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and Transplantation
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Allografts are afforded a level of protection from rejection within immune-privileged 
tissues. Immune-privileged tissues involve mechanisms that suppress inflammation
and promote immune tolerance. There are anatomical features, soluble factors, mem-
brane-associated proteins, and alternative antigen-presenting cells (APC) that contribute 
to allograft survival in the immune-privileged tissue. This review presents the current 
understanding of how the mechanism of ocular immune privilege promotes tolerogenic 
activity by APC, and T cells in response to the placement of foreign antigen within the 
ocular microenvironment. Discussed will be the unique anatomical, cellular, and molecu-
lar mechanisms that lessen the chance for graft destroying immune responses within the 
eye. As more is understood about the molecular mechanisms of ocular immune privilege 
greater is the potential for using these molecular mechanisms in therapies to prevent 
allograft rejection.

 

Keywords: immune privilege, anterior chamber-associated immune deviation, immune tolerance, regulatory 
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wHAT iS iMMUNe PRiviLeGe

The phrase immune privilege is a transplantation term defined by Peter Medawar and colleagues in 
the 1940s (1). They demonstrated that skin allografts placed within the anterior chamber of the eye 
survive indefinitely in contrast to their rapid rejection in other more conventional tissues such as the 
skin. This happened even when the recipient is already immunized against the alloantigens, but only 
if the blood–ocular barrier was maintained. It had been observed that once there is vascular leakage 
into the anterior chamber the graft is rejected. Another characteristic of allograft placement into the 
anterior chamber is that it does not immunize the recipient (2). Since the eye has no observable direct 
lymphatic drainage, it had suggested that alloantigen could not reach the regional lymph nodes and 
initiate an immune response. Such mechanisms of sequestration of antigen and antigen-expressing 
tissues has erroneously led some to think that the ocular microenvironment should be devoid of all 
immune cells and immune responses. This is clearly not the case (3).

There are resident immune cells with the potential of being antigen-presenting cells (APC) within 
the cornea, iris, ciliary body, and the retina. In the retina, they are the resident macrophage-like 
microglial cells (4–8), and there is very little evidence of cellular migration from blood circulation 
into the healthy ocular microenvironment (9). There is some speculation that resident macrophages 
and microglial cells are turned over, but this has only been seen in irradiated mice (10–13). It is also 
possible that the microglia of the retina are like microglial in the rest of the CNS are long-lived and 
are not initially bone marrow derived (9, 14–16). When there is inflammation, such as with uveitis, 
it is clear that the blood–ocular barrier is leaking, and that most of the infiltrating immune cells are 
coming through breaches in the barrier (13, 17, 18).
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The blood–ocular barrier is made from the tight junctions 
of the pigmented epithelial cell layer of the uveal track, of the 
endothelial cells of the inner-retina capillaries and the avascular 
cornea (19). This enclosed space allows for the eye to form its 
own microenvironment to regionally suppress the activation of 
inflammation and to control the functionality of immune cells. 
Locally produced soluble factors found in aqueous humor, and 
the soluble and membrane-bound factors of the pigmented 
epithelial cells described in detail later suppress the activation 
of inflammation (20–39). These factors are a defined group of 
proteins, neuropeptides, and biochemicals that modify the 
behavior, differentiation, and survival of immune cells within 
the ocular microenvironment. Their combined actions make the 
ocular microenvironment highly anti-inflammatory; moreover, 
the mechanism of immune privilege makes immune cells 
(monocytes, macrophages, dendritic cells, microglial cells, and T 
cells) to contribute to the anti-inflammatory microenvironment 
(3, 40–42). This promotes a self-perpetuating anti-inflammatory 
immune response, and induction of immune tolerance, which 
protects the eye from the irreversible collateral damage of inflam-
mation that can lead to blindness.

It has very much been demonstrated that immune cell activity 
is present, but it is driven within the ocular microenvironment 
toward anti-inflammatory and tolerogenic immune responses. 
In addition, the placement of alloantigen-expressing grafts into 
the anterior chamber or within the retina induces alloantigen-
specific systemic tolerance (1, 31, 41, 43–47). This has shown that 
the presence of foreign antigen with the eye is not hidden.

wHAT ARe THe iMMUNe ReSPONSeS TO 
THe PLACeMeNT OF FOReiGN ANTiGeN 
wiTHiN THe eYe

The prolonged survival of incompatible grafts in the eye is the defini-
tion of immune privilege (1). The mechanism of how this is achieved 
is through induction of systemic tolerance to the alloantigens and 
the regional suppression of inflammation (40). These mechanisms 
establish a strong blockade in activating a graft destructive immune 
response. Although this is not an absolute suppression of immunity, 
understanding the mechanisms of immune privilege has led to 
understand that a large part is to regulate APC activity in a manner 
that activates regulatory T (Treg) cells (6, 47–49).

