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INTRODUCTION

Stem cells (SCs) are undifferentiated cells that are capa­
ble of self-renewal and differentiation and that therefore 
contribute to the renewal and repair of tissues [1]. Their ca­
pacity for division, differentiation, and tissue regeneration 
is highly dependent on the surrounding environment [1]. SCs 
are difficult to classify owing to a lack of defined morpholo­
gic and molecular characteristics. However, they can be cla­
ssified according to their differentiation potential as follows 
[2]:

(1) Totipotent SCs: These SCs have the highest potential 
and can differentiate into any tissue type, regardless of 
origin. The zygote and morula are examples of this SC type. 

(2) Pluripotent SCs: These SCs can differentiate into cells 
from the 3 different germ cell layers and gonadal ridge but 
not into extra-embryonic tissues. An example is embryonic 
SCs (ESCs), which are a derivative of the inner cell mass of 
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the blastocyst. 
(3) Multipotent SCs: These SCs are capable of  self-

renewal and can differentiate into organ-specific cell types. 
Examples include hematopoietic SCs, mesenchymal SCs, and 
neural SCs.

(4) Unipotent SCs: These SCs can give rise to only one 
defined cell type, epithelial cells.

(5) Induced pluripotent SCs: These SCs are “reprogrammed” 
cells, i.e., differentiated cells that are manipulated in the labo­
ratory to express genes that are normally present in ESCs 
and that therefore behave like ESCs. Induced pluripotent 
SCs can differentiate into cells of all organs and tissues.

When tissue damage occurs, SCs, which are normally 
quiescent, become stimulated to undergo cellular division 
and enhance cellular regeneration. The microenvironment of 
SCs, also known as the niche, is crucial for this process. The 
niche properties, including proximity to the bloodstream, the 
presence of certain cytokines and growth factors, and low 
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oxygen tension and other physiochemical properties, allow 
optimal interaction between SCs and their neighboring 
stromal or epithelial cells and the extracellular matrix [3]. 

ERECTILE DYSFUNCTION

Erectile dysfunction (ED) is defined as the inability 
to attain or maintain a penile erection for satisfactory 
sexual intercourse [2]. ED can significantly impair the 
quality of life and relationships of men and their partners 
[4]. The estimated prevalence of ED is about 20% of men 
aged 40 years and older, with a higher prevalence among 
older men [5]. There are several management options for 
ED, including lifestyle modifications, pharmacotherapy 
(including oral phosphodiesterase-5 inhibitors [PDE5Is], 
intraurethral alprostadil, intracorporal injections, vacuum 
devices, and surgery [including penile revascularization and 
penile implants]). Despite the efficiency of many of these 
modalities, limitations to their use exist, including different 
drug interactions (especially PDE5Is with cardiovascular 
medications), intolerance to side effects, cost, and that 
not all patients achieve a satisfactory outcome [6]. Apart 
from a successful revascularization, these modalities offer 
symptomatic relief  rather than a cure for the disease, 
spurring interest in developing a curative treatment for ED, 
including SC therapy [7].

1. Mechanism of ED varies according to the cause
Aging is associated with increased resistance to penile 

blood flow and diminished response to cavernosal nerve 
stimulation [8]. In addition, nitric oxide (NO) levels decrease 
as a result of high levels of reactive oxygen species, causing 
endothelial dysfunction [9]. Structural changes also may 
occur with aging, including replacement of smooth muscles 
with collagen fibers and degeneration of elastic fibers [10]. 

Metabolic syndrome constitutes diabetes mellitus (DM), 
hypertension, and dyslipidemia. DM is associated with 
decreased cavernosal NO, endothelial cells, and smooth 
muscles [11]. Hyperlipidemia is associated with lower levels 
of cavernosal NO, with subsequent neuronal and endothelial 
dysfunction [12]. 

Following radical prostatectomy (RP) for prostate can­
cer treatment, cavernous nerve injury may ensue. Alth­
ough nerve-sparing RP results in a lower incidence of post­
surgery ED, about 20% of patients still experience ED at 
2 years following a nerve-sparing procedure [13]. This may 
be attributed to neurapraxia, diminished NO production, 
smooth muscle apoptosis, and penile fibrosis [14]. Radiation-
based therapies are thought to cause ED via a similar 

mechanism [15].

