions. Vpr has
the mysterious ability to induce cell-cycle arrest in dividing
cells, which contribution to viral replication remains unknown,
whereas Vpx induces SAMHD1 degradation, hence relieving
a block on reverse transcription. However, some Vpr from
lineages lacking Vpx are exceptions as they possess both of these
functions, alike Vpr from SIVagm and SIVsyk, respectively, from
African green monkey and Syke’s monkey (Stivahtis et al., 1997;
Lim et al., 2012).

In contrast to the mystery surrounding the role of Vpr,
Vpx function during viral replication is rather well understood,
at least partly. This 12–16 kDa protein is incorporated into
the viral particle and expressed by only two lineages as stated
above. Although Vpx seems dispensable for viral replication
in lymphocytic cell lines (Yu et al., 1988; Hu et al., 1989),
in vivo its deletion was reported to negatively impact SIV spread
and kinetics in monkeys (SIVsmm, SIVmac, and SIVmne from
pig-tailed macaques) (Gibbs et al., 1995; Hirsch et al., 1998;
Belshan et al., 2012). Loss of Vpx was also shown to drastically
impair viral replication at early stages in activated peripheral
blood mononuclear cells (PBMCs), primary lymphocytes and,
with even greater effects in monocyte-derived macrophages

(MDMs) (Guyader et al., 1989; Kappes et al., 1991; Yu et al.,
1991; Gibbs et al., 1994; Kawamura et al., 1994; Park and
Sodroski, 1995). Moreover, viral transduction with both SIVmac
and HIV-1-derived lentivectors was increased following Vpx
delivery through virus-like particle (VLP) in MDMs and in
monocyte-derived dendritic cells (MDDCs) (Goujon et al., 2006),
such effect was, however, absent in activated primary T cells.
The same positive impact of Vpx was further observed on
HIV-2/SIVsmm and HIV-1 full length viruses and was shown
to depend on the proteasome, precisely on the hijacking of
the Cul4A-DDB1DCAF1 ubiquitin ligase (Goujon et al., 2007;
Fujita et al., 2008a; Sharova et al., 2008; Srivastava et al., 2008;
Bergamaschi et al., 2009). Vpx activity was found critical for the
reverse transcription step in MDMs, in which the lack of Vpx
strongly reduced viral DNA synthesis, a phenomenon observed
with Feline Immunodeficiency virus (FIV) and MLV as well
(Goujon et al., 2007; Fujita et al., 2008a; Sharova et al., 2008;
Srivastava et al., 2008; Bergamaschi et al., 2009). Altogether,
these observations demonstrated the existence of an early block
on viral replication in myeloid cells, which was not specific
to HIV-2/SIVsmm viruses, but counteracted by Vpx through
ubiquitination. Vpx was therefore expected to inactivate, via the
proteasome, a restriction factor active at reverse transcription
and specific of myeloid cells. This model was finally confirmed
after the identification of the Vpx target SAMHD1 (Hrecka et al.,
2011; Laguette et al., 2011), which was later found also active in
quiescent T cells (Baldauf et al., 2012; Descours et al., 2012).

Several Vpx mutants have been described as reviewed in
Schaller et al. (2014). Vpx Q76A or Q76R and K77A, which
no longer bind DCAF1, were found both unable to induce
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SAMHD1 degradation (Srivastava et al., 2008; Bergamaschi et al.,
2009; Hrecka et al., 2011). Wild-type Vpx and the Vpx Q76A
mutant were shown to rescue HIV-1 infection in IFN-treated
MDDCs (Pertel et al., 2011), independently from dNTP levels
and after completion of reverse transcription (Reinhard et al.,
2014). These results suggested the existence of another Vpx
strategy to antagonize SAMHD1 or a second IFN-inducible target
of Vpx. In addition, Vpx deletion was reported to impair viral
replication in activated PBMCs and lymphocytes (Guyader et al.,
1989; Kappes et al., 1991; Yu et al., 1991; Akari et al., 1992),
in which SAMHD1 is thought to be inactive. Such replication
defect due to Vpx deletion was also observed in HSC-F cells that
express undetectable levels of SAMHD1 (Ueno et al., 2003; Fujita
et al., 2008b). Finally, Vpx from SIVmnd2/SIVrcm were recently
reported to counteract a SAMHD1-independent restriction in
human resting CD4+ T cells (Baldauf et al., 2017). Taken
together, these observations indicate the existence of additional
Vpx targets, unrelated to SAMHD1.