The placement of foreign antigen into the anterior chamber, 
vitreous, or in the sub-retinal space induces systemic tolerance 
to the antigen. The initial experiments demonstrating this phe-
nomenon were done by placing MHC-mismatched tumor cells 
into the anterior chamber of the eye, resulted in graft survival 
of skin from the same MHC-mismatched mouse strain (50, 51). 
By contrast, mice that had the tumor cells placed into the skin 
rejected both the tumor cells and the subsequent skin graft. The 
induction of systemic tolerance was considered a deviation from 
the expected hypersensitivity immune response and was called 
anterior chamber-associated immune deviation (ACAID). Also, 
the same ACAID-like response is seen when any foreign antigen 
is placed in the vitreous, or sub-retinal space (44, 52, 53). Like the 
immune response to allografts, it is unclear what is the evolutionary 

advantage of ACAID unless it is either a byproduct of the anti-
inflammatory environment of the eye or part of controlling the 
immune response to presented autoantigens within the eye.

The tolerance induced in ACAID is efferent suppression 
mediated by a tolerogenic CD8+ T cell. It is antigen specific, and 
it suppresses the activation of effector T cells responding to the 
same source of antigen. Within hours after injecting antigen into 
the eye, the antigen disseminates almost throughout the body. 
This suggested for a long time that the tolerogenic mechanism of 
the eye was similar to inject antigen directly into the blood circu-
lation; however, the tolerance induced by antigen placed into the 
eye is dependent on the spleen, and the presentation of antigen by 
a F4/80+ macrophage (54, 55). The induction of the ACAIDogenic 
APC can be done by treating cultured macrophages with aqueous 
humor or with the aqueous humor factor TGF-β2 while providing 
antigen or a source of antigen, like cells expressing  alloantigens 
(56–59). These ACAIDogenic APC leave the eye via the blood 
circulation and home to the marginal zones of the spleen. They 
form cellular clusters with NKT cells as well as CD4+ and CD8+ 
T cells (60). Also, in these clusters are B cells that take up antigen 
directly from the ACAIDogenic APC and present the antigen (61). 
These clusters are mediated by the production of RANTES made 
by NKT cells stimulated by CD1d on the ACAIDogenic APC and 
this brings in CD8+ T cells (60, 62). The result is the induction and 
expansion of antigen-specific efferent suppressor CD8+ T cells. 
These cells are responsible for the antigen-specific systemic pre-
vention of graft rejection and hypersensitivity (63–65). Since the 
mechanism of inducing ACAIDogenic APC is a local effect of the 
immune-privileged ocular microenvironment, it is possible that 
presentation of CD1d in the eye would also locally activate tolero-
genic NKT cells. It has been shown that cornea allograft survival 
is associated with CD1d stimulation tolerogenic NKT cells like in 
the ACAID response (66, 67). By contrast, failure to stimulate the 
NKT cells to promote Treg cell activation may be associated with 
corneal allograft rejection. Therefore, from understanding the 
mechanisms of the ACAID, it is possible to speculate that APC in 
the ocular microenvironment are also influenced by ocular TGF-
β2 to CD1d-stimulated NKT cells that are anti-inflammatory, and 
mediators of Treg cell activation.

Similar tolerogenic APC induced by TGF-β2 is seen when 
antigen is placed into the sub-retinal space (68). The study of 
sub-retinal induction of ACAIDogenic APC has shown that part 
of the induction of immune deviation is a cascade of TGF-β2 
activation from latent to active mediated by thrombospondin-1, 
and it receptor CD38 on the F4/80+ macrophages (68). Therefore, 
antigen, either soluble or shed from transplanted cells, is processed 
by APC under the influence of the ocular microenvironment, and 
that these antigen-loaded APC migrate to the spleen to initiate 
tolerance, or remain within the eye to mediate anti-inflammatory 
activity and stimulate Treg cells.

MOLeCULAR MeCHANiSMS OF OCULAR 
iMMUNe PRiviLeGe

One of the original observations about ocular immunobiology 
was that placement of foreign antigen into the eye of a recipient 
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with an already established effector immune response does not 
elicit an inflammatory response (1). An additional element of 
immune regulation is the anti-inflammatory mechanisms of the 
ocular microenvironment itself that works to prevent induction 
of inflammation and suppress the activity of effector immune cells 
(69, 70). This is seen as the mechanisms of immune suppression 
mediated by soluble molecules of aqueous humor, and membrane 
expressed molecules of cells within the ocular microenvironment.