2. Potential role of SC therapy in ED
Several cell types have been studied in the treatment of 

ED. ESCs improve erectile function in neurogenic ED [16]. 
However, ethical concerns have limited further research 
using this cell type. One study showed that vascular endo­
thelial growth factor (VEGF)-transfected endothelial proge­
nitor SCs improved erection in diabetic rats [17]. Similarly, 
several preclinical studies have shown the beneficial effect 
of bone marrow-derived SCs (BMSCs) on erectile function 
in different rat models, including models of DM, cavernous 
nerve injury, and aging [18-20]. Another SC type used in ED 
treatment research is skeletal muscle-derived SCs (SKMSC). 
These SCs can be easily obtained through muscle biopsy and 
have been shown to improve erectile function in cavernous 
nerve injury and aging ED rat models [21,22]. Neural crest 
SCs have shown the potential to differentiate into smooth 
muscle cells and endothelial cells in the rat penis [23]. 
Adipose tissue-derived SCs (ADSCs) are the most widely 
used type of SC in ED [7]. They improve erectile function by 
promoting angiogenesis and through direct transformation 
to endothelial cells, smooth muscle cells, and neurons and 
also through the release of stimulatory cytokines such as 
VEGF and fibroblast growth factor [24-26]. Testicular and 
human urine SCs have been also studied [27]. 

3. Methods of SC delivery
SC performance may be potentiated by modifying the 

characteristics of the cells by manipulating their genes or 
by incubating them with scaffolds, growth factors, or other 
substances. The therapeutic effect of SC injection may be 
via migration of these cells to the injury site [28]. Different 
routes have been suggested for delivery of SCs. Intravenous 
injection of ADSCs showed improvement of erectile function 
[28]. Moreover, intracorporal SC delivery for ED treatment is 
popular, being easy and successful. The regenerative effect 
of SCs is achieved by either secreting growth factors into the 
bloodstream or migrating to major pelvic ganglia [7]. Direct 
injection of SCs into the major pelvic ganglia has not been 
studied extensively despite their regenerative effect because 
of difficulties in the injection process [16,29]. Periprostatic in­
jection with or without simultaneous intracorporal injection 
has also been tried [30-32]. Intraperitoneal injection of SCs 
was less effective than intracorporal injection in restoring 
erectile function in a cavernous nerve injury mouse model 
[33].
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PEYRONIE’S DISEASE

Peyronie’s disease (PD) is an acquired connective tissue 
disease of the tunica albuginea of the corpus cavernosum, 
characterized by extensive fibrosis and plaque formation. 
PD can result in significant physical and psychological 
morbidity; men may suffer incapacitating pain and defor­
mities that may prevent intercourse and reduce satisfaction, 
with adverse impacts on partner relationships [34].

1. Mechanism of PD
The exact pathogenesis of  PD is unknown. The most 

widely accepted theory is repeated microvascular trauma 
to the erect penis resulting in inflammation, disruption of 
the elastic fibers, and deposition of fibrin [35]. Some studies 
related vascular trauma to osteoid formation via osteoblast-
like cells originating from the vascular lumen [36]. More 
recent reports showed that upregulation of certain genes, 
namely, osteoblast specific factor 1, may be responsible 
for plaque calcification [37]. Another theory is cavernosal 
hypoxia, which induces collagen deposition and fibrosis. 
This may explain the penile morphological changes and the 
development of PD following RP [38]. Transforming growth 
factor (TGF)-β1 may play an important role in the induction 
of collagen production by fibroblasts and myofibroblasts in 
the development of PD plaques [35]. Prolonged inflammation 
causes the formation of dense fibrotic plaques, which may 
progress to calcification or ossification. The exact mechanism 
by which tissue mineralization occurs remains uncertain [39]. 

