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Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known
about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored
anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by
using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E

2
(PGE

2
),

downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished
mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-𝛼, and cyclooxygenase- (COX-) 2
in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced
NF-𝜅B (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found
that Src, Syk, IRAK1, and IRAK4 responsible for NF-𝜅B and AP-1 activation were identified as the direct molecular targets of
KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-
inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-𝜅B and AP-1.

1. Introduction

Inflammation is an innate immune response that protects the
human body from chemicals and infectious microorganisms
[1]. This response is comprised of pain, heat, swelling, and
redness. At the molecular level, various cytokines (e.g.,
tumor necrosis factor- (TNF-) 𝛼), hydrolytic enzymes, toxic
molecules (e.g., nitric oxide (NO) and reactive oxygen species
(ROS)), and mediators (e.g., prostaglandin E

2
(PGE
2
)) are

released from inflammatory cells [2, 3]. Many complicated

biochemical processes are required to trigger the cellular
inflammatory response.The activation of pattern recognition
receptors (e.g., Toll-like receptors (TLRs)) is reliant on asso-
ciation with counter ligands such as lipopolysaccharide (LPS)
and peptidoglycan (PGN) [4]. Then, many different intracel-
lular signaling cascades are initiated via two major adaptor
molecules (Toll/Il-1 receptor-domain-containing, adapter-
inducing interferon-𝛽 (TRIF), and myeloid differentiation
response gene 88 (MyD88)) generated to eventually acti-
vate inflammation-regulatory transcription factors including
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nuclear factor- (NF-) 𝜅B and activator protein- (AP-) 1 to
express inflammation-mediating genes encoding inducible
NO synthase (iNOS), cyclooxygenase-2 (COX-2), cytokines,
and chemokines [5, 6].

Even though inflammatory events are one of critical
defensive ways in human body, prolonged levels of inflam-
mation somehow cause organ damage leading to loss of
functions and their related diseases such as cancer, diabetes,
and atherosclerosis [7, 8]. However, the knowledge as to how
inflammation can induce tissue damage is still not fully
understood. Oxidative stress accompanied by sustained
inflammation is considered as major causing factor in gen-
eration of organ damage. This led us to the fact that antiox-
idative agents could be functional in preventing such damage
[9]. Since toxic radicals are not the only factor inducing
inflammation-mediated functional damage, it is needed that
other pathological pathways such as cellular inflammatory
signaling should be also targeted for treating chronic inflam-
matory diseases [10, 11]. These points indicate that anti-
inflammatory remedy to treat acute and chronic inflamma-
tory responses should include additional pharmacological
action to radical scavenging activity.

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-
1-benzopyran-4-one, KF, Figure 1(a)) is a representative poly-
phenolic compound in nature [12]. This compound is highly
contained in most edible herbal plants such as tea, fruits,
and vegetables [13]. These include Allium cepa (onion),
Camellia sinensis (tea), Citrus paradisi (grapefruit), Fragaria
vesca (strawberry), Lactuca sativa (lettuce), and Morinda
citrifolia (Indian mulberry) as well as medicinal plants such
as Cerbera manghas [13–15]. Owing to numerous pharma-
cological studies due to its popularity, it has been reported
that this compound is able to display antioxidative, anti-
cancer, anti-inflammatory, and antiaging properties [16–18].
By molecular approaches of KF, some of KF target proteins
have been identified. For example, kaempferol was revealed
to be skin protective by suppressing kinase activities of
ribosomal S6 kinase, mitogen, and stress-activated protein
kinase, which are activated by UV irradiation, via compe-
tition with ATP at ATP-binding pocket [19]. It was also
proposed that kaempferol is effective in inhibiting cancer
progression through antagonizing selective estrogen-related
receptors alpha and gamma [20]. Furthermore, epidermal
growth factor-induced neoplastic transformation of mouse
epidermal JB6 P+ cells was reduced by KF through low-
ering phosphatidylinositol 3-kinase (PI3K) activity [21]. In
contrast to these results, molecular targets identified in anti-
inflammatory action of KF were not reported yet, although
NF-𝜅B and AP-1 are known as target pathways of KF [22–26].
Thus, most of reports simply suggested that the phosphory-
lation of mitogen activated protein kinases (MAPK) such as
extracellular-signal-regulated kinase 1/2 (ERK1/2), p38, and
c-Jun N-terminal kinase (JNK) and the phosphorylation of
inhibitor of 𝜅B kinase (IKK𝛼/𝛽), which were critical steps
for NF-𝜅B and AP-1 activations, were remarkably reduced by
KF treatment in cellular and tissue levels [22]. In view of the
fact that flavonoids can be considered as anti-inflammatory
remedy due to their multiple pharmacological actions, it is
important for us to understand as to which molecular targets

