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N6-methyladenosine (m6A) is the most abundant post-tran-
scriptional modification and involves a series of important bio-
logical processes. Therefore, accurate detection of the m6A site
is very important for revealing its biological functions and im-
pacts on diseases. Although both experimental and computa-
tional methods have been proposed for identifying m6A sites,
few of them are able to detect m6A sites in different tissues.
With the consideration of the spatial specificity of m6A modi-
fication, it is necessary to develop methods able to detect the
m6A site in different tissues. In this work, by using the convolu-
tional neural network (CNN), we proposed a new method,
called im6A-TS-CNN, that can identify m6A sites in brain,
liver, kidney, heart, and testis of Homo sapiens, Mus musculus,
and Rattus norvegicus. In im6A-TS-CNN, the samples were en-
coded by using the one-hot encoding scheme. The results from
both a 5-fold cross-validation test and independent dataset
test demonstrate that im6A-TS-CNN is better than the
existing method for the same purpose. The command-line
version of im6A-TS-CNN is available at https://github.com/
liukeweiaway/DeepM6A_cnn.

INTRODUCTION
As a common and abundant of RNA post-transcriptional modifica-
tion (PTM), N6-methyladenosine (m6A) modification plays an
important role in almost all processes of cell cycles, such as affecting
translation efficiency,1 cell development,2 cell viability,3 etc. m6A is
catalyzed by a methyltransferase complex containing METTL3,
METTL14, and WTAP. As a kind of dynamic PTM, m6A can be
erased by the demethylases FTO and ALKBH5.4 Recently, more
and more studies have revealed that m6A is closely correlated with
diseases, such as obesity,5 thyroid tumor,6 prostate cancer,7 zika vi-
rus,8 and acute myelogenous leukemia.9 However, our knowledge
about the functions of m6A modifications is still unintelligible. To
deepen our understanding on the functions of m6A, the key step is
to know the precise position of m6A in transcriptomes.

There are two main ways to identify m6A sites. One way is using
experimental methods, such as Methylated RNA Immunoprecipita-
tion (MeRIP),10 m6A sequencing (m6A-seq)11, photo-crosslinking-
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assisted (PA)-m6A-seq,12 andm6A-crosslinking immunoprecipitation
(CLIP).13 These experimental methods laid important foundations for
the detection of m6A modification sites. Accordingly, some bioinfor-
matics tools that are able to detect m6A sites directly from the reads
generated by the experiments were proposed.14,15 However, as the
amount of sequencing data increases, we need to find an effective
and efficient way to detect m6A in the transcriptome. Accordingly,
sequence information-based computational methods were proposed
to identify m6A sites. These methods can be queried in a recent re-
view.16 With the research on the spatial specificity of gene expression,
it has been found that the location of them6A site is distinct in different
tissues and species. Therefore, Dao et al.17 proposed a tool, called
iRNA-m6A that can identifym6Amodification sites in different tissues
in human, mouse, and rat by using the algorithm of SVM, based on the
data of Zhang et al.18. This method greatly improves the accuracy of
predicting the m6A site. However, the performance for predicting
the m6A site still has great potential to be improved.

In recent years, the deep learning algorithms made great contribu-
tions to bioinformatics. A large number of computational methods
based on deep-learning algorithm, such as Gene2Vec,19 BERMP,20

DeepM6ASeq,21 and iPseU-CNN22 have been proposed. Inspired
by these successful applications of the deep-learning algorithm in
identifying RNA modifications, in the present work, we proposed a
convolutional neural network (CNN)-based method, called im6A-
TS-CNN, to identify m6A sites in different tissues from human,
mouse, and rat. Results from a 5-fold cross-validation test and inde-
pendent dataset test demonstrated that the performance of im6A-TS-
CNN is better than or comparable with that of the existingmethod for
the same aim. Moreover, the universality of im6A-TS-CNN was also
demonstrated by a cross-species validation test. The framework of
im6A-TS-CNN is illustrated in Figure 1.
0 The Author(s).
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Figure 1. The Framework of the im6A-TS-CNN

The first step is to collect tissue-specific m6A data from the human, mouse, and rat. The second step is encoding the sequences by using the one-hot scheme. The third step

is model construction.
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RESULTS AND DISCUSSION
Model Performance

In this article, the Keras in TensorFlow 2.0 under Python 3.6 was used
to perform the predictions. The results from a 5-fold cross-validation
test and independent dataset test of the proposed method for identi-
fying the tissue-specific m6A modification sites in the human, mouse,
and rat were shown in Table 1. With the comparison of results from a
5-fold cross-validation test and independent test, it was found that the
proposed method is stable for identifying the m6A sites.

To measure objectively the performance of the proposed method, the
receiver operating characteristic (ROC) curves23,24 from a 5-fold
cross-validation test and independent test were plotted in Figure 2
as well. It was found that most of the areas under the ROC curve
(AUCs) are higher than 0.8 in both the 5-fold cross-validation test
and independent test, demonstrating the reliability of the proposed
method for identifying tissue-specific m6A sites.

