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ABSTRACT Cytoskeletal structures obtained after extraction of Madin-Darby canine kidney
epithelial cell monolayers with Triton X-100 were examined in transmission electron micro-
graphs of cell whole mounts and unembedded thick sections . The cytoskeleton, an ordered
structure consisting of a peripheral plasma lamina, a complex network of filaments, and
chromatin-containing nuclei, was revealed after extraction of intact cells with a nearly phys-
iological buffer containing Triton X-100 . The cytoskeleton was further fractionated by extrac-
tionwith (NH4)2SO4, which left a structure enriched in intermediate filaments and desmosomes
around the nuclei . A further digestion with nuclease and elution with (NH4)2SO4 removed the
chromatin. The stable structure that remained after this procedure retained much of the
epithelial morphology and contained essentially all of the cytokeratin filaments and desmo-
somes and the chromatin-depleted nuclear matrices . This structural network may serve as a
scaffold for epithelial organization . The cytoskeleton and the underlying nuclear matrix-
intermediate filament scaffold, when examined in both conventional embedded thin sections
and in unembedded whole mounts and thick sections, showed the retention of many of the
detailed morphological aspects of the intact cells, which suggests a structural continuum
linking the nuclear matrix, the intermediate filament network, and the intercellular desmosomal
junctions . Most importantly, the protein composition of each of the four fractions obtained
by this sequential procedure was essentially unique . Thus, the proteins constituting the soluble
fraction, the cytoskeleton, the chromatin fraction, and the underlying nuclear matrix-inter-
mediate filament scaffold are biochemically distinct .

Sequential Extraction of Cytoskeletal Elements

Whole mounts of detergent-extracted cells have proved to
be well suited to the study of cytoskeletal organization (1-9).
In the absence ofembedding plastic, the cytoskeletal filaments
remaining after the removal of phospholipid and soluble
proteins form clear images in transmission electron micro-
graphs without the need for heavy metal staining. These
images provide insights into the composition and organization
of cytoplasmic filament networks that appear intimately as-
sociated with both the nucleus (9, 10) and the plasma lamina
(11) .

In initial extraction, Triton X-100 in a buffer designed to
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best preserve the architectural elements of the cell is used.
However, further extraction of the cytoskeleton reveals both
biochemically and morphologically important substructures
of the cytoskeleton and nuclear matrix . Most of the cyto-
skeleton is removed by extraction with (NH,) 2S0,, leaving
the network of intermediate filaments anchored to the nu-
cleus. The nucleus itself is subfractionated by removal of the
chromatin, a procedure that reveals the dense fibers of the
nuclear lamina and the internal matrix (unpublished obser-
vations) .
The nuclear matrix-intermediate filament structure is re-

sistant to high salt and is clearly defined with respectto protein
composition and morphology (4) . We have suggested that it
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be designated the nuclear matrix-intermediate filament (NM-
IF)' scaffold . The extraction of chromatin from the nucleus
was pioneered by Berezney and Coffey (12) and others (13-
17) . The procedures that we use are considerably modified.
We use a much lower salt concentration to effect extraction,
with consequent better preservation ofmorphology (7-9, 18) .
The protocol depicted in Fig. 1 shows the sequential ex-

tractions that divide the cellular components into the four
protein fractions . The proteins of the soluble fraction (re-
moved in the initial Triton extraction), represent 65% of the
cellular proteins . These display a complex pattern in a two-
dimensional gel electropherogram (Fig . 2) . Although many
proteins appear to be unique to the soluble fraction, the
density of protein spots in the gel pattern precludes a detailed
comparison of soluble proteins with those in other fractions .
More specific techniques ofprotein identification are required
for further comparison . The cytoskeleton (removed by either
Tween 40-deoxycholate or 0.25 M (NH4)2SO4), chromatin
(removed after nuclease digestion and salt extraction), and
the NM-IF scaffold (those proteins unextracted in this pro-
cedure) are characteristic fractions ofthe total cellular protein,
i .e ., there is relatively little overlap between the proteins in
each ofthe three fractions. Thus, each ofthese fractions, when
analyzed in two-dimensional gel electropherograms (Fig. 2),
shows a unique pattern in which many major proteins are
localized in one of the three fractions . Some proteins, most
notably actin, are observed as major components of more
than one fraction .