can be contributed to their anti-inflammatory responses. In
the present study, therefore, we aimed to expand the under-
standing levels of KF-mediated anti-inflammatory process by
identifying the molecular targets regulating LPS-stimulated
macrophages.

2. Materials and Methods

2.1.Materials. KF, indomethacin (Indo), prednisolone (Pred),
N-nitro-L-arginine-methyl ester (L-NAME), ranitidine, pol-
yethylenimine (PEI), arachidonic acid, 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (a tetrazole)
(MTT), sodium nitroprusside (SNP), sodium dodecyl sulfate
(SDS), dimethyl sulfoxide (DMSO), pam3CSK, dihydrorho-
damine (DHR) 123, and lipopolysaccharide (LPS, E. coli
0111:B4) were purchased from Sigma Chemical Co. (St. Louis,
MO). Piceatannol (Picea), PP2, SB203580 (SB), and SP600125
(SP) were obtained from Calbiochem (La Jolla, CA). The
enzyme immune assay (EIA) kits that were used to determine
PGE
2
levels were purchased from Amersham (Little Chal-

font, Buckinghamshire, UK). Fibronectin (FN), fetal bovine
serum (FBS), penicillin, streptomycin, TRIzol Reagent, and
RPMI1640 were obtained from GIBCO (Grand Island, NY).
RAW264.7, U937, and HEK293 cells were purchased from
ATCC (Rockville,MD). All other chemicals used in this study
were of analytical grade of Sigma Chemical Co. Phosphospe-
cific or total antibodies that were raised against p65, p50, c-
Fos, c-Jun, inhibitor of 𝜅B𝛼 (I𝜅B𝛼), Src, spleen tyrosine kinase
(Syk), p85, ERK, JNK, p38, mitogen activated protein kinase
(MKK)3, MKK4, interleukin-1 receptor-associated kinase 1
(IRAK1), IRAK4, transforming growth factor 𝛽-activated
kinase-1 (TAK1), Akt, I𝜅B𝛼, Myc, lamin A/C, and 𝛽-actin
were obtained from Cell Signaling (Beverly, MA).

2.2. Construction of Expression Vectors. All constructs were
prepared by amplification using a typical culturemethodwith
competent E. coli (DH5𝛼). FLAG-MyD88, CFP-TRIF, and
Myc-Syk constructs were used as reported previously [27].
Luciferase constructs containing binding sites for NF-𝜅B and
AP-1 were used as reported previously [28]. All constructs
were confirmed by automated DNA sequencing.

2.3. Mice. Six-week-old C57BL/6 mice were purchased from
DAEHAN BIOLINK (Chungbuk, Republic of Korea) and
were housed in groups of 6–8 mice under a 12 h light/dark
cycle (lights on at 6 am). Water and pellet diets (Samyang,
Daejeon, Republic of Korea) were supplied ad libitum. Ani-
mals were cared for in accordance with the guidelines issued
by the National Institute of Health for the Care and Use
of Laboratory Animals (NIH Publication 80-23, revised in
1996). Studies were performed in accordance with guide-
lines established by the Institutional Animal Care and Use
Committee at SungkyunkwanUniversity (Suwon, Republic of
Korea; Approval ID: SKKUBBI 13-6-4).