Comparison with Existing Method

To further testify the superiority of im6A-TS-CNN, we compared its
performance with that of Zhang et al.’s18 iRNA-m6Amodel, based on
both the 5-fold cross-validation test and independent test. The
comparative results in terms of AUC are shown in Table 2. Except
for the identification of the m6A sites from the brain of mouse and
rat, im6A-TS-CNN outperforms iRNA-m6A for the identification
of m6A sites in the other tissues in the human, mouse, and rat. These
results demonstrate that im6A-TS-CNN is a powerful tool for identi-
fying tissue-specific m6A sites from different species.

Cross-Species and Cross-Tissue Validation

Since the datasets are from different species and tissues, it is inter-
esting to test whether the model, trained based on the data from a spe-
cific tissue in a species, is able to identify m6A from other tissues and
species. Accordingly, the cross-species and cross-tissue validation was
performed. The AUCs of im6A-TS-CNN for identifying m6A sites
from other species and tissues are shown in Figure 3. As shown in
Figure 3, it can be concluded that im6A-TS-CNN is also effective
for the cross-species and cross-tissue identification of m6A sites,
demonstrating the universality of the proposed method.

Conclusions

In this article, we proposed a CNN-based method, called i6mA-TS-
CNN, for identifying m6A in the brain, liver, kidney, heart, and testis
from the human,mouse, and rat. The results from a 5-fold cross-valida-
tion test and independent test demonstrate that i6mA-TS-CNNis better
than the existing method for identifying tissue-specific m6A. For the
convenience of the scientific community, the command-line version
of i6mA-TS-CNN, together with its source code and user manual, is
provided at https://github.com/liukeweiaway/DeepM6A_cnn. In addi-
tion, the high-, normal-, and low-threshold options were provided to
control the false-positive rate. The corresponding performance with
different options was listed in Table S1. Taken together, we hope that
the i6mA-TS-CNN will become a useful tool for identifying m6A sites.

MATERIALS AND METHODS
Datasets

A high-quality dataset is very important for the construction of a
computational model. In 2019, Zhang et al.18 developed a high-
throughput, antibody-independent m6A detection method based on
the m6A-sensitive RNA endoribonuclease to identify the m6A site
in different tissues, namely the brain, liver, kidney, heart, and testis
from the human, mouse, and rat. Based on these data, Dao et al.17

built a high-quality benchmark dataset that can be used to train a
computational method for identifying m6A sites, which contains
both m6A site- and non-m6A site-containing sequences with the
length of 41 nt. The CD-HIT program25 was used to make sure
that the sequence similarity of the dataset was less than 80%. The
detailed information of this dataset is provided in Table 3.

One-Hot Encoding

One-hot encoding is a common and effective method.26 According to
such a scheme, in an RNA segment, A is represented as (1,0,0,0), U as
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Table 1. The Performance of im6A-TS-CNN for Identifying m6A Sites

5-Fold Cross Validation Independent Test

Sn (%) Sp (%) Acc (%) MCC AUC Sn (%) Sp (%) Acc (%) MCC AUC

h_b 75.35 69.71 72.53 0.4523 0.8029 75.17 70.20 72.69 0.4543 0.8056

h_k 81.70 78.25 79.98 0.6006 0.8781 79.95 78.53 79.24 0.5848 0.8727

h_l 80.18 79.69 79.94 0.5992 0.8811 84.81 75.02 79.92 0.6012 0.8805

m_b 81.50 75.85 78.67 0.5749 0.8705 86.22 70.74 78.48 0.5765 0.8722

m_h 78.37 67.60 72.99 0.4633 0.8115 75.82 71.36 73.59 0.4723 0.8161

m_k 79.91 81.00 80.46 0.6094 0.8842 80.52 81.00 80.76 0.6151 0.8855

m_l 72.39 70.24 71.32 0.4288 0.7953 75.56 67.58 71.57 0.4328 0.7927

m_t 75.21 75.61 75.41 0.5090 0.8380 83.45 68.87 76.16 0.5288 0.8467

r_b 79.04 74.23 76.64 0.5379 0.8469 78.05 75.84 76.95 0.5391 0.8516

r_k 84.15 80.77 82.46 0.6500 0.9017 84.85 80.59 82.72 0.6550 0.9077

r_l 81.56 79.63 80.59 0.6126 0.8830 84.51 75.94 80.22 0.6067 0.8847

h, m and r before the hyphen stand for human, mouse, and rat, respectively; after the hyphen stand for brain, heart, kidney, liver, and testis, respectively.
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(0,1,0,0), C as (0,0,1,0), and G as (0,0,0,1). Therefore, an RNA
sequence of length l can be converted into a 4-l dimensional vector.
Convolutional Neural Network

In recent years, Convolutional Neural Network (CNN) has been
widely used to solve biological problems.22,27,28 The structure of the
CNN is shown in Figure 1. It contains a convolutional layer with
200 filters in which the kernel size is 6. After convolution operation,
Figure 2. TheROCCurves for Identifyingm6A inDifferent Tissues in the Three Sp