The most understood immunosuppressive mechanisms of 
ocular immunobiology are the effects of aqueous humor on 
immune cells. Since the blood barrier does not inhibit effector T 
cell migration into the eye (71, 72), there are several mechanisms 
regulating T cell activity within the immune-privileged eye. 
When effector T cells with APC-presenting antigen are injected 
into the anterior chamber, the inflammation mediated by the 
antigen-activated effector T cells is suppressed (69). Also, the T 
cell-mediated inflammation is suppressed when the APC and 
the T cells are first treated with aqueous humor, and adoptively 
transferred into tissues other than the eye. Molecular analysis of 
aqueous humor shows that TGF-β2 has the possibly of being the 
major regulatory molecule; however, it is in a latent form and rarely 
found active in fresh aqueous humor of healthy eyes (73–76). The 
first reports of aqueous humor suppression of T cell activation 
used pooled, frozen aqueous humor samples (77). The freezing 
and thawing of aqueous humor activate the TGF-β2, and because 
of the overwhelming potency of TGF-β2 on T cell activity, the first 
descriptions of aqueous humor suppressive activity were more of a 
study on the effects of TGF-β2 on immune reactions (78). One of 
these is the induction of the ACAIDogenic APC (59). Careful col-
lection of aqueous humor, and its immediate use in assays, keeping 
TGF-β2 in its latent form, has revealed a wealth of other soluble 
immunomodulating molecules dominated by neuropeptides such 
as alpha-melanocyte-stimulating hormone (α-MSH) (20).

Each of the molecules of aqueous humor target different cells of 
the immune response and different activities (41). The result is the 
induction of CD4+ Treg cells from an already established popula-
tion of effector T cells (79). This induction of CD4+ Treg cells is 
mediated mostly by the activity of the neuropeptide α-MSH. This 
is enhanced by the suppression of effector T cell activity by the 
other neuropeptides vasoactive intestinal peptide, somatostatin, 
and also by TGF-β2 when activated (21, 24, 79). The APC are 
also converted from presenting antigen that promote effector T 
cell activity to present antigen that activates Treg cells (80, 81). 
This is mediated by α-MSH, neuropeptide Y, and TGF-β2 that 
activate suppressive APC, and antigen-activated Treg cells. This 
means that molecules within the eye prevent immune-mediated 
inflammation while promoting the immune response to regulate 
itself. Since the immune response is an already established effector 
response, the activated Treg cells are inducible Treg (iTregs) cells 
meaning that the healthy ocular microenvironment is a site of 
immune reeducation. Therefore, immune privilege maybe more 
than suppressing inflammation, and that its immunosuppressive 
mechanisms can be used as a molecular approach to therapeuti-
cally promote long-term allograft survival through the induction 
of tolerance.

The cells of the cornea and the retina express on their membrane 
surfaces molecules that interact with immune cells to promote 

regulatory activity or apoptosis in the T cells. Many of the cells of 
cornea constitutively express FasL and PD-1 family of molecules 
(38, 82–84). The encounter between activated T cells and corneal 
endothelial cells leads to apoptosis of the T cells. The expression of 
B7-2 on pigmented epithelial cells lining the uveal track is associ-
ated with the conversation of naive T cells into Treg cells (35). This 
action is compounded by the fact that the pigmented epithelial 
cells are a source of many soluble immunomodulating molecules, 
such as TGF-β2, α-MSH, and neuropeptide Y (25, 28). Since 
naive T cells rarely migrate into peripheral tissues, the induction 
of apoptosis in the effector T cells is an important mechanism 
in preventing targeted immune attacks within the ocular tissues. 
Also, this could be a selective mechanism to allow for Treg cells 
to function within the eye, since they are more resistant to FasL-
induced apoptosis (85), and that PD-1 is an activation signal for 
Treg cells (81, 86). This indicates that even transplanted ocular 
tissues, such as the cornea, carry molecules with the potential to 
mediate immunosuppression and tolerance.

The retina expresses not only FasL like the cornea but also 
molecules unique to the regulation of microglial cells or migrat-
ing macrophages. Neurons of the retina express CD200 that binds 
to CD200L and suppresses microglial cell-mediated inflamma-
tion (87). Mice with CD200:CD200L interaction knocked out 
are more susceptible to uveitis (87). Along with this regulation, 
soluble molecules from the retinal pigment epithelial cells (RPE) 
alternatively activate the microglia cells and macrophages (28, 
80). This alternative activation makes these potential APC act and 
appear like myeloid-derived suppressor cells (MDSC) (88). The 
most we can understand of MSC is that they prevent effector T cell 
activation and suppress inflammation. Their presence in tumors 
has blocked many attempts at anti-cancer immunotherapy (89). 
Having such cells as part of the healthy retina is a potential advan-
tage for preventing autoimmune attack and inflammation (81, 90, 
91). The major molecular mediators of this are the neuropeptides 
α-MSH and NPY (28).