2.4. Preparation of Peritoneal Macrophages. Peritoneal exu-
dates were obtained from C57BL/6 male mice (7-8 weeks old
and weighing 17–21 g) by lavage 4 days after intraperitoneal
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Figure 1: Continued.
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Figure 1:The effects of KF on the production of NO, PGE
2
, and TNF-𝛼 in macrophages, the neutralization of ROS, andmacrophage viability.

(a) Chemical structure of KF. (b, c, and d) RAW264.7 cells or peritoneal macrophages (1 × 106 cells/mL) were incubated with LPS (1𝜇g/mL)
under either single treatment (b, c, and d left panel) of KF, Indo, L-NAME, and Pred or combination treatment (d right panel) of KF with
Pred for 24 h. The supernatants were collected and the NO or PGE

2
concentrations in the supernatants were determined using the Griess

assay or EIA. (e) Effect of KF on cell-matrix protein adhesion was evaluated by using fibronectin (FN) coated conditions. U937 cells were
pretreated with KF and seeded on FN (50𝜇g/mL) coated plates for 4 h.The number of attached cells was determined by crystal violet staining.
(f) RAW264.7 cells preincubated with KF were treated with DHR123 (20𝜇M) in the presence or absence of SNP (0.25mM) for 2 h. The level
of radicals was determined by flow cytometric analysis. (g) RAW264.7 cells (1 × 106 cells/mL) were treated with KF or standard compounds
(Indo and L-NAME) for 24 h. Cell viability was evaluated using theMTT assay. All of the data are expressed as the mean ± SD of experiments
that were performed with six samples. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the normal or control groups.

injection of 1mL of sterile 4% thioglycollate broth (Difco
Laboratories, Detroit, MI) as reported previously [29]. After
the exudates were washed with RPMI1640 medium contain-
ing 2%FBS, peritoneal macrophages (1 × 106 cells/mL) were
plated in 100mm tissue culture dishes for 4 h at 37∘C in a 5%
CO
2
humidified atmosphere.

2.5. Cell Culture and Drug Preparation. RAW264.7 cells, a
murine macrophage cell line, and HEK293 cells were main-
tained in RPMI1640 media supplemented with 100U/mL of
penicillin, 100 𝜇g/mL of streptomycin, and 10% FBS.The cells
were grown at 37∘C and 5% CO

2
in humidified air. The stock

solutions of KF for the in vitro experiments were prepared
using DMSO.

2.6. Determination of NO and PGE
2
Production. After prein-

cubation of RAW264.7 cells or peritoneal macrophages (1 ×
106 cells/mL) for 18 h, the cells were treated with KF (0 to
100 𝜇M) or standard compounds (Pred, L-NAME or Indo)
for 30min and then further incubated with LPS (1 𝜇g/mL)
for 24 h. The inhibitory effects of KF on NO and PGE

2

production were determined by analyzing NO and PGE
2

levels using Griess reagents and an EIA kit, as previously
described [30, 31].

2.7. Cell Adhesion Assay. A U937 cell-fibronectin (FN) adhe-
sion assay was performed as reported previously [32, 33].
U937 cells (5 × 105 cells/well) pretreated with KF were seeded
on a fibronectin (50𝜇g/mL) coated plate and incubated for
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4 h [34]. After removing the unbound cells with PBS, the
attached cells were treated with 0.1% of crystal violet for
15min. The OD at 570 nm was measured with a SpectraMax
250 microplate reader.

2.8. Determination of ROS Generation. The level of intracel-
lular ROS was determined by a change in fluorescence result-
ing from the oxidation of the fluorescent probe, DHR123.
Briefly, 5 × 105 RAW264.7 cells were exposed to KF for
30min. After incubation, cells were then incubated with
SNP (0.25mM), an inducer of ROS production, at 37∘C
for 2 h. Cells were incubated with 20𝜇M of the fluorescent
probe DHR123 for 1 h at 37∘C. The degree of fluorescence,
corresponding to intracellular ROS, was determined using a
FACScan flow cytometer (Becton-Dickinson, San Jose, CA),
as reported previously [3, 33, 35]. Briefly, the RAW264.7
cells treated with KF, SