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Exploring microbial community compositions in humans with healthy versus diseased
states is crucial to understand the microbe-host interplay associated with the disease
progression. Although the relationship between oral cancer and microbiome was
previously established, it remained controversial, and yet the ecological characteristics
and their responses to oral carcinogenesis have not been well studied. Here, using the
bacterial 16S rRNA gene amplicon sequencing along with the in silico function analysis by
PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States 2), we systematically characterized the compositions and the ecological drivers of
saliva microbiome in the cohorts of orally healthy, non-recurrent oral verrucous
hyperplasia (a pre-cancer lesion), and oral verrucous hyperplasia–associated oral
cancer at taxonomic and function levels, and compared them with the re-analysis of
publicly available datasets. Diversity analyses showed that microbiome dysbiosis in saliva
was significantly linked to oral health status. As oral health deteriorated, the number of
core species declined, and metabolic pathways predicted by PICRUSt2 were
dysregulated. Partitioned beta-diversity revealed an extremely high species turnover but
low function turnover. Functional beta-diversity in saliva microbiome shifted from turnover
to nestedness during oral carcinogenesis, which was not observed at taxonomic levels.
Correspondingly, the quantitative analysis of stochasticity ratios showed that drivers of
microbial composition and functional gene content of saliva microbiomes were primarily
governed by the stochastic processes, yet the driver of functional gene content shifted
toward deterministic processes as oral cancer developed. Re-analysis of publicly
accessible datasets supported not only the distinctive family taxa of Veillonellaceae and
Actinomycetaceae present in normal cohorts but also that Flavobacteriaceae and
Peptostreptococcaceae as well as the dysregulated metabolic pathways of
nucleotides, amino acids, fatty acids, and cell structure were related to oral cancer.
Using predicted functional profiles to elucidate the correlations to the oral health status
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shows superior performance than using taxonomic data among different studies. These
findings advance our understanding of the oral ecosystem in relation to oral
carcinogenesis and provide a new direction to the development of microbiome-based
tools to study the interplay of the oral microbiome, metabolites, and host health.
Keywords: oral cancer, microbiome dysbiosis, machine learning, oral verrucous hyperplasia, saliva
1 INTRODUCTION

Oral cavity is a dynamic and complex ecosystem, harboring more
than 1,000 species of microorganisms (Lamont et al., 2018). The
ecological balance of the host-microbiome symbiosis benefits
human health by supporting the host immune system,
maintaining physiological functions, and providing additional
metabolic potentials (Kilian et al., 2016) to inhibit the growth of
exogenous/opportunistic pathogens (Kreth et al., 2005;
Wescombe et al., 2009) and regulate the host-microbe
homeostasis such as systemic nitrate metabolism that is linked
to cardiovascular diseases (Govoni et al., 2008; Farah et al., 2018).
Recent studies have shown that the oral microbiome plays an
essential role in the etiology of oral and systemic diseases, such as
caries, periodontitis, and oral cancer (Socransky and Haffajee,
2005; Costalonga and Herzberg, 2014; Gao et al., 2018). Among
these diseases, oral cancer is of particular concern because it
causes approximately 180,000 deaths a year worldwide (Ferlay
et al., 2019). Oral bacteria, along with other known risk factors
(smoking, alcohol, and betel quid chewing), have been reported
to be associated with oral cancers (Katz et al., 2011; Lin et al.,
2011; Zhao et al., 2017). Oral carcinogenesis has been considered
a pivotal factor to alter the oral microbiome, while the
microbiome dysbiosis may exacerbate the disease progression
in the host. For example, using the gnotobiotic mouse model of
oral cancer, research demonstrated that the oral microbiome
regulated a specific signaling pathway to promote tumorigenesis
in oral cancer (Stashenko et al., 2019). A recent study further
provides causal evidence in promoting oral tumorigenesis via
crosstalk between signaling pathways by periodontal pathogens
(Kamarajan et al., 2020). Although the relationship between
microbiome and cancer is still controversial and complicated
(Sepich-Poore et al., 2021), these studies have pointed out the
complex mutual interplay between the oral microbiome and
oral carcinogenesis.

Oral potentially malignant disorders (OPMDs) describe a
diverse group of lesions or conditions, including leukoplakia,
erythroplakia, oral submucous fibrosis, and oral verrucous
hyperplasia (OVH), that may precede the development of oral
squamous cell carcinoma (OSCC), accounting for more than
90% of oral cancers (Markopoulos, 2012; Warnakulasuriya,
2020). Though oral cavity can be easily accessed for oral
cancer screening, more than 60% of patients were detected at a
late stage of OSCC partly due to the unawareness of patients and
healthcare practitioners for the asymptomatic lesions (Mashberg,
2000; Mager et al., 2005; Lingen et al., 2008; Kaur et al., 2018).
Conventional oral examination (COE) followed by confirmatory
tissue biopsy is the gold standard for oral cancer diagnosis
gy | www.frontiersin.org 2
(Lingen et al., 2008). However, COE may not be able to
identify all OPMD lesions or lesions that are prone to progress
to OSCC (Lingen et al., 2008). Besides, the tissue biopsy is
invasive, painful, and time-consuming (Kaur et al., 2018).
Although other clinical diagnostic tools were available for oral
cancer detection (Mashberg, 1983; Eisen, 2002), patients are still
diagnosed in the late stages of OSCC (Kaur et al., 2018).
Therefore, early detection and diagnosis technology for OPMD
and oral cancer are necessary, and saliva serves as an ideal
reservoir for non-invasive biomarker exploration.

Studies have suggested that the oral microbiome changed
during the progression of OSCC (Zhao et al., 2017; Hashimoto
et al., 2019; Chen et al., 2020). These studies mainly focused on
two cohorts (healthy control/OSCC or OPMD/OSCC) instead of
three (healthy control/OPMD/OSCC) without a follow-up.

However, the progress of OPMD malignancy usually takes
years to more than decades, with malignant transformation rates
ranging from less than 1% to over 30% (Chiang et al., 2020;
Warnakulasuriya, 2020). Although a few oral microbiome
studies did include OPMD samples (Hernandez et al., 2017;
Lee et al., 2017), the inclusion of a wide variety of OPMDs may
confound the results. Among OPMDs, OVH is commonly
detected in the oral cavity of betel quid chewers and has high
transformation rates of up to 21.3% (Chiang et al., 2020;
Warnakulasuriya, 2020). So far, the interaction between the
oral microbiome and OVH carcinogenesis has not yet
been reported.