2. Potential role of SC therapy in PD
Regenerative urology represents a novel method with 

potential benefits in the treatment of PD with the use of 
mesenchymal SC therapy [40]. The external location of the 
penis makes administration of local SC therapy technically 
feasible and easy. Moreover, pluripotent mesenchymal 
SCs are readily available, and their use avoids the ethical 
issues associated with the use of  embryonic SCs. Also, 
autologous cells may be used, avoiding the issue of antigenic 
incompatibility [41]. ADSCs may be the most widely used 
of the mesenchymal SCs, as they are abundant and easily 
accessible [41]. The exact mechanism of action of  ADSCs 
remains unclear; SCs may differentiate and replace the 
damaged tissue, increase the local production of cytokines 
and growth factors, decrease inflammation and oxidative 
stress, or modulate the extracellular matrix [42]. One 
interesting finding is that ADSCs seem to migrate to the 
site of injury, probably in response to cytokine signaling [43]. 
In rats treated with intratunical injections of TGF-β1, an 

established model for PD, ADSCs inhibited the development 
of PD. ADSCs decreased disordered collagen type III and 
elastin tissues (common in PD plaques) [44], which could be 
the basis for future research for their use in the treatment 
of PD in humans and the hope of interrupting the disease 
pathogenesis before it actually manifests.

INFERTILITY

1. Mechanism of infertility
Anticancer treatment, in the form of surgery, cytotoxic 

chemotherapy, novel targeted therapy, immunological the­
rapy, and radiotherapy, may cause persistent damage to 
germ cells, somatic cells critical to germ cell survival and 
maturation such as Sertoli cells, and Leydig cells, which are 
critical for testosterone production. The extent of damage 
depends on the type of cancer, age, and treatment modality 
[45]. Cytotoxic therapy disrupts spermatogenesis by targeting 
spermatogonial SCs [46].

2. Potential role of SCs in the treatment of infertil-
ity
Isolation and cryopreservation of spermatogonial SCs 

from the prepubertal testicle prior to cytotoxic therapy 
may provide hope for children facing a sterilizing therapy. 
This technique requires a testicular biopsy followed by 
cryopreservation. Afterwards, spermatogonial SCs may be 
used for induction of in vitro spermatogenesis or autologous 
transplantation into the patient's own testes. This procedure 
was successfully replicated in many animal models [47]. 

URINARY INCONTINENCE

Urinary incontinence (UI) is defined as the involuntary 
loss of urine. It affects nearly 200 million people around the 
world. UI affects women 2 to 3 times more than men until 
the age of 80 years, after which the prevalence becomes 
equal in men and women. Nearly 50% of  women above 
the age of 20 years will experience UI, and 50% of those 
will suffer from stress urinary incontinence (SUI). Other 
types of incontinence include urge UI and mixed UI. Oral 
pharmacotherapy usually fails in ameliorating SUI, and 
more effective, although invasive, surgical options such as a 
urethral sling may become necessary. Therefore, there is a 
need to develop less invasive alternative treatments for this 
common condition, and SC therapy represents a promising 
avenue [48]. 

The urethra is a multilayered structure composed of the 
epithelium, connective tissue, striated and smooth muscles, 
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and small blood vessels [49]. Striated and smooth muscle cells 
were found to be markedly reduced in animal models of SUI 
[49], and because SCs can differentiate into either muscle 
type, several studies have utilized SCs in the treatment of 
SUI to replenish those cells [50]. Furthermore, SCs secrete 
musculogenic and angiogenic growth factors that can 
further enhance their regenerative effect [50]. ADSCs were 
also found to improve urethral connective tissue, likely 
through the production and processing of  elastin and 
collagen [51]. 

1. Preclinical studies
The initial concept behind cell-based therapy for SUI 

involved the use of  skeletal myoblasts to replace the 
deficient urethral sphincter [52]. The idea then evolved into 
the use of SCs to substitute for myoblasts. Yiou et al. [53] 
are credited with the first utilization of SKMSCs in SUI 
in 2002. From there, SKMSCs were utilized exclusively in 
SUI preclinical studies until 2010 (Table 1). Since then, five 
preclinical studies have utilized BMSCs [54-58]. One of those 
studies was not a typical SC study in that the SCs were 
seeded in a degradable silk scaffold, which was then used 
as a sling for the urethra [57]. Umbilical cord blood SCs 
were also used in one preclinical trial [59]. More recently, 
seven preclinical studies utilized ADSCs in SUI [51,60-
65], including one study in which ADSCs with silk fibroin 
microspheres were used as a bulking agent [65]. Human 
amniotic fluid-derived SCs have been used in 3 studies of 
mouse SUI models [66-68]. All SC types used have produced 
improvement in SUI. 