HUSH Antagonism by Vpx and Vpr
Lentiviral Proteins
Two recent studies, including ours, identified HUSH as a cellular
complex inactivated by Vpx (Chougui et al., 2018; Yurkovetskiy
et al., 2018). The TASOR/FAM208A component of HUSH
appeared first as c3orf63 in an siRNA screen for HIV antiviral
factors (Liu et al., 2011), then in a screen for indirect chromatin
reader in mouse tissues (Eberl et al., 2013). Also, in a study aimed
at identifying factors involved in the epigenetic control, Harten
et al. (2014) mutagenized a mouse cell line carrying a multi-
copy transgene expressing GFP under the control of the human
alpha globin promoter. In this mouse line, 45% of erythrocytes do
not express GFP as a result of epigenetic silencing, thus Harten
et al. (2014) selected mutants with an increased percentage of
GFP expressing cells and generated mutant mouse lines, among
which MommeD6 and MommeD20, the first mice heterozygous
mutants for FAM208A. Of note, in this model, FAM208A was
also found to be critical for normal mouse development (Harten
et al., 2014). Then, FAM208A was renamed as TASOR for
Transgene Activation SupreressOR, a member of an epigenetic
complex involved in chromatin silencing, the HUSH complex
(Tchasovnikarova et al., 2015). In this study, the HUSH complex
was identified in a screen for factors involved in position-effect
variegation (PEV), i.e., the silencing of a normally active gene
as a result of its positioning into heterochromatin (Elgin and
Reuter, 2013). Namely, Tchasovnikarova et al. (2015) transduced
the near-haploid cell line KBM7 with a lentiviral construct
expressing GFP from the spleen focus-forming virus (SFFV)
promoter and then sorted the population of transduced cells
with a low GFP expression (GFPdim). Following mutagenesis
of the GFPdim population and the analysis of mutant cells
with an increased GFP expression (GFPbright), SETDB1, Family
protein with sequence similarity 208A (FAM208A), Matrix
Metalloproteinase-8 (MPP8) and Periphilin appeared as critical
repressors of transgene expression. Tchasovnikarova et al. (2015)
study found FAM208A, renamed as TASOR, to interact with
both Periphilin and MPP8, forming the HUSH complex, which

FIGURE 4 | The HUSH complex. HUSH complex comprises three members:
MPP8, able to bind H3K9me3 through its chromodomain (Kokura et al., 2010;
Chang et al., 2011; Li et al., 2011), TASOR and Periphilin, which functions
within the complex are not yet determined. HUSH complex localizes on
H3K9me3 rich regions and allows the spread of heterochromatin in
cooperation with at least SETDB1, resulting in the silencing of cellular genes
(black) and integrated transgenes (red). HUSH silencing activity also relies on
MORC2. MORC2 dimerization is thought to allow nucleosome remodeling,
though MORC2 ATPase activity (Li et al., 2012; Tchasovnikarova et al., 2017;
Douse et al., 2018, 2).

in turn recruited the methyl transferase SETDB1 (Figure 4).
It was therefore suggested that HUSH complex could maintain
transcriptional silencing by facilitating the spread of H3K9me3
marks on integrated transgenes (Figure 4).

In our study, we retrieved TASOR as the second best down-
regulated target of Vpx, just after SAMHD1, by performing a
Stable-Isotope Labeling by Amino acids in Cell culture (SILAC)
proteomic screen (Chougui et al., 2018). Tasor was also selected
in a loss-of-function Vpx study focused on genes that contribute
to silencing of retroviruses (Yurkovetskiy et al., 2018). Both
studies further showed that Vpx interacts with HUSH and
induces its proteasomal degradation through the hijacking of
DCAF1, using the same mechanism as the one described for
SAMHD1 antagonism. Though, HUSH antagonism by Vpx is
genetically separable from SAMHD1 antagonism as revealed
by a Vpx mutant defective for HUSH degradation, but still
able to inactivate SAMHD1 (Chougui et al., 2018). Mimicking
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FIGURE 5 | Vpx overcomes two independent blocks on viral replication. To
simplify the scheme, ubiquitination and binding of the HUSH complex is
represented through TASOR.

HUSH depletion, Vpx induces the reactivation of a latent HIV-
1 provirus through H3K9me3 marks depletion in the J-Lat A1
model of latency (Chougui et al., 2018). Furthermore, HUSH
depletion gives an advantage to replication-competent HIV-
1 or SIVmac239-1Vpx viruses (Yurkovetskiy et al., 2018).
Altogether, these data report a new role of Vpx that counteracts
HUSH, a complex active at the post-integration level (Figure 5).
Interestingly, this unexpected function is both independent from
SAMHD1 and unrelated to the previously described SAMHD1-
independent effects of Vpx, either in IFN-treated MDDCs (Pertel
et al., 2011; Reinhard et al., 2014) or in quiescent CD4+ T
cells, which seems to take place early at the level of reverse
transcription (Baldauf et al., 2017). These observations therefore
suggest the existence of remaining Vpx targets besides SAMHD1
and the HUSH complex.

Is HUSH a Restriction Factor?
Alike SAMHD1, HUSH complex is constitutively active in a cell-
autonomous manner and is counteracted by at least one viral
protein through proteasomal degradation, via the hijacking of a
cellular E3 ubiquitin ligase. However, global evolutionary analysis
failed to identify residues under positive-selection, as it is the case
with Serinc3/5. Instead, members of the HUSH complex exist
in multiple and variable isoforms as it is the case for TASOR
and Periphilin (which has also undergone HERV-M insertion),
such diversifications can be considered as signatures of a potential
gene-conflict (Huh et al., 2006; Chougui et al., 2018).

Antagonism of HUSH complex by vpx/vpr genes is ancestral
and precedes the birth of Vpx and SAMHD1 antagonism. It

is also a species-specific function as some but not all Vpr/Vpx
were able to recognize the human HUSH complex. However,
testing for human HUSH recognition gives no indication on
whether these inactive Vpr/Vpx maintain or not this function
against HUSH complexes from their corresponding species.
Indeed, although Vpx from SIVrcm-GAB1 did not degrade
human HUSH complex as found in our study, Vpx from
other SIVrcm strains did (NG411 and 02CM8081), as shown
in Yurkovetskiy et al. (2018). In fact, we already have observed
such differences in the capacity to recognize and degrade human
HUSH complex when testing different Vpr from SIVagm. Here
again, while Vpr from SIVagm.ver-KE.9063 and SIVagm.sab-1
degraded human HUSH, SIVagm.gri-677 did not, these results
were also reproduced and extended to other SIVagm Vpr in
Yurkovetskiy et al. (2018). Unfortunately, both Yurkovetskiy
et al. (2018) and our study lack positive controls for the
functionality of Vpr/Vpx that do not degrade human HUSH.

Overall, although the capacity of these Vpr/Vpx to recognize
the HUSH complex of their corresponding species were not
yet investigated, these results encourage the idea of a molecular
arms race with perhaps limited possibilities of evolution for
the members of the HUSH complex. Strong constrains on
HUSH members may have arisen from the crucial cellular
role played by this complex in maintaining genomic integrity
and regulating the expression of more than 900 cellular genes
(Tchasovnikarova et al., 2015). HUSH complex activity also
have critical implications in developmental process as mice
mutant for TASOR were found not viable beyond gastrulation
(Harten et al., 2014; Bhargava et al., 2017). Moreover, besides the
need to maintain interactions within the complex, cooperation
with both MORC2 and SETDB1 were found required for the
functioning of the HUSH complex (Tchasovnikarova et al., 2015,
2017, 2). Adding to this, HUSH complex and especially TASOR
was found to collaborate with Tripartite motif-containing 28
(TRIM28) in the silencing of L1 elements (Robbez-Masson
et al., 2018). The existence of numerous partners may have
further reduced the possible evolutionary trajectories for
members of the HUSH complex, thus the identification of
critical sites under positive-selection may require beforehand
isolation and analysis of precise regions within the complex
that are at the interface with the viral proteins Vpx/Vpr.
Of note, direct interaction between Vpx and members of
HUSH has not been investigated yet, it is not excluded that
cellular intermediates bridge the viral protein to the epigenetic
repressor complex.