The microbial community structure of the oral cavity remains
compositionally stable to ecological determinants (e.g., pH,
redox, and nutrients) due to its capability of resistance and
resilience (Richards et al., 2017; Marsh, 2018). The stability
may be substantially perturbed by stressors, driving the
microbial communities into distinct patterns in taxonomical
and functional components (Zaneveld et al., 2017), and this
concept was captured in several hypotheses regarding the
microbial ecology and oral diseases. For example, the
ecological plaque hypothesis postulated that caries and
periodontal diseases are a consequence of a taxonomic profile
change of plaque microbiota driven by an altered environment
(Marsh, 2003). For the host-microbiome ecosystem of OSCC, the
oral microbiome may initially comprise species with competitive
advantage via host selection, followed by a functional dysbiosis
and enhancement of OSCC development as virulence factors of
selected microbes are expressed (Al-Hebshi et al., 2019). To
decipher how microbiomes respond to stressors, the patterns of
microbial composition and the underlying ecological drivers
were usually studied using taxonomic data. A recent systemic
review of studies on the microbiome of OSCC patients reported
September 2021 | Volume 11 | Article 663068
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that the tumor-associated microbiome presented similar
functional potentials regardless of variations in taxonomic
profiles (Al-Hebshi et al., 2019). Thus, taxonomic information
in conjugation with functional profiles may shed some light on
the variation of the oral microbiome.

The between-sample diversity (beta diversity) is often used to
measure the differences between samples and can be
disentangled into nestedness and turnover components: the
former is a non-random process of species loss or gain, while
the latter is the replacement of some species by others (Baselga,
2010). These patterns are microbial responses to deterministic
processes, stochastic processes, or combinations of the two
(Chase and Myers, 2011; Stegen et al., 2013; Zhou and Ning,
2017). As such, the quantitative determination of the ecological
drivers influencing community composition in an ecosystem is
important for explicitly elucidating the community dynamics. By
quantifying the stochasticity ratio using the pattern-oriented null
model (Ning et al., 2019), our previous study showed the
dominance of stochastic perturbations in shaping the oral
microbiomes of oral submucous fibrosis (one of the OPMDs)
and OSCC cohorts (Chen et al., 2020). The influence of
stochastic perturbations might also be crucial in the healthy
group, given that the oral microbiome was highly personalized
and time-varied (Mukherjee et al., 2018). Since highly diverse
microorganisms would survive in similar ecosystems (i.e., oral
cavity of healthy individuals, OPMD, and OSCC cohorts), we,
therefore, were interested in exploring whether the disease
stressor can shape the functional gene content of oral
microbiome and the functional dysbiosis would occur in
response to the development of oral carcinogenesis.

In the present study, we hypothesized that the alteration of oral
microbiomes of orally healthy (normal), OPMD (specifically
OVH), and OSCC cohorts were associated with oral health
status. To investigate the role of ecological patterns in healthy
and diseased oral microbiomes, both taxonomic profiles and
functional potentials were studied in terms of the dichotomy of
beta diversity (nestedness and turnover), along with the
stochasticity ratio. To our knowledge, this is the first report to
disentangle the contribution of the turnover and nestedness of
both taxonomic and functional compositions in three different
states of the oral cavity ecosystem (orally healthy, OPMD, and
OSCC). We further validated our results with publicly available
data using the same pipeline and the machine learning prediction.
2 MATERIALS AND METHODS

2.1 Study Participants and Sample
Collection
All participants were recruited from Chi Mei Medical Center
(CMMC), Liouying, Taiwan, with the approval of the
Institutional Review Board of CMMC (IRB No.: 10612-L02).
Participants were interviewed to ensure no antibiotics or surgical
treatments for at least one month to enrollment and instructed to
refrain from eating, drinking, or using oral hygiene products for
at least one hour prior to saliva collection and to rinse their
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
mouth with drinking water. Five minutes after oral rinsing,
participants were instructed to spit into a 50 mL centrifuge
tube, which was kept on ice, and were cautioned not to cough up
sputum. A total of 5 mL of saliva was collected from each
participant within a 30-minute time frame. Saliva samples were
then centrifuged at 2,600 × g at 4°C for 15 min. One milliliter of
the supernatant was transferred to a new centrifuge tube for
other research, and the rest of the saliva supernatant was treated
with RNase Inhibitor (Ambion, Austin, TX, USA) and stored at
−80°C for further analysis. The samples were processed and
frozen within 30 minutes after collection.

2.2 DNA Extraction, PCR, and 16S rRNA
Gene Sequencing
Bacterial genomic DNA was extracted from saliva samples using
a QIAamp DNA Mini Kit (Qiagen, Germany) according to the
manufacturer’s spin column protocol. The extracted DNA was
amplified using a barcoded Bacteria-specific primer set (341F/
806R) that targets the V3–V4 hypervariable region of the 16S
rRNA gene. The PCR amplicons were sequenced on a MiSeq
platform (Illumina, USA) using v3 Chemistry Kits (2 × 300 bp).
The detailed sequencing protocol has been described previously
(Chen et al., 2017).

2.3 Bioinformatics Analyses
2.3.1 16S rRNA Sequence Processing
High-throughput amplicon sequencing data were analyzed on
the QIIME 2 platform (v2019.4) (Bolyen et al., 2019). After the
primers at both ends were trimmed, raw sequences were quality
filtered, denoised, merged, and chimera filtered using DADA2 to
produce ASVs (Callahan et al., 2016), which provides a finer
resolution of sequence variants down to single nucleotide
differences compared to traditional 97% similarity of
operational taxonomic units. The maximum number of
expected errors was set at 3. The denoised ASVs with lengths
outside the interval between 400 and 450 nt were excluded from
the subsequent analysis. To obtain taxonomy at the species level
with a focus on bacteria present in oral cavity, taxonomic
annotation of ASVs was performed by a customized naïve
Bayes classifier trained on the expanded Human Oral
Microbiome Database (version 15.1) (Escapa et al., 2018) using
the q2-feature-classifier plugin (Bokulich et al., 2018b) with
default settings. “Unclassified” was appended to the lowest
available taxonomic level for ASVs that were not resolved to
the species level.