Examination of Epithelial Cytoskeletons
Differentiated epithelial cells are characterized by their

ability to form complex intercellular junctions (19, 20), a
property that appears to be fundamental to the development
and maintenance ofepithelial tissues (21, 22). Cells organized
into epithelial tissues display a marked morphological and
biochemical polarity in which the apical surface is composed
of microvilli and in some cases cilia, while the basal surface
is specialized for interaction with the extracellular matrix.
Also, cell-cell contacts have highly specialized structures .
These properties are clearly displayed by cells of the Madin-
Darby canine kidney (MDCK) line (23-26).
The characteristic zonulae occludens and desmosomal

junctions, as well as the apical microvilli, can be seen in
conventional Epon-embedded thin sections of intact (i .e .,
unextracted) MDCK epithelial cells (Fig. 3a) . When these cell
colonies are extracted with Triton X-100 and viewed in
embedded thin sections (Fig. 36), all of these epithelial struc-
tures are retained in a recognizable form, with little apparent
perturbation of the polarized morphology observed in the
intact cell . Using a recently developed technique for preparing
unembedded sections of cytoskeletal preparations (27) and
sectioning through the longitudinal plane, we observe the
epithelial junctional complexes in the absence of embedding
resin or heavy metal stains (Fig. 3 c). The unembedded section
of the cytoskeleton, devoid of phospholipid and soluble pro-
teins, also shows, with much greater clarity, the retention of
the polarized epithelial morphology . In this preparation the
organization of filaments in the apical microvilli and the
filament association with desmosomes are particularly appar-
ent . These images suggest that the cytoskeletal filaments form

'Abbreviations used in this paper., MDCK, Madin-Darby canine
kidney; NM-IF, nuclear matrix-intermediate filament.
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FIGURE 1 Fractionation protocol depicting the morphological
structures obtained after successive fractionation steps . MDCK
monolayers are first extracted with a Triton-containing buffer (100
mM NaCl, 300 mM sucrose, 10 M PIPES, [pH 6.8], 3 MM MgCl2,
1 .2 mM PMSF, and 0.5% Triton X-100) for 10 min at 0°C . The
Triton-soluble proteins, which represent 65% of the total cellular
protein, are removed, leaving the intact skeletal framework or
cytoskeleton . The salt-labile cytoskeleton proteins, constituting an
additional 23% of the cellular proteins, are removed by extraction
in a buffer containing 250 mM (NH4)2SO4, 300 mM sucrose, 10 mM
PIPES (pH 6 .8), 3 MM MgCl2 , 1 .2 mM PMSF, and 0.5% Triton X-
100 . The chromatin fraction (7% of the total protein) is removed by
digestion in 100 g/ml DNAase I, 100 g/ml RNAase A, 50 mM NaCl,
300 mM sucrose, 10 mM PIPES (pH 6 .8), 3 MM M902, 1 .2 mM
PMSF, and 0.5% Triton X-100 for 20 min at 20°C, followed by a 5-
min incubation after the addition of 250 mM (NH 4 ) 2SO 4 (final
concentration) . The NM-IF fraction remains insoluble under these
conditions and represents 5% of the total cellular protein .

a structural continuum, through the junctional complexes,
throughout the epithelial monolayer.
The structural continuity of cytoskeletal elements observed

in unembedded preparations is further demonstrated in Fig.
4 . Fig. 4a is a micrograph of an MDCK cytoskeletal prepa-
ration observed in a laterally cut (i .e., parallel to the substrate)
conventional Epon-embedded thin section . Although the
junctional complexes are visible, the cytoskeletal elements are
masked and difficult to interpret. When an identical cyto-
skeletal preparation is viewed in an unembedded whole
mount (Fig. 4b), the complexity and density of the cyto-



FIGURE 2

	

Two-dimensional gel profiles of proteins obtained after fractionation of MDCK colonies . Two-dimensional protein gels

were run according to the method of O'Farrell (39) . The first dimension ranges from pH 10 to pH 3 (left to right), and the location

of actin (A) and vimentin (V) is indicated for each gel . The patterns of the cytoskeleton, chromatin, and NM-IF fractions are

characteristic, with little overlap of major proteins from one fraction to another .

FIGURE 3 Embedded and unembed-
ded sections of MDCK intercellular junc-
tional complexes . Whole MDCK colo-
nies (a) and cytoskeletal preparations (b)
were embedded in Epon-Araldite, sec-
tioned, and stained with lead citrate and
uranyl acetate . The characteristic zonula
occludens (ZO) and desmosomes (D)
observed in intact epithelial junctions
(a) are retained in cytoskeletal prepara-
tions (b) . Cytoskeletons prepared as
unembedded sections as described (27)

(c) again retain the structural elements
observed in the embedded cytoskeletal
preparation (b) . The view afforded by
the unembedded section reveals much
of the detailed filament organization that
is masked by embedding resins . Bars,
1 .0 Am .



skeleton is clearly imaged . A higher magnification of the
intercellular junction in this whole mount preparation reveals
the desmosomes, unextracted by Triton, intimately associated
with anastomosing filaments (Fig. 4 c) . The unembedded sec-
tion of the same cytoskeletal preparation (Fig . 4d) shows that
the nucleus is associated with numerous filaments and is
virtually undistorted by the fractionation process .