The value of AUC is given in the right corner of each graph.
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a max-pooling layer with the size of 4 was added. The convolution
layer is mathematically represented and computed as the following:

ConvðRÞjf = ReLU

 XS�1

s= 0

XN�1

n= 0

Wf
snRj+ s;n

!
; (Equation 1)

where R represents the RNA segment, f denotes the index of the
kernel, and j denotes the index of the output position. In Equation 1,
each filter Wf is an S� N weight matrix, where S is the filter size, and
ecies under the 5-Fold Cross-Validation Test and Independent Dataset Test



Table 2. Comparative Results between im6A-TS-CNN and iRNA-m6A under the 5-Fold Cross-Validation Test and Independent Test

5-Fold Cross Validation (AUC) Independent Test (AUC)

m6A-TS-CNN iRNA-m6A Difference im6A-TS-CNN iRNA-m6A Difference

h_b 0.8029 0.7756 0.0273* 0.8056 0.7845 0.0211*

h_k 0.8781 0.8634 0.0147* 0.8727 0.8565 0.0162*

h_l 0.8811 0.8738 0.0073* 0.8805 0.8681 0.0124*

m_b 0.8705 0.8731 �0.0026 0.8722 0.8613 0.0109*

m_h 0.8115 0.7948 0.0167* 0.8161 0.7878 0.0283*

m_k 0.8842 0.8726 0.0116* 0.8855 0.8697 0.0158*

m_l 0.7953 0.7743 0.0210* 0.7927 0.762 0.0307*

m_t 0.8380 0.8156 0.0224* 0.8467 0.8182 0.0285*

r_b 0.8469 0.8282 0.0187* 0.8516 0.8968 �0.0452

r_k 0.9017 0.8877 0.0140* 0.9077 0.8761 0.0316*

r_l 0.8830 0.8766 0.0064* 0.8847 0.8265 0.0582*

h, m and r before the hyphen stand for human, mouse and rat; b, h, k, l, t after the hyphen stand for brain, liver, kidney, heart and testis, respectively.
*inidcates the performance of im6A-TS-CNN is better than iRNA-m6A for identifying m6A sites.
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N is the input channels. The rectified linear function (ReLU) is ex-
pressed as the following:

ReLUðzÞ =
�
z if zR0
0 if z < 0

(Equation 2)

In order to prevent overfitting, we choose to lose some parameters
and set the dropout rate of 0.16. The results were output to a fully con-
nected layer containing 164 neural units and then compressed to 32
neural units. Finally, the softmax function was used to predict
whether the RNA segment contains m6A sites or not and is expressed
as the following:

SoftmaxðxÞ = exP
ex

(Equation 3)

When building the model, the stochastic gradient descent (SGD) was
used as the optimizer with a learning rate of 0.001, and the categorical
Figure 3. HeatmapShowing the AUCValues of Cross-

Species and Cross-Tissue Validation

The abscissa represents the independent dataset, and the

ordinate represents the model.

Molecular Therapy: Nucleic Acids Vol. 21 September 2020 1047

http://www.moleculartherapy.org


Table 3. The Information of Benchmark Datasets for Predicting RNA m6A

Sites

Name

Training Testing

Positive Negative Positive Negative

h_b 4,605 4,605 4,604 4,604

h_k 2,634 2,634 2,634 2,634

h_l 4,574 4,574 4,573 4,573

m_b 8,025 8,025 8,025 8,025

m_h 4,133 4,133 4,133 4,133

m_k 3,953 3,953 3,952 3,952

m_l 2,201 2,201 2,200 2,200

m_t 4,707 4,707 4,706 4,706

r_b 2,352 2,352 2,351 2,351

r_k 1,762 1,762 1,762 1,762

r_l 3,433 3,433 3,432 3,432

h, m and r before the hyphen stand for human, mouse and rat; b, h, k, l, t after the hy-
phen stand for brain, liver, kidney, heart and testis, respectively.
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cross entropy was used as the loss function. In the training process, a
total of 2,000 epochs were carried out by using the early stopping
method with the patience of 50 and min_delta of 0.001.

Evaluation Metrics

In order to evaluate the model, we use the sensitivity (Sn), specificity
(Sp), accuracy (Acc), and Matthews correlation coefficient (MCC),
which are defined as the following,26,29,30 to evaluate the performance
of the following model:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Sn= 1� N +
�

N +

Sp= 1� N�
+

N�

Acc= 1� N +
� +N�

+

N +N�

Mcc=
1� N +

� +N�
+

N +N�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+

N�
+ � N +

�
N +

��
1+

N +
� � N�

+

N�

�s

; (Equation 4)

where N+ is the total number of the RNA sequence containing modi-
fication site, N +

� is the number of false-negative samples, N� is the
total number of the RNA sequence that did not contain any modifi-
cation site, and N +

� is teh number of false-positive samples.

In addition, we also used the ROC curve31 and the area under the
ROC curve (AUC) to evaluate the proposed model.
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