2.3.2 Diversity Analysis
Alpha and beta diversity indices were calculated at a rarefaction
depth of 43,313 reads per sample using the QIIME2 plugin q2-
diversity. A phylogenetic tree was constructed using the QIIME2
plugin q2-fragment-insertion (Matsen et al., 2010; Eddy, 2011;
Matsen et al., 2012; Janssen et al., 2018) for phylogenetic alpha
(Faith’s phylogenetic diversity) and beta diversity (UniFrac)
measurements. Kruskal–Wallis rank-sum test was used to
compare the differences between the alpha diversity indices
among cohorts. The contribution of participant age, oral health
September 2021 | Volume 11 | Article 663068
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status (healthy, OVH, and OSCC), and lifestyle factors (alcohol,
betel nut, or cigarette consumption) were analyzed using Adonis
with 9999 permutations. Distance-based permutational
multivariate analysis of variance (PERMANOVA) was used to
test the significant difference levels of the centroid of beta
diversity metrics among cohorts in the ordination space of
PCoA. For the observed significant PERMANOVA results,
PERMDISP was then performed with 9999 permutations to
determine the within-group homogeneity of dispersion. The
Benjamini-Hochberg procedure was applied to control the
FDR for multiple testing by statsmodels (0.10.2) (Seabold and
Perktold, 2010). To evaluate the respective contribution of
turnover and nestedness components to beta‐diversity as a
whole, we calculated the multiple-site dissimilarity (Sørensen-
based, bSØR), and the partitioning dissimilarities that accounted
only for turnover (Simpson-based, bSIM) and for nestedness
(bNES) components, respectively (Baselga, 2010).

2.3.3 Core Microbiome Analysis
Core microbiome analysis was performed using a customized
Python script and visualized using matplotlib-venn (0.11.5). The
feature table was first converted to incidence data (presence/
absence), and the prevalence of each taxon in each cohort was
calculated. If the prevalence of a given taxon was greater than
75%, it was considered a core species in a cohort (Takeshita et al.,
2016; Willis et al., 2018). A Venn diagram was used to illustrate
the distinct and shared core species between cohorts.

2.3.4 In Silico Metagenome Prediction
The metagenomic content was developed in silico from the
denoised 16S rRNA genes using PICRUSt2 (Douglas et al.,
2020). HMMER (www.hmmer.org), EPA-NG, and GAPPA
were performed to place ASVs into reference phylogeny
(Barbera et al., 2018; Czech and Stamatakis, 2019). The
functional profiles of oral microbiome were predicted in
accordance with the community-wide abundance method. The
castor R package was subsequently used for hidden state
prediction to infer gene family copy numbers (Louca and
Doebeli, 2017). Finally, the EC number abundances were
predicted based on the adjusted gene family abundances. To
infer pathway abundances, MinPath was applied to identify a set
of minimum pathways based on the predicted gene families (Ye
and Doak, 2009). Default settings were used to regroup EC
numbers to MetaCyc reactions and further inferred to MetaCyc
pathway abundances (Caspi et al., 2020).

2.3.5 Statistical Testing of Differential Abundance
LEfSe was applied to identify differentially abundant species and
metabolic pathways among cohorts (Segata et al., 2011). The
input of the frequency matrix was rarefied to the same depth and
then transformed into a relative abundance matrix. The
significance level was 0.05 for the Kruskal–Wallis test, and the
cutoff of the logarithmic LDA scores was 3.

2.3.6 Stochasticity Ratio Estimation
To evaluate the drivers of the community composition and
functional profile, the null-model-based approach was used to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
calculate the normalized ratio of the difference between the
actual and expected similarity, referring to as a selection
strength (SS), to assess the strength of determinism acting
against the stochastic forces (Ning et al., 2019). In this method,
the actual Bray-Curtis similarity of any two samples in the
metacommmunity of a cohort was first calculated based on
taxonomic and pathway data and compared with the mean of
null expected similarity that was obtained by averaging the
similarity of 1,000 times of randomization of the two samples
in the metacommunity. The stochasticity ratio was calculated as
(1 - SS). The ratio ranges from 0 to 100%, with 0 for the
community composition/functional profile solely shaped by
deterministic processes, and 100% for the community
composition/functional profile purely influenced by the
stochastic forces. For the null model algorithm, proportional
taxa/pathway occurrence frequency and richness were applied to
generate random microbial/functional communities (Gotelli,
2000). Samples in each cohort shared the sample regional taxa/
pathway pool in the null model algorithm.

2.4 Public Data Acquisition, Processing,
and Re-Analysis
Academic search systems, including Google Scholar and PubMed,
were used to find studies published in the last five years (2015–
2020) with the search terms “oral microbiome”, “saliva
microbiome”, and “OSCC”. We included 16S rRNA amplicon-
based studies with publicly available sequences and metadata
indicating OSCC or control for each sample. To compare the
results, we only included studies with samples collected by non-
invasive collection methods (oral swab, oral rinse, or saliva
samples), while excluding the studies of using tissue biopsies
and those without sample metadata. Studies with the OSCC
cohort consisting of both the oral cavity and oropharynx types
were also included. The raw sequence processing, diversity
analysis, and core species/metabolic pathway analysis were
performed as described in previous sections.