Most preclinical studies on SC treatment for SUI used 
rats as an animal model. However, several studies utilized 
mice [66-68], including the first study by Yiou et al. [53], and 
one study used monkeys [69]. Different techniques have been 
performed to establish SUI animal models. A sphincteric 
injury model has been developed using cauterization, injec­
tion of myotoxin, or electrocoaugulation. Pudendal or sciatic 
nerve injury models have also been developed by using 
crush injury or transection. The delivery, vaginal distension, 
and ovariectomy animal model is the most widely used 
animal model for birth injury [48,70-72]. All these models 
suffer from their short durability of 2 to 3 weeks [73-75]. 
Administration of SCs in SUI preclinical studies has been 
through periurethral injection. In one study by Lin et al. 
[51], both periurethral and intravenous routes were utilized, 
and both routes demonstrated improvement of  urinary 
continence. 

Functional and histological assessments are used to 
assess the outcome of SC use in SUI. Functional assessment 

is typically achieved by either measuring leak point 
pressure by use of the Crede or vertical tilt table method 
or through electrical stimulation of the urethral sphincter 
neurovascular bundle [48]. The purpose of  histological 
assessment is to locate the SCs, identify SC differentiation, 
and assess for tissue improvement. Histological assessment is 
typically done by sacrificing the animal and harvesting the 
urethral tissue, followed by staining with H&E or trichrome. 
To identify possible differentiation of the transplanted SCs, 
immunohistochemical and immunoelectron microscopy were 
done in several studies [48]. 

2. Clinical studies
Five clinical trials, done by the same group of researchers, 

have examined the effect of injected SKMSCs in male and 
female UI between 2007 and 2008. Those studies reported 
80% to 90% improvement in UI [61,76-80]. However, two of 
those trials were later retracted, citing ethical concerns 
[79,80]. Carr et al. [81] showed that 5 out of 8 women with 
SUI achieved total continence using SKMSCs. Lee et al. [59] 
demonstrated 70% to 80% improvement of continence in 39 
female patients with SUI by using cord blood SCs . A small 
case series utilizing ADSCs for SUI was later retracted for 
unknown reasons [82]. Using SKMSCs in 12 female patients 
with SUI, Sebe et al. [83] showed improvement in 10 of 12 
women, but worsening of SUI in 2 patients. The typical in­
jection method in clinical trials has been transurethrally, 
although Carr et al. [81] utilized both transurethral and peri­
urethral routes and showed improvement in incontinence 
with both routes. In a small pilot study of 3 male patients 
with SUI, Yamamoto et al. [84] showed an improvement 
in SUI by using ADSCs at 6 months. Another study using 
ADSCs showed 60% improvement in SUI in 8 of 11 male 
patients at 1 year [85]. A Polish study with a longer follow-
up of 2 years reported 75% improvement in 16 female pa­
tients with SUI with the use of  SKMSCs, with 50% of 
patients achieving complete continence [86]. Most recently, 
Kuismanen et al. [87] showed improvement of SUI in 3 of 5 
female patients at 1 year of follow-up with the use of ADSCs 
with collagen gel as a bulking agent. Functional assessment 
in clinical trials has been through measuring pad weights, 
bladder diaries, and quality of life assessment, in addition to 
urodynamic study findings such as peak flow rate, postvoid 
residuals, and maximal urethral closing pressure [48]. 

3. Future directions
ADSCs represent an easier SC type to obtain given 

the availability of adipose tissue and ease of acquisition. 
Therefore, future use of  SCs in UI would probably uti­
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lize ADSCs more than other SC types. Current SUI 
animal models have the disadvantage of short durability. 
Development of  more durable, chronic-type SUI animal 

models is important to accurately determine the therapeutic 
effects of SCs. The development of induced pluripotent SCs 
represents a milestone in SC research, and utilization of this 