Finally, in the light of our actual knowledge, HUSH complex
seems to share common features with restriction factors,
especially with Serinc 3/5. Future studies will have to determine
whether HUSH complex is wired to the immune system, by
assessing the impact of IFN stimulation on its expression and
antiviral activity.

HIV-2 Clinical Features: Is HUSH
Antagonism by Vpx a Paradox?
In contrast to HIV-1, HIV-2 is less infectious with lower rates
of transmission and is restricted to West Africa. HIV-2 is
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less pathogenic with low plasma viremia and 86–95% of HIV-
2 infected patients are considered long-term-non-progressors,
whereas only 5–15% HIV-1 positive patients are (Martinez-
Steele et al., 2007). Overall, HIV-2 displays a higher tendency
for viral latency as reviewed in Saleh et al. (2017), thus Vpx
capacity to counteract HUSH raises questions regarding the
clinical outcomes of HIV-2. Indeed, one would expect HUSH
antagonism by Vpx to result in a highly expressed HIV-2
instead of the weak expression observed in patients. However,
HIV-2 is also able to counteract SAMHD1, APOBEC3G, and
Tetherin/BST2, yet it remains a low expressed virus. Therefore,
clinical features does not seem to necessarily correlate with the
restriction factors a virus can overcome, as also demonstrated in
a study which found no differences in SAMHD1 antagonism by
Vpx alleles from HIV-2 viremic and long-term aviremic patients
(Yu et al., 2013).

HIV-2 low expression may result from a stronger
immunological control, as HIV-2 triggers a greater immune-
response in patients than HIV-1 does, reviewed in Nyamweya
et al. (2013). One could imagine the targeting and degradation
of too many restriction factors by HIV-2 to be responsible
for a better immune sensing. Being too sensitive to these
restriction factors, HIV-2 may have evolved tools to
escape their repression but with a considerable cost on its
fitness i.e., an increased vulnerability to detection by the
immune system.

However, such hypothesis is less likely as SIVsmm, at the
origin of HIV-2, replicates intensively in its natural hosts
without inducing AIDS and shows high levels of plasma
viremia, which can be even higher than those observed
in HIV-1 patients (Rey-Cuillé et al., 1998; Silvestri et al.,
2003). Furthermore, SIVsmm infection is characterized by
lower levels of immune activation than observed with HIV-
2 (Silvestri et al., 2003, 2005; Sumpter et al., 2007). The
immunological control of HIV-2 might therefore arise from
rather a lack of adaptation of this virus to its new host,
nonetheless, HIV-2 viral expression is still high enough to allow
viral transmission.

Impact of HUSH Antagonism on the
Epigenetic Landscape
Overall, HUSH antagonism by Vpx raises questions over the
impact of HIV-2 infection on the epigenetic landscape and
subsequently on cellular genes as well as exogenous element
expression. If HUSH degradation is confirmed in cells from
infected patients, then it would be interesting to asses expression
of genes under the control of the HUSH complex and to
further evaluate its possible consequences on HIV infection
and in terms of disease development. Indeed, HUSH complex
is involved in the epigenetic control of more than 900 loci,
with many genes belonging to the Krüppel-associated box
(KRAB) domain-containing zinc-finger proteins (KZFPs) family
of transcription repressors (Tchasovnikarova et al., 2015).
KZFP proteins are involved in various process ranging from
development to metabolism and even cancer as reviewed in
Lupo et al. (2013).

WHAT POTENTIAL ROLE FOR HUSH IN
THE CONTEXT OF HIV LATENCY?