2.5 Prediction Using Machine Learning
Analysis
The QIIME2 q2-sample-classifier plugin (Bokulich et al., 2018a)
was used to predict sample health statuses based on taxonomic
and functional profiles generated from this study, and the
publicly available dataset was re-analyzed. Input data were
randomly split into 80% for training and 20% for testing. The
Random Forest classifier was applied for supervised machine
learning. Cross-validated recursive feature elimination was
applied for feature selection, with 5% of features eliminated at
each iteration. Hyperparameters were automatically tuned using
a random grid search with 5-fold cross-validation. Based on
taxonomic and functional profiles, respectively, we performed
the analysis procedure 100 times with different random seeds
and recorded the testing accuracy ratio for each iteration. The
resulting accuracy ratio data was tested using an independent
t-test to determine the statistical significance of the machine
learning prediction results. AUROC metrics were calculated
using the scikit-learn package (Pedregosa et al., 2011). For
September 2021 | Volume 11 | Article 663068
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multi-class classification, micro-average was used. The data in
each study were trained and validated separately to minimize the
experimental batch effects.
3 RESULTS

3.1 Cohort Descriptions and Sequencing
Quality
Saliva samples collected from 75 male participants, including
healthy controls (normal, n = 27), non-recurrent OVH patients
with > 8-year follow-up (2011 December–2019 November)
(OVH, n = 21), and patients having primary OVH followed by
OSCC development within eight years follow-up (OSCC, n = 27),
were included in this study (Table S1). Statistical analysis of the
participants’ metadata (age and lifestyle factors) showed that the
differences in the studied cohorts were significant for age
between normal and OSCC cohorts, and for betel nut chewing
habits between OVH and OSCC cohorts (Table S2). Illumina
high-throughput sequencing generated a total of 14,261,633 raw
sequences targeting the V3–V4 region of the 16S rRNA gene.
After sequence denoising, 8,522,211 denoised reads were
retained from 75 samples, with an average of 113,629 ± 33,379
high-quality sequences per library. The plateau rarefaction
curves indicated that the sequencing depth was sufficient for
downstream analysis (Figure S1).

3.2 Phylogenetic Diversity Was Slightly
Reduced in the Microbiomes of
Diseased Cohorts
In the assessment of ASVs detected within samples, the results
revealed that the four alpha diversity indices were not
significantly different between the studied cohorts (q > 0.05
after false discovery rate (FDR) adjustment, Table S3). To
evaluate the effects of risk factors, including participant age,
oral health status, and lifestyle, on the changes of the oral
microbial community, UniFrac distance-based Adonis analysis
was performed with the host health status as the last variables
(Alcohol+BetelNut+Cigarette+Age+HealthStatus). As shown in
Figures 1A, B, oral health status was detected as the strongest
explanatory power (Adonis R2 = 0.037 for unweighted UniFrac
and 0.057 for weighted UniFrac) to significantly differentiate the
cohorts (FDR-adjusted p< 0.05). Although age and betel nut
chewing habit exhibited significant distinction between some
cohorts (Table S2), the variable, betel nut chewing, was not
significantly associated with changes in oral microbial
communities. However, age as a variable may confound the
change of oral microbiome with the unweighted UniFrac
distance (Adonis R2 = 0.021, FDR-adjusted p< 0.05). The
UniFrac-based beta diversity distribution of salivary
microbiomes from the cohorts was visualized using a principal
co-ordinate analysis (PCoA) plot (Figures 1C, D), and showed
random distribution on the ordination space. Pairwise
permutation analyses of multivariate dispersions (PERMDISP)
analysis further confirmed that the dispersion effect was not
found among cohorts based on the unweighted UniFrac metric
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(pPERMDISP = 0.1669); however, this effect was observed between
normal and diseased (OVH/OSCC) cohorts. In particular, the
dispersion effect reached a significant level between the normal
and OVH cohorts (FDR-adjusted pPERMDISP = 0.0362) in the
weighted UniFrac distance measurement, suggesting
heterogeneous dispersion of abundant taxa in salivary
microbiota in correspondence with the oral health status.

3.3 Oral Carcinogenesis Altered Core
Microbiomes
To further compare the differences in salivary microbiomes
among cohorts, we investigated the “core” species, defined as
the taxa commonly present in the saliva of each cohort with a
prevalence > 75% (Takeshita et al., 2016; Willis et al., 2018). The
number of core species was 55 (67.14 ± 11.06% of total
abundance), 39 (47.24 ± 14.96% of total abundance), and 30
(44.52 ± 12.81% of total abundance) in normal, OVH, and OSCC
cohorts, respectively, and 24 species taxa were universal in the
saliva samples from all cohorts, even when the oral health status
altered (Figure 2A). Five species (Anaeroglobus geminatus,
Porphyromonas gingivalis, Prevotella oulorum, Saccharibacteria
(TM7) [G5] bacterium HMT-356, and Tannerella forsythia)
were specific to the OVH cohort. In comparison, two species
(Capnocytophaga sputigena and Catonella morbi) were specific to
the OSCC cohort. One species (Dialister invisus) was specific to
the OVH and OSCC cohort. Interestingly, a decreased trend in
overall core species richness (gamma diversity) was clearly
observed with deteriorating oral health status (Figure 2B)
from 12.53% in the normal cohort to 6.34% in the OSCC cohort.

The linear discriminant analysis effect size (LEfSe) analysis
revealed the core species with significant abundance in each
group (p < 0.05, LDA score > 103) (Figure 2C). A total of 15
species taxa were enriched in the normal cohort compared to 2-4
species in the two diseased cohorts. In the normal cohort, they
included two unclassified taxa related to Prevotella and
Selenomonas genera, three uncultured species (Saccharibacteria
(TM7) [G-1] bacterium HMT-352, Leptotrichia sp. HMT-417,
and Actinomyces sp. HMT-180), and 10 known species within 7
genera: Prevotella (Prevotella melaninogenica, Prevotella salivae,
and Prevotella pallens), Veillonella (Veillonella atypica, and
Veillonella dispar), Streptococcus salivarius, Haemophilus
parainfluenzae, Megasphaera micronuciformis, Campylobacter
concisus, and Rothia mucilaginosa. For the OVH cohort, only
Veillonella parvula and Rothia dentocariosa were significantly
abundant (p < 0.05, LDA score > 103), while four species,
Capnocytophaga sputigena, Prevotella oris, Peptostreptococcus
stomatis, and Parvimonas micra were specifically abundant in
the OSCC cohort (abundance see Table S4). Furthermore, LEfSe
conducted with higher rank data showed that the species
variation converges at specific family-level taxa in different
cohorts. When prevalence taken into account, the enriched
family taxa in the normal cohort were Actinomycetaceae
(mean ± SD; 1.55% ± 1.16%), Veillonellaceae (12.50% ±
7.41%), and Prevotellaceae (20.60% ± 10.00%). Leptotrichiaceae
(3.05% ± 3.92%) was the only family specifically enriched in the
OVH cohort. The saliva microbiome, however, shifted to
September 2021 | Volume 11 | Article 663068
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Flavobacteriaceae (8.61% ± 11.36%), Peptostreptococcaceae
(2.37% ± 1.61%), Mycoplasmataceae (1.46% ± 2.36%),
Carnobacteriaceae (1.65% ± 2.12%), Lachnospiraceae (2.19% ±
1.83%), and Peptoniphilaceae (0.53% ± 0.51%) as abundant taxa
specific to the OSCC cohort (Figure 2D and Figure S2).