Nuclear Matrix-intermediate Filament Scaffold

Most cytoskeletal proteins can be removed using suitably
buffered 0.25 M (NH4)ZSO4. The major structures remaining
after this extraction are the intermediate filaments, desmo-
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FIGURE 4 Transmission electron
micrographs of MDCK epithelial cy-
toskeletons prepared as an epoxy-
embedded thin section (a), an
unembedded whole mount (b and
c) and an embedment-free section
(d) . MDCK colonies were sectioned
in a plane parallel to the substrate
(a and d) to provide an orientation
analogous to that of the whole
mount (b and c) . The dense filamen-
tous network visible in the whole
mount preparation (b and c) is
masked by the embedded thin sec-
tion (a) . The unembedded section
(d) provides a more detailed view
of the organization of cytoskeletal
filaments, particularly the continu-
ous association of filament net-
works between the nucleus and in-
tercellular junctions . Desmosome
structures (D) and nuclei (N) are in-
dicated in each micrograph . Bars in
a, b, and d, 1 .0 ym . Bar in c, 0 .1 Am .

somes, and nuclei . The chromatin is extracted with nuclease
digestion followed by extraction with 0.25 M (NH4)ZSO4
(described in the legend to Fig . 1), which removes most DNA
and associated proteins (7) . When this technique is applied to
MDCK epithelial colonies, the structure that remains after
this rigorous extraction is composed of only 5% of the total
cellular protein . This stable structure is composed of the
chromatin-depleted nuclear matrices, cytokeratin, and vimen-
tin intermediate filaments and residual desmosomal cores (9).
For this structure we have suggested the term nuclear ma-
trix-intermediate filament (NM-IF) scaffold. A whole mount
transmission electron micrograph of the NM-IF scaffold is
shown in Fig. 5 a . When this image is compared with that



FIGURE 5

	

NM-IF scaffold of an MDCK epithelium . The fractionation protocol described in Fig . 1 removes the majority of cellular
components, leaving a stable structure composed of 5% of the cellular protein . When this NM-IF scaffold is viewed by whole
mount electron microscopy (a), the retention of many epithelial characteristics is observed . The chromatin-depleted nuclear
matrices (NM) are observed in association with cytoplasmic filaments . These filaments often terminate in residual desmosome
structures (D) . Immunofluorescence microscopy of NM-IF scaffold structures after staining with antibodies derived to keratin (b),
desmosomal proteins (c), and a 52-kdalton nuclear matrix protein (d) shows that each of these proteins is specifically localized
within the NM-IF scaffold (9) . Bar in a, 1 .0 pm . Bar in b, 10,um .

shown in Fig. 4b, it is evident that the overall morphological
organization of the epithelium is conserved in this structure .
Immunofluorescence micrographs ofNM-IF scaffolds stained
for cytokeratins (Fig . 5b), desmosomes (Fig. 5c), and a 52-
kdalton nuclear matrix protein (Fig. 5 d) demonstrate that
each of these proteins is retained in the NM-IF scaffold with
a spatial localization much the same as that observed in the
intact cell (9). The desmosome antibodies stain in linear
punctate patterns that correspond to the dense junctional
complexes shown in Fig . 5 a. The chromatin-depleted nuclear
matrices retain a spheroid morphology and are in direct
association with numerous intermediate filaments, many of
which are also directly associated with desmosomes .
The image of desmosome and cytokeratin organization in

epithelial tissues afforded by unembedded whole mount mi-
croscopy is compatible with models of epithelial structure
derived from many studies . The association of intermediate
filaments with nuclei has been observed (28, 29) . The associ-
ation of cytokeratins (or tonofilaments) with desmosomal
complexes is a long-standing histological observation (19) that
has been demonstrated in isolated desmosomes (30-32). The
extensive distribution of keratin and cytokeratin filaments in
sectioned tissue, cultured epithelial cells, and epithelial cyto-
skeletons has been amply demonstrated (33-38). Thus, the
nuclear matrix, intermediate filaments, and desmosomal core
structures can be isolated and purified as an intact structure
of morphological relevance . The NM-IF scaffold shown in
Fig. 5 a reflects the morphology of intact epithelia. Profound
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alterations ofepithelial morphology by tumor promoters and
by malignant transformation are retained in both cytoskeletal
and NM-IFstructures. z

Conclusions
In the fractionation method described here, the Triton-

resistant cytoskeleton and the salt-resistant NM-IF scaffold
are used as morphological end points. In the course of frac-
tionation, four biochemically distinct populations ofproteins
are generated that account for all the proteins present in the
cell . Both the cytoskeleton and NM-IF are visualized by
unembedded microscopy of whole mounts or thick sections.
The combination of the apical and longitudinal views of
cytoskeletal organization permits clear images of epithelial
structure in three dimensions under conditions under which
differentiated cell polarity and intercellular junctions appear
to remain virtually unaltered. These techniques can be applied
to the study ofmore complex epithelial tissues, both in culture
and in whole tissue, and are particularly well suited to the
study ofepithelial differentiation in embryogenesis.
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