Activated CD4+ T cells are highly susceptible to HIV infection,
in most cases viral replication results in the death of the infected
cell. However, some infected T cells survive long enough to
return to a resting state, as memory T cells. This reversible
shift from activated to resting state is a normal physiological
process, allowing rapid immune responses following re-exposure
to an antigen. As resting state is non-permissive for viral
replication, these long-lived memory T cells will bear a silent but
replication-competent provirus, therefore constituting the major
latent reservoir (Chun et al., 1997; Finzi et al., 1999; Chomont
et al., 2009). These reservoirs are established early after infection,
initiation of cART during primary infection was shown to reduce
the size of these reservoirs and allow a better control of viremia
following treatment interruption (Chun et al., 1998; Strain et al.,
2005; Archin et al., 2012b; Buzon et al., 2014). Nonetheless,
even under prolonged antiretroviral therapy, latent reservoir cells
persist (Siliciano et al., 2003), forming an HIV sanctuary out of
reach of conventional therapies.

Molecular Mechanisms of Latency
Latency is a complex, multifactorial process that involves
different cells, cellular subsets and the combination of several
molecular mechanisms (Margolis, 2010), only three points will
be discussed below: availability of cellular factors, integration site
and chromatin-mediated repression.

Two identical Long Terminal Repeat (LTR) sequences are
located at both extremities of HIV provirus (Figure 6). U3
region of the 5′ LTR serves as a promoter recruiting cellular
transcription factors and the RNA pol II. Due to the elongation
block of the RNA pol II by negative factors (Wu et al., 2003),
incomplete viral transcripts will be synthesized, these transcripts
will, however, allow the production and accumulation of the
viral trans-activator protein (Tat). Tat is necessary for elongation
activation (Kao et al., 1987), it binds the trans-activation response
element (TAR) (Figure 6), and subsequently recruits the positive
transcription elongation factor-b (P-TEFb). This will result in a
positive feedback loop and only then will the HIV transcription
be efficiently activated. Thus, the triggering of HIV transcription
critically relies on the host’s factors availability, some of which are
inducible and dependent on the cellular state, as for NF-κB and
NFAT that are found sequestrated in the cytoplasm in the absence
of cellular activation signals. Stimulation of latently infected
cells with phorbol myristate acetate (PMA), phytohemagglutinin
(PHA) or Tumor Necrosis Factor α (TNFα), results in the
reactivation of HIV transcription in several latency model cells.
Low levels of transcription factors may therefore contribute to the
non-permissive state of resting CD4+ T cells, along with P-TEFb
levels that show a drastic increase during cellular transition from
quiescent to activated state (Budhiraja et al., 2013).

Due to integrase interaction with Lens epithelium-derived
growth factor (LEDGF/p75) (Llano et al., 2006; Shun et al.,
2007), HIV-1 favors integration into introns of actively
transcribed genes, near the nuclear pores (Schröder et al., 2002;
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FIGURE 6 | Description of the 5′ LTR of HIV-1. (A) HIV genomic structure. (B) Binding sites for cellular factors within the 5′ LTR. (C) Nucleosomes structure within
the 5′ LTR. (D) Trans-activation Response element on the neosynthesized RNA. HIV genome is bordered by two identical Long Terminal Repeats (LTR 5′ and 3′),
each composed of 3 regions: U3 (Unique 3′), R (repeated), and U5 (Unique 5′). Three functional units can be identified within U3 region: (1) a modulatory element
with binding sites for transcription regulators including negative regulators. (2) an enhancer containing two binding sites for NF-κB. (3) the core promoter region
comprising 3 binding sites for specificity protein 1 (Sp1) and a TATA box. R region contains the transactivation response element TAR, an RNA stem-loop at the 5′

end of the neo-synthesized strand, necessary for Tat-dependent transcription and elongation block alleviation, while U5 region contains additional
modulatory/regulatory sites. Nucleosome nuc-1 is located immediately after the transcription start site (+1), chromatin remodeling is required to overcome this
second elongation block. (Adapted from Colin and Van Lint, 2009).

Marini et al., 2015). Unexpectedly, the same integration pattern
was observed in resting CD4+ T cells from infected patients
under cART (Han et al., 2004). Both defective proviruses and
transcriptional interference due to close host’s genes promoters
were proposed to explain this non-productive state (Han
et al., 2008; Lenasi et al., 2008). In addition, sensitivity to
nearby heterochromatin may contribute to the silencing of HIV
promoter. Indeed, in different cellular clones, heterogeneity
of basal expression of HIV promoter depending on the
integration site was observed (Jordan, 2001), and although less
than 1% of integration events are thought to directly lead
to latency (Schröder et al., 2002), integration within or near
heterochromatin regions resulted in latent proviruses (Jordan
et al., 2003; Sherrill-Mix et al., 2013; Battivelli et al., 2018).
Moreover, following global activation signals, latently infected
Jurkat clones (J-Lat) showed a variegated reactivation of HIV
promoter and a different rate of de-activation once the signal was

withdrawn, likely due to different integration sites (Jordan et al.,
2003). Same position effect variegation following reactivation
signals was linked to variable distances from enhancer sequences
and repressive chromatin (Chen et al., 2016). Of note, regulatory
elements can impact genes hundreds of kilobases away through
various interactions allowed by the spatial genome organization
(Gibcus and Dekker, 2013), distant interactions such as gene
looping can also allow heterochromatin spreading and the
silencing of active genes (Talbert and Henikoff, 2006). Even
though the integration context alone is not sufficient to predict
the fate of infection, it is an additional factor that contributes to
both the establishment and reversal of latency.

Two nucleosomes (nuc-0 and nuc-1) form within the
promoter region of the 5′ LTR of HIV provirus (Figure 6), nuc-1
is of most importance as it is located immediately downstream of
the transcription start site and therefore constitute an additional
elongation block (Verdin et al., 1993). To overcome this
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block and allow HIV-1 promoter activation, nuc-1 remodeling
by SWItch/Sucrose Non-Fermentable (SWI/SNF) complex is
required (El Kharroubi et al., 1998; Agbottah et al., 2006;
Mahmoudi et al., 2006; Tréand et al., 2006; Rafati et al.,
2011). Maintenance of this nuc-1 repressive structure was
also associated with histone deacetylation, more precisely the
recruitment by several transcription factors of the histone
deacetylase 1 (HDAC1) (Van Lint et al., 1996; Sheridan et al.,
1997; Coull et al., 2000; He and Margolis, 2002; Lusic et al.,
2003). Other histone modifications are involved in HIV-1
LTR repression such as trimethylation of the Lysine 9 or
27 of the histone 3 (H3K9me3 and H3K27me3). Suv39H1,
a histone lysine methyl transferase (HKMT), responsible for
H3K9 trimethylation, is recruited on the viral promoter by
the negative factor CTIP2. HP1 binds the H3K9me3 repressive
marks and subsequently recruits additional Suv39H1, this self-
sustaining loop is thought to allow the spread and maintenance
of heterochromatin, hence reducing DNA access to transcription
factors (du Chéné et al., 2007, 39; Marban et al., 2007).
Additional HKMTs were shown to participate in HIV-1 LTR
silencing, such as G9a/GLP (Imai et al., 2010) and very recently
SETDB1 through its interaction with the HUSH complex
(Tchasovnikarova et al., 2015).

Human Silencing Hub complex activity was demonstrated
on different cellular and viral promoters including the Murine
Leukemia Virus (MLV) and HIV-1 LTRs (Tchasovnikarova et al.,
2015). In J-Lat cells, HUSH depletion resulted in promoter
reactivation and GFP expression, following a loss of H3K9me3
marks on the provirus, this effect was, however, clone-dependent
as some clones did not reactivate after HUSH depletion
(Tchasovnikarova et al., 2015). Indeed, Tchasovnikarova et al.
(2015) found the HUSH complex to localize only on a specific
group of endogenous genomic loci. Here again, the integration
site appears critical as it determines the silencing ability of the
HUSH complex.

Whether HIV latency is a byproduct of infection, a viral
strategy to persist or on the contrary a cellular defense
mechanism, remains to be determined. Overall, accumulating
evidence pictures HIV latency as a multifactorial phenomenon
that includes several control layers, that are probably overlapping
and interacting but most importantly that are dynamic and
responsive to environmental changes.