3.4 Distinct Metabolic Pathways Were
Dysregulated Among Three Cohorts
We applied PICRUSt2, an updated version of a widely used
metagenomic prediction tool (Langille et al., 2013), to infer the
functional profiles of the microbial communities using denoised
ASVs. The nearest-sequenced taxon index (NSTI) of 81.68% of
reads was less than 0.15 (Figure S3A), suggesting the high-
quality metagenome predicted (Langille et al., 2013). LEfSe
analysis identified 26, 7, and 24 inferred pathways that were
significantly abundant specific to normal, OVH, and OSCC
cohorts, respectively (Figure S3B). By categorizing these
pathways to higher classes, we found that most of them belong
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
to amino acid biosynthesis (10 pathways), and cofactor,
prosthetic group, electron carrier, and vitamin biosynthesis (8
pathways) for the normal cohort. The pathways for cell structure
biosynthesis (5 pathways), fatty acid and lipid biosynthesis (4
pathways), and nucleoside and nucleotide metabolism (3 for
biosynthesis; 2 for degradation) were abundant in the OSCC
cohort (Figure 3). Only three pathways belonging to TCA cycles
and nucleic acid processing were found to be significantly higher
in abundance in specific relation to the OVH cohort.

3.5 Though a High Taxonomic Turnover,
Functional Nestedness Evolved During
Oral Carcinogenesis
To determine the differentiation of beta diversity in the saliva
microbiome, we compared the dissimilarities of the salivary
microbiomes quantitatively based on taxonomic and functional
profiles. For community composition data, the species
nestedness was 0.042, 0.058, and 0.043 (sustainably lower than
A B

DC

FIGURE 1 | Differences in oral microbiomes among normal, OVH, and OSCC cohorts. (A, B) Adonis analysis based on (A) unweighted and (B) weighted UniFrac
distance metrics shows the effect (R2) of factors with the oral microbiome. * indicates FDR-adjusted p < 0.05 and ** indicates FDR-adjusted p < 0.01. (C, D) Principal
coordinate analysis (PCoA) plots of taxonomic profiles based on (C) unweighted and (D) weighted UniFrac distance metrics. Marginal kernel densities visualize the
distribution of microbial diversity along both axes. The pairwise PERMDISP reveals the dispersion effect (FDR-adjusted p < 0.05) between normal and OVH cohorts.
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the turnover: 0.822, 0.802, and 0.841) for the normal, OVH, and
OSCC cohorts, respectively (Figure 4), showing that the
differentiation of salivary microbiomes was predominantly
influenced by the species turnover. The high taxonomic
turnover rate (low prevalence (< 33%) and high variation of
species) among closely related species within these distinct
family taxa could be visualized via a taxonomic tree
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Figure S4). By contrast, the functional profiles of the salivary
microbiomes were relatively stable: the mean multi-site Sørensen
dissimilarity related to pathways (0.456 ± 0.044) was lower than
that related to species taxa (0.869 ± 0.013) by approximately 50%.
Notably, the numerical distributions of function nestedness
(0.180, 0.187, and 0.295) and function turnover (0.291, 0.209,
and 0.204) were relatively similar in each of the three cohorts
A B

D

C

FIGURE 2 | Core microbiome analysis. (A) Venn diagram of core microbiomes among cohorts. The core is defined as the species taxa present in saliva with ≥ 75%
prevalence. (B) The fraction of core species number to overall species richness in each cohort. (C) LEfSe reveals the distribution of core species displaying the
abundance significantly higher (LDA > log103) among cohorts. The asterisk (*) indicates a taxon that was annotated only to the genus level. (D) Same as (C) but at
the family level.
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(normal, OVH, and OSCC, respectively), as compared to species-
based Sørensen dissimilarity (Figure 4). Conspicuously, the ratio
of the function nestedness to turnover increased from 0.620 for
normal or 0.896 for OVH, to 1.449 for OSCC, suggesting that
nestedness emerges with the functional differentiation of salivary
microbiomes during the process of oral carcinogenesis.
Regardless of the observed high species turnover of the salivary
ecosystem, the dominance of functional nestedness in the OSCC
cohort suggests that a set of distinct microbial functions, which
may be associated with oral carcinogenesis, evolved accordingly
in the oral cavity.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
3.6 Deterministic Processes Influence
Functional Profiles but Not Taxonomic
Variations
To better understand the driving forces in shaping the salivary
microbiomes, a null model-based quantitative analysis of
stochasticity with taxonomic and functional profiles was
performed (Ning et al., 2019), respectively. The resulting
stochasticity ratio serves as an index to assess the partition and
contribution of the deterministic and stochastic processes in
shaping the microbiome structure. In the quantitative assessment
of the relative importance of the two ecological drivers, the
FIGURE 3 | Distribution of signature pathways. The signature pathways, which abundances are significantly higher concerning each studied cohort, are detected
using LEfSe. The inferred pathways are collapsed to each category based on Metacyc’s pathway ontology. Colored boxes indicate a higher rank of the categories.
FIGURE 4 | Multiple-site beta diversity (Sørensen dissimilarity) and corresponding nestedness and turnover components. The dissimilarities were analyzed in terms
of species and metabolic pathway profiles in each cohort.
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deterministic and stochastic influence is summed to a total of
100%. Thus, the higher the stochasticity ratio, the stronger
influence of stochastic processes or the less influence of
deterministic forces. Figure 5 shows that the stochastic process
dominated the drivers of the bacterial community composition
and functional gene content in saliva, with a stochastic ratio of
inferred pathways (85.97 ± 16.73% to 93.04 ± 4.02%) higher than
that of species taxa (61.88 ± 13.75 to 64.44 ± 13.11%). This
finding suggests that the stochastic process played a more critical
role in structuring the saliva microbiome at the functional level
than the taxonomic level. Remarkably, the distribution patterns
of taxa-based stochastic ratio among cohorts were relatively
similar, showing stable stochastic and deterministic influences
on taxonomic variations in the microbiomes of these three
cohorts. By contrast, far broader distribution spectra for the
function-based stochastic ratios were displayed in the strong
association with the progression of oral carcinogenesis.
Corresponding to the results of partitioning turnover and
nestedness (Figure 4), this finding differentiates the stochastic
influences from deterministic ones on shaping the saliva
microbiome of different cohorts. It also supports a shift of the
underlying driving force of the functional alternation towards
the deterministic process corresponding to changes in oral health
status from healthy through OPMD to OSCC.