Table 1. Stem cell studies for urinary incontinence

Source
Year of 

publication
Animal model/patients Stem cell type Injection method

Yiou et al. [53] 2002 Sphincter injury mice Autologous SKMSC Periurethral
Lee et al. [88] 2003 Sciatic nerve transection rats Allogeneic SKMSC Periurethral
Yiou et al. [89] 2003 Sphincter injury rats Autologous SKMSC Periurethral
Cannon et al. [90] 2003 Sciatic nerve transection rats Allogeneic SKMSC Periurethral
Chermansky et al. [91] 2004 Sphincter cauterization rats Allogeneic SKMSC Periurethral
Lee et al. [92] 2004 Pudendal nerve transection rats Allogeneic SKMSC Periurethral
Yiou et al. [93] 2005 Sphincter injury rats Autologous SKMSC Periurethral
Kwon et al. [94] 2006 Sciatic nerve transection rats Allogeneic SKMSC Periurethral
Kim et al. [95] 2007 Sciatic nerve transection nude rats Human SKMSC Periurethral
Mitterberger et al. [76] 2007 123 Female patients Autologous SKMSC Transurethral
Mitterberger et al. [77] 2008 63 Male patients Autologous SKMSC Transurethral
Mitterberger et al. [78] 2008 20 Female patients Autologous SKMSC Transurethral
Carr et al. [81] 2008 8 Female patients Autologous SKMSC Transurethral/ 

periurethral
Hoshi et al. [96] 2008 Periurethral injury rats Allogeneic & xenogeneic  

rodent SKMSC 
Periurethral

Furuta et al. [97] 2008 Pudendal nerve transection nude rats Human SKMSC Periurethral
Lin et al. [51] 2010 Vagina distension rats Autologous ADSC Periurethral & IV
Fu et al. [60] 2010 Vagina distension rats Allogeneic ADSC Periurethral
Kinebuchi et al. [55] 2010 Sphincter injury rats Autologous BMSC Periurethral
Lim et al. [98] 2010 Sphincter injury rats Human CBSC Periurethral
Lee et al. [59] 2010 39 Female patients Allogeneic CBSC Periurethral
Zou et al. [57] 2010 Sciatic nerve transection rats BMSC on scaffold Sling surgery
Xu et al. [99] 2010 Pudendal nerve transection rats Allogeneic SKMSC Periurethral
Zhao et al. [63] 2011 Pudendal nerve transection rats Autologous ADSC Periurethral
Kim et al. [56] 2011 Pudendal nerve transection rats Allogeneic BMSC Periurethral
Corcos et al. [54] 2011 Pudendal nerve transection rats Allogeneic BMSC Periurethral
Wu et al. [62] 2011 Pudendal nerve transection rats Allogeneic ADSC Periurethral
Watanabe et al. [61] 2011 Pelvic nerve transection rats Allogeneic ADSC Periurethral
Sebe et al. [83] 2011 12 Female patients Autologous SKMSC Endourethral
Yamamoto et al. [84] 2012 3 Male patients Autologous ADSC Transurethral
Kim et al. [66] 2012 Pudendal nerve transection mice Human AFSC Periurethral
Li et al. [64] 2012 Vagina distension rats Autologous ADSC Periurethral
Chun et al. [67] 2012 Pudendal nerve transection mice Human AFSC Periurethral
Badra et al. [69] 2013 Pudendal nerve transection monkeys Autologous SKMSC Periurethral
Stangel-Wojcikiewicz 

et al. [86]
2014 16 Female patients Autologous SKMSC Transurethral

Dissaranan et al. [58] 2014 Vagina distension rats Allogeneic BMSC Periurethral
Gotoh et al. [85] 2014 11 Male patients Autologous ADSC Transurethral
Shi et al. [65] 2014 Pudendal nerve transection rats Autologous ADSC with  

silk fibroin microspheres
Periurethral

Chun et al. [68] 2014 Pudendal nerve transection mice Human AFSC Periurethral
Kuismanen et al. [87] 2014 5 Female patients Autologous ADSC with  

collagen gel
Transurethral

SKMSC, skeletal muscle-derived stem cell; ADSC, adipose tissue-derived stem cell; BMSC, bone marrow-derived stem cell; CBSC, umbilical cord 
blood stem cell; AFSC, amniotic fluid-derived stem cell; IV, intravenous.
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technology in urology should be a future goal. More clinical 
trials recruiting a larger number of patients are needed, 
and they should adhere to the highest standards of ethical 
considerations.
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