Strategies to Address Latency: “Speak
Now or Forever Hold Your Peace”
For more than 30 years, huge efforts have been mobilized in
finding a cure for HIV, from vaccines to gene therapies, every
available option has been investigated. To date, only one attempt
at curing an HIV-1 positive patient revealed successful, namely
the Berlin patient (Timothy Ray Brown) (Hütter et al., 2009).
Diagnosed with an acute myeloid leukemia (AML), the Berlin
patient received high doses of whole-body irradiation and two
bone-marrow transplants from a homozygous CCR5132 donor,
providing resistance against HIV-1 infection. Since then, the
Berlin patient showed no detectable signs of viral rebound for
more than 5 years after cART interruption (Yukl et al., 2013).
Unfortunately, attempts at reproducing this “sterilizing cure” on

other seropositive patients failed, as viral rebound was observed
as well as cases of drug- resistance and HIV tropism shift from
CCR5 to CXCR4 co-receptor (Henrich et al., 2014; Kordelas
et al., 2014). Latent reservoirs are thought to play a critical
role preventing viral clearance by providing a constant pool of
replicative competent viruses. Hence, two diametrically opposed
strategies are envisioned to deal with what might be the last
hurdle to HIV cure: purging the reservoirs, as proposed by the
“shock and kill” strategy or on the contrary inducing a permanent
viral control in the absence of therapy, in the case of a “functional
cure” strategy.

Shock and Kill
The “shock and kill” strategy was initially based on two
observations: (i) the capacity of latent reservoirs to reactivate and
shift from latent to productive infection, (ii) the cytopathic effect
of viral replication and the killing of infected cells by the immune
system (Archin et al., 2012a; Deeks, 2012). Activation of HIV
expression in latent reservoirs is therefore expected to trigger
elimination of HIV infected cells, while HIV dissemination
would be prevented by cART. In this scope, several latency
reversal agents (LRA) have been characterized including immune
modulators [antibodies targeting immune checkpoints such as
anti-PD-1 (Evans et al., 2018)], P-TEFb activators, protein kinase
C (PKC) activators that induce NF-κB (bryostatin-1, prostatin
and Ingenol) and inhibitors of chromatin-modifiers [such
as HDAC inhibitors (HDACi) and histone methyltransferase
inhibitors (HMTi)]. Although some of these LRAs show a slight
increase of plasma RNA levels in clinical trials, none seems to
effectively shrink the reservoir size (Elliott et al., 2014, 2015;
Rasmussen et al., 2014; Søgaard et al., 2015; Spivak et al., 2015).

Besides the complexity of accurate quantification of the
size of the reservoir, growing evidence indicate that given
the heterogeneity of the latently infected cells, only a small
proportion seems responsive to LRAs (Ho et al., 2013; Chen
et al., 2017; Battivelli et al., 2018). Therefore, as with cART,
combination of various LRAs would probably be required to
achieve an effective “shock.” In addition, viral-induced cytopathic
effect alone was found insufficient to induce the “kill” phase
which implies that beforehand immune stimulation will be
needed (Shan et al., 2012; Denton et al., 2014; Deng et al.,
2015). Considered strategies to optimize reservoir elimination
include broadly neutralizing antibodies, therapeutic vaccines and
immune modulators, reviewed in Kim et al. (2018). However,
multiplying drugs raises concern over toxicity and the impact of
non-specific effects on gene expression (Walker-Sperling et al.,
2016; Dental et al., 2017; White et al., 2018), thus requiring an
equilibrium between efficacy and safety.

Functional Cure
“HIV controllers” or “Elite controllers” are a rare population
of HIV infected patients (<1%) who are able to spontaneously
maintain their plasma viremia to almost undetectable levels. The
precise mechanism responsible for this viral control is unknown
but seems to result from several factors, including patient genetic
backgrounds (Cockerham and Hatano, 2015). Based on the
characteristics of these unique populations, the “functional cure”

Frontiers in Microbiology | www.frontiersin.org 10 February 2019 | Volume 10 | Article 224

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00224 February 11, 2019 Time: 17:5 # 11

Chougui and Margottin-Goguet Intrinsic Immunity and HIV Latency

strategy aims at reaching durable remission in the absence of viral
eradication. In fact, long-term remission was proved possible
if therapy was initiated early during primary infection. Indeed,
the “Mississippi child” born from a seropositive mother and
who received cART 30 h after birth, remained with undetectable
viral loads for 2 years after treatment interruption (Persaud
et al., 2013). These results were confirmed with the VISCONTI
cohort in which 14 patients reached long-term remission during
a median period of 7 years after treatment interruption (Sáez-
Cirión et al., 2013). Recently, a 12 years remission was also
reported in a teen infected at birth and treated before 6 months
of age (Frange et al., 2016).

Unfortunately, even under virological suppression, signs of
ongoing viral replication were reported (Persaud et al., 2004;
Fletcher et al., 2014; Lorenzo-Redondo et al., 2016). Remission
can therefore last for long periods of time but eventually viral
loads increase and therapeutic intervention is soon necessary.
Consequently, recent strategies aim at providing more than viral
control but rather a permanent inhibition of viral expression, thus
preventing reservoirs’ reactivation through the establishment of a
“deep latency” state.

Due to its crucial role in the efficient activation of HIV
transcription, the viral protein Tat is often targeted by such
strategies. For instance, an analog of cortistatin A, didehydro-
cortistatin A (dCA), was shown to inhibit HIV Tat-dependent
transcription by interacting with the TAR-binding domain of Tat,
hence greatly reducing viral reactivation in response to stimulus
(Mousseau et al., 2012, 2015). Another Tat inhibitor, Triptolide,
is currently under clinal trial for its impact on reservoirs. Already
used for rheumatoid arthritis, Triptolide was also reported to
induce Tat degradation (Wan and Chen, 2014). Finally, this
time through the inhibition of LEDGF/p75 interaction with the
viral integrase, an interesting strategy proposes to avoid viral
reactivation by directing HIV integration into transcriptionally
inactive regions (Le Rouzic et al., 2013; Vranckx et al., 2016).

In any event, such therapies can only be delivered in
combination with cART, at least during primary infection, and
their potential in delaying or impeding viral rebound in patients
remains to be demonstrated.

What HUSH Antagonism by Vpx May Tell
Us About HIV Cure Strategies?
In the context of “the shock and kill” strategy, the HUSH complex
is a new factor to consider. It appears interesting to address the
impact of HUSH complex inactivation on latently infected cells
from patients, either through Vpx delivery or drug development.
More importantly, HUSH antagonism by Vpx may have even
deeper implications on our understanding of latency. Indeed,
inactivation of an epigenetic regulator by a viral protein, further

strengthens the idea of latency as a cellular defense mechanism,
protecting genomic and proteomic integrity.

Hepatitis B virus x protein (HBx) was previously found to
prevent H3K9me3 deposit by SETDB1 on the covalently closed
circular HBV DNA (cccDNA) (Rivière et al., 2015), but the exact
mechanism remains unknown. In our study, Vpx specifically
binds and induces the degradation of an epigenetic regulator,
Vpx thus identifies HUSH complex and the epigenetic machinery
as part of the intrinsic immunity. The “shock and kill” strategy
therefore may appear in opposition to the cellular defense
mechanism with considerable risks due to the possible global
epigenetic modifications. For instance, LINE-1 elements are also
under the control of HUSH and transposition of LINE-1 can
be responsible for disease as reviewed in Hancks and Kazazian
(2016). On the contrary, “the block and lock” strategy, which
aims at creating a state of “deep latency,” might be a better
option to control viral expression, though with the drawback of
a possible chronic immune activation. Finally, Axonal Charcot-
Marie-Tooth (CMT) disease is a neurological disorder which was
recently linked to the hyperactivation of the HUSH complex
(Tchasovnikarova et al., 2017). This hyperactivation was shown
to result from a mutation on the ATPase domain of MORC2
(R252W) (Tchasovnikarova et al., 2017). In case MORC2 is found
to participate in the repression of HIV and that the sequence
specificity of HUSH complex is proved, then it would be tempting
to mimic such hyper activation through drug development,
in order to force permanent silencing of exogenous elements
including HIV.
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