3.7 Meta-Analysis Validates the Relation of
Dysregulation Consistently to Several Taxa
and Pathways
To test our findings’ generalizability, we compared the
taxonomic and functional data of this study with two previous
studies [(Wolf et al., 2017; Zhao et al., 2017); see justifications in
Table S5]. Because all the previous studies focused on the
analysis of 16S rRNA sequences with a 97% similarity
threshold using a clustering approach to resolve the signature
taxa at the genus level, we re-analyzed the sequences with our
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
analytical pipeline to achieve phylogenetic resolution down to
the species level. Although the signature species with specific
abundances related to the study cohorts were found in each
study, none was shared across all three studies for the normal
and OSCC cohorts (Figures 6A, B), suggesting inconsistency
among different studies. LEfSe was then conducted with family
taxa. Similar to our data, re-analyzing Zhao’s data at the family
level revealed that Actinomycetaceae (1.82% ± 1.79%) and
Veillonellaceae (8.09% ± 6.89%) were enriched in the normal
control, whereas Flavobacteriaceae (7.06% ± 7.01%),
Peptostreptococcaceae (2.04% ± 1.80%), and Peptoniphilaceae
(0.06% ± 0.95%) were abundant in the OSCC group.
Prevotellaceae (28.39% ± 15.67%) and Carnobacteriaceae
(1.29% ± 1.62%) were also enriched in their OSCC. The
differential abundance of either family in normal versus OSCC
cohorts between ours and Zhao’s data suggests that microbial
turnover in saliva, albeit moderate, can still be detected even at
the family level. For the re-work of Wolf’s data, the abundance of
Pasteurellaceae and Bifidobacteriaceae was specific to normal and
OSCC cohorts, respectively. The discrepancy between Wolf’s
data and the other two studies (Zhao’s data and ours) could likely
attribute to a low sample number and different cancer types (11
samples; oropharynx = 7, oral cavity = 4) studied.

Nevertheless, we found a comparatively high number of
pathways between studies when comparing functional profiles.
For the normal cohort, no common pathway across studies was
detected (Figure 6C). For the OSCC cohort, four pathways
involved in nucleotide biosynthesis (UMP biosynthesis I) and
cell structure biosynthesis (UDP-N-acetylmuramoyl-
pentapeptide biosynthesis I and II, and peptidoglycan
biosynthesis I) were prevalent across the studies (Figure 6D).
Importantly, we obtained consistent results in a functional meta-
analysis (Figure S5). In Zhao’s and our datasets, amino
biosynthesis pathways (arginine, ornithine, or histidine) were
more abundant in normal control and pre-cancer groups,
FIGURE 5 | Boxplots illustrate the null-model-based stochastic ratio of microbial taxonomic composition and functional profile based on Bray–Curtis dissimilarities.
The simulated procedure was repeated 999 times with proportional occurrence frequency and richness.
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whereas the potentials of arginine and/or histidine degradation
pathways were predicted higher in the OSCC cohort. In addition,
two unsaturated fatty acid biosynthesis pathways (cis-vaccenate
and gondoate) were abundant in the OSCC group, whereas no
common pathway enriched in the cofactor or vitamin
biosynthesis category was found. The meta-analysis results
generalized our findings that microbiome dysbiosis in OSCC
patients was dysregulated by the aforementioned distinctive
functions. Because the PICRUSt2 predicted the functionality
based on the abundance of the detected taxa, the functionality
consequences are thus associated with the collective abundance
of the contributing taxa. The family taxa, Veillonellaceae and
Actinomycetaceae for the healthy cohort, and Flavobacteriaceae
and Peptostreptococcaceae for the cancer cohort (Figure S2)
might contribute to functional variations such as cofactor,
prosthetic group, electron carrier, and vitamin biosynthesis,
nucleoside and nucleotide biosynthesis, and cell structure
biosynthesis (Table S6).

3.8 Using Functional Profiles
Complements Using Taxonomic Data for
Microbiome Analysis Among Different
Studies
To compare the performance of using taxonomic and functional
profiles for predicting the occurrence of oral cancer, we trained
random forest models with the profiles separately. The datasets
from each study were independently processed in accordance
with the analytical process illustrated in Figure S6. The mean
accuracy ratio (the mean of the ratios of predicted accuracy to the
accuracy of random guess, 100 iterations) was higher when using
the functional profile than using the taxonomic profile
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
(Figure 7A and Figure S7), although statistical significance
was only detected in Wolf et al. (2017) (t-test, p = 0.043) and
Zhao et al. (2017) (t-test, p = 0.001). Besides, we bootstrapped the
receiver-operating characteristic (ROC) analysis 100 times. The
area under the receiver operating characteristic curve (AUROC)
was higher with functional profiles to distinguish OSCC samples
from healthy controls, compared with that using taxonomic
profiles (Figures 7B, C), suggesting the potential of using the
(predicted) functional profiles can complement the use of
taxonomic data in detecting the associations of the oral
microbiome and health status.
4 DISCUSSION