The placement of allogeneic neuroretinal cells or stem cells 
into the retina shows protection but is eventually rejected (92). 
This rejection is devoid of inflammation, and how the cells are 
eliminated is unknown. There is no rejection if the cells dif-
ferentiate into neuronal cells and make connections with other 
retinal cells (93). This suggest that while immune privilege can 
prevent an inflammatory response non-integrated neurons must 
some how be targeted for removal, and an alloimmune response 
accelerates this clearance.

Experimental conditions that alter the ocular microenviron-
ment to make it no different from conventional tissues, such as 
creating a high-risk cornea graft bed, or wounding RPE mon-
olayers, demonstrate the importance of maintaining immune 
privilege to the success of ocular allografts. High-risk cornea graft 
beds have elevated levels of dendritic cells and vascularization 
with in the cornea stoma, and allograft rejection is almost assured 
(6, 94, 95). Experimentally designed high-risk corneas in rodents 
do not support ACAID, suggesting that changes in the cornea are 
most likely opening a barrier, probably through corneal neovas-
cularization. Also, ACAID is lost in eyes with laser and sodium 
iodate wounded RPE monolayers (95, 96). The microglial cells 
change under these conditions from acting as suppressor cells 
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into proinflammatory cells (28). This further demonstrates that 
changes in the barrier that defines the ocular microenvironment 
have a profound influence on APC activity. The activity changes 
from supporting a blockade of inflammation and effector T cell 
activation to one where the APC themselves may contribute to 
the destructive immune response. How they change and what 
mediates the change is unknown. It is not clear which of the 
molecules and mechanisms of the ocular immune privilege is no 
longer active in high-risk ocular tissues.

USiNG THe MeCHANiSM OF iMMUNe 
PRiviLeGe TO PROMOTe ALLOGRAFT 
SURvivAL

It still remains to be seen if it is possible to use the molecular 
mechanisms of immune privilege to promote allograft survival. 
Some serendipitous discoveries suggest that it maybe possible 
involving ACAID, anti-inflammatory activity of aqueous humor, 
and ocular induction of Treg cells. Although there are several 
proposals, it will be awhile before any can be practical and 
administered in the clinic, but there are a few that can be done as 
a process of preparing and treating the allograft.

One issue of ocular immune privilege is whether it rests with 
the cells of eye or solely with the molecules within the healthy 
ocular microenvironment. Arguing that immune privilege is 
with the cells is the finding that allogeneic retinal progenitor 
cells (RPC) exhibited limited immunogenicity and may produce 
immunosuppressive factors that promote their survival when 
implanted. One idea of delivering RPC to remodel retinas is 
to place them in a degradable scaffolding (97). When the RPC 
are seeded on poly(lactic-co-glycolic acid) polymer, and grafted 
under allogeneic kidney capsules they survive, and cells begin to 
differentiate into neurons and astrocytes. This happens even after 
the grafts are treated with IFN-γ to stimulate immunogenicity. 
When allogeneic RPC-containing polymers are seeded with syn-
geneic APC, the APC acted like ACAIDogenic APC and promote 
alloantigen-specific tolerance. This suggests that it is possible to 
create a localized immune-privileged site using cells of immune-
privileged tissues within a defined structural microenvironment.

It is clear that soluble immunomodulating molecules of ocular 
immune privilege drive the induction of regulatory immunity. It 
is possible to use these molecules to suppress allograft rejection. 

The aqueous humor neuropeptide α-MSH is one of these soluble 
molecules of ocular immune privilege that has been used to gen-
erate retinal autoantigen-specific Treg cells in vitro (98). When 
these α-MSH-induced Treg cells are adoptively transferred into 
recipients with sub-retinal neonatal retinal allografts the grafts 
survive and the retinal cells begin to differentiate (99). This has 
demonstrated that the autoantigen-activated Treg cells within 
the retina provided the necessary immune protection needed for 
neonatal retinal cell development. Corneal allografts treated with 
eye drops containing α-MSH promote graft survival (100). These 
two studies have suggested that the use of the soluble molecules 
of immune privilege could be a new therapeutic approach in 
promoting allograft survival. Whether the survival is because of 
α-MSH suppression of inflammation by inhibiting proinflam-
matory cytokine production, or in the activation of Treg cells is 
not known. Use of α-MSH to treat models of autoimmune uveitis 
suggests that both may be its action (101).

CONCLUSiON

There is a need to continue to understand the molecular nature 
of ocular immune privilege. There is a unique molecular relation-
ship between the ocular microenvironment and immune cells 
to suppress inflammation and promote regulatory immunity. 
Although the benefits of ocular immune privilege have been 
seen with corneal allografts, understanding the mechanisms of 
this benefit means extending it to other allografts in other tis-
sues. The potential exists that as more is understood about the 
molecular building blocks of ocular immune privilege that these 
molecules can be applied to extend the survival of all allografts. 
Such a possibility would result in less need for tissue typing, 
and  systemic anti-rejection drugs, while increasing the pool of 
potential allogeneic donors.
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