Previous studies have reported that the change of oral
microbiome was associated with the influences mixed with oral
diseases and risk factors (betel nut chewing, cigarette smoking,
and alcohol consumption) (Sampaio-Maia et al., 2016; Wu et al.,
2016; Hernandez et al., 2017; Fan et al., 2018; Debelius et al.,
2020). In this study, however, by analyzing the saliva from 8-year
follow-up cohorts, we found that the OVH carcinogenesis was
identified as the main contributor to the altered oral microbiome.
The age may be confounding, in particular for the changes in
minor taxa in accordance with the significant level achieved by
the Adonis analysis with unweighted UniFrac distance. Several
studies have reported the association between age and salivary
microbiome (Xu et al., 2015; Takeshita et al., 2016; Lira-Junior
et al., 2018). This can partly be attributed to the functional
decline of the immune system due to natural aging (Feres et al.,
2016), and different levels of daily activities and metabolism
A B

DC

FIGURE 6 | Comparison of diversity and core analysis between taxonomic and functional profiles from this study and previous studies (Wolf et al., 2017; Zhao et al.,
2017). (A–D) Venn diagrams reveal common core species/pathways (prevalence > 75%) in normal and OSCC cohorts, respectively. (Taxonomic profiles of normal
(A) and OSCC (B) cohorts; metabolic pathway profiles of normal (C) and OSCC (D) cohorts).
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between younger and elder people (Liu et al., 2020). Although the
within-group diversity was not significantly different among
cohorts, a decreased trend of core microbiome from healthy or
OVH to OSCC was observed when the total diversity of each
cohort (gamma diversity) was considered. Consistent with the
previous studies that the richness of core species among healthy
individuals was 9.6-13.1% (Takeshita et al., 2016; Willis et al.,
2018) and it decreased to 5.96% in the OSCC patients with oral
submucous fibrosis (Chen et al., 2020), our study also showed the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
decrease of richness from 12.53% in the normal cohort to 6.34%
in the OSCC cohort. Together, the gamma diversity as an
indication reflecting dysbiosis of the core salivary microbiome
is effectually linked to the progression of oral cancer.

The altered oral microbiomes might be in part attributed
to the host inflammation and immune responses to OPMD
and OSCC. In periodontitis, the inflammatory environment
was considered to be a source of host-derived nutrients for
the microbes and thus altered the microbial community
A

B

C

FIGURE 7 | Evaluating functional profile as an alternative signature for OSCC detection using machine learning with the datasets of this study and previous studies
(Wolf et al., 2017; Zhao et al., 2017). (A) The mean accuracy ratios of 100 iterations of the randomly split dataset (80% training and 20% testing) were based on
taxonomic and functional profiles. The accuracy ratio is defined as the predicted accuracy to the accuracy of a random guess. Vertical bars indicate 95% confidence
intervals. (B, C) The 2D-density plots of ROC curves from 100 iterations demonstrate a higher mean AUROC using (B) functional profiles to distinguish OSCC from
normal cohorts compared to that using (C) taxonomic profiles.
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(Abusleme et al., 2013; Gaffen and Moutsopoulos, 2020). The
change of micron-scale habitats in the oral cavity may
subsequently alter the microbial composition and its related
functional potentials. Common clinical features of OSCC
including roughness and hardening of soft tissue, irregular
ulcers, and exophytic tumors in the oral cavity (Bagan et al.,
2010). The OVH was reported to form slightly elevated plaque-
like lesions or protruding masses with the verrucous or papillary
surface (Wang et al., 2009). The difference of the “landscape” in
the oral cavity influences temperature, moisture, pH, oxygen,
and nutrients availability and thus shapes the resident
microbiota and, in turn, the neighboring microbes (Mark
Welch et al., 2020; Wilbert et al., 2020).

Though we identified several enriched species that were
associated with the health status of the oral cavity, the
generalizability of these taxa as universal signatures for OSCC
was suboptimal (Figures 6A, B). The signature taxa specifically
related to the health status found in one study were not reported
or even exhibited contradictory results to those in another study.
For example, P. melaninogenica , S. sal ivarius , and
R.mucilaginosa were highly abundant in patients with OPMD
or OSCC (Mager et al., 2005; Pushalkar et al., 2012; Amer et al.,
2020), but were identified as signatures for the healthy cohort in
our dataset. Perera et al. reported that, at the species level,
Campylobacter concisus, Prevotella salivae, Prevotella loeschii,
and Fusobacterium oral taxon 204 were enriched in OSCC
(Perera et al., 2018); however, the first two species were
associated with healthy individuals in the present study. The
genus Actinomyces was linked to tumor development in one
study (Mukherjee et al., 2017), but the opposite microbial pattern
was identified in another study (Zhao et al., 2017). The lack of
consistency between studies could be attributed to the
experimental design [e.g., sample types or hypervariable
regions of the 16S rRNA gene (Tremblay et al., 2015)], the
bioinformatics analysis pipeline [e.g., sequence denoising
approaches (Nearing et al., 2018) and reference databases
(Knight et al., 2018)], the genetics of studied cohorts [e.g.,
racial factors (Yang et al., 2019), and the complexity of oral
carcinogenesis (Tanaka and Ishigamori, 2011)]. Alternatively,
our results suggest that the inconsistencies may be due to the
extremely high species turnover, which may be a consequence of
the stochastic process (contributing to about 60%; Figure 5) in
primarily shaping microbial communities in saliva (Figure 4 and
Figure 5). In addition to the host selection effect (contributing to
about 40%; Figure 5), the high microbial species variation can be
attributed to diet, lifestyles, hygiene habits, salivary dysfunction,
frequent exposure to exogenous bacteria, and rapid changes in
environmental factors (Marsh, 2003; Wade, 2013; Grassl et al.,
2016; Lamont et al., 2018), eventually leading to high turnover
rates of salivary microbiota, regardless of oral health status.
Although the identified signature species were consistently
related to several distinct family taxa, such as Veillonellaceae
and Actinomycetaceae, in the healthy cohort; Flavobacteriaceae,
Peptostreptococcaceae, and Lachnospiraceae in the OSCC cohort,
the differential abundance of some signatures (e.g., Prevotellaceae
and Carnobacteriaceae) showed opposite patterns in diseased
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
versus normal cohorts when compared the previous studies with
the meta-analysis in the present study (Zhang et al., 2020; Zhong
et al., 2021). Taken together, microbes in saliva are subject to a
high population dynamic at the taxonomic level, representing an
extraordinarily dynamic ecosystem. Thus, it would be a
challenging task to identify universal taxa signatures for OSCC.

The function profiles of saliva microbiomes remained
distinguishable, despite the high taxonomic variation and
abundance fluctuation in the saliva microbiome. This stable
function profile but highly varied species composition in the
salivary ecosystem may be likely due to functional redundancy,
which has been proposed for other microbial ecosystems like soil
and the human gut (Mendes et al., 2015; Vieira-Silva et al., 2016).
Unlike the microbial composition, the functional profile is
sensitive to the host oral carcinogenesis, as the proportion of
driving forces shifted toward the deterministic process
(Figure 5). This shift of drivers for the functional gene content
may also reciprocally affect the primary contribution to the
differences in functional profiles (Figure 4). Since nestedness
reflects the effect of environmental filtering (Chase and Myers,
2011; Daniel et al., 2019), a possible explanation is that the
diseased status of the oral cavity (OVH and OSCC) was a more
influential environmental filtering factor than the healthy one,
leading to the loss/gain of specific metabolic niches and an
increase in nestedness components during the shift from
healthy to diseased states. As a whole, oral carcinogenesis of
OVH does not seem to impact the taxonomic composition but
tilts the balance of functional gene content toward the
deterministic process, making the functional profiles mirror
oral cancer development more meritoriously than the
taxonomic composition.

Through the re-analysis of publicly accessible OSCC-associated
oral microbiomes datasets, we obtained more consistent results
from the functional analysis. Although different hypervariable
regions among studies may impact the analysis results to some
extent, the advance in novel bioinformatics tool enables meta-
analysis among multiple hypervariable regions (Callahan et al.,
2017). The consistency can be explained by previous
metabolomics studies (Lohavanichbutr et al., 2018; Song et al.,
2020), which show dysregulated metabolite profiles in saliva
between healthy and OSCC cohorts. Song et al. directly
characterized the saliva metabolic profiles of healthy,
precancerous, and OSCC cohorts, showing the specific down-
regulated metabolites, including spermine, arginine, ornithine,
and histidine, and the up-regulated metabolites, including
putrescine, cadaverine, thymidine, adenosine, and 5-
aminopentoate, in the OSCC cohort (Song et al., 2020). Several
amino acid biosynthesis pathways (isoleucine, tryptophan,
arginine, ornithine, valine, and methionine) were enriched in the
normal group, particularly in Zhao’s and our datasets (Figure S5),
suggesting potential up-regulation of those amino acids in the
healthy cohort (and correspondingly down-regulation in the
OSCC cohort), which is consistent with previous studies (Yang
et al., 2018). Several previous studies also suggested the
dysregulation of ornithine, arginine, and polyamine synthesis in
the salivary microbiome during oral carcinogenesis from the
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healthy or precancerous stage (Chen et al., 2020; Sharma et al.,
2020). In addition, Zhao’s and our study showed that the
biosynthesis of lipids and fatty acids, especially cis-vaccenate and
gondoate are enriched in the OSCC cohort (Figure 3). In the same
line of the observations, the increase of cis-vaccenate would
decrease the production of anti-inflammatory palmitoleic acid
(Schirmer et al., 2016), leading to the increase of inflammatory
cytokines like TNF-alpha required for the oral cancer stemness
and aggressiveness (Lee et al., 2012; Krishnan et al., 2014).
Although gondoate is often found in plants, it can also be
anaerobically produced by microbes. Whether gondoate and the
microbes responsible for the biosynthesis play any role in oral
carcinogenesis remains characterized. The dysregulated
metabolisms of amino acids, polyamines, long-chain fatty acids,
and corresponding derivatives potentially underline the interplay
among host oral carcinogenesis and oral microbiota and their
metabolites. However, because the microbiome functions were
analyzed with DNA samples through the PICRUSt2 prediction in
this study, it is necessary to validate whether the corresponding
pathways are expressed differentially in the salivary environments
in accordance with the health status using paired DNA and RNA
samples. Future studies would be warranted to address the
dynamic interactions of the host, oral microbiome and
metabolome, and how the microbial-host co-modulation of gene
expressions and metabolites relate to the OSCC development.

In several previous studies, machine learning-aided models were
trained for disease prediction using taxonomic profiles derived from
16S rRNA genes (Teng et al., 2015; Tremblay et al., 2015; Ai et al.,
2017; Xu et al., 2018). Since the saliva microbiome was characterized
as a highly dissimilar, high species-turnover, and stochasticity-
dominated entity in this study, using taxonomic data as input
features for classification and prediction tasks can be suboptimal
and study-dependent. The predicted functional profiles from
OSCC-associated individuals were reported similar despite the
variation of the taxonomic profiles (Al-Hebshi et al., 2019). This
study and a recent shotgun metagenomic study (Baker et al., 2021)
suggest a high predictive accuracy for the health status using the
functional profiles. These results suggest that the use of functional
profiles may complement the use of taxa data to study the interplay
of oral microbiome and OSCC. One limitation of using predicted
functional profiles is the loss of function data attributed to a fraction
of microbes without genomic information. This can be improved in
the future by incorporating both metagenomics and culturomics to
expand the microbiome database (Bilen et al., 2018). Raw sequence
sharing, along with completely publicly available metadata, will also
enable us to reproduce, compare, and validate results across studies
throughmeta-analysis. This is especially crucial to untangle the roles
of microbiomes in the progression from the healthy oral cavity
through OPMD to OSCC.

Overall, this study has revealed the altered bacterial community
composition with the specific functional dysregulation in saliva
during OVH carcinogenesis. From the perspective of microbial
ecology, any attempt to discover oral microbial consortia as
biomarkers for oral cancer would be a daunting task due to the
high taxonomic turnover (i.e., high variance and fluctuation) of
the oral ecosystems. Functional gene content is relatively stable but
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
susceptible to oral carcinogenesis, thus making functional profiles,
although obtained by a prediction analysis in this study, a
complement to taxa data in reflecting the oral cancer
development. The dysregulated pathways identified in this study
provided clues to study the interplay of the oral microbiome,
metabolites, and oral cancer in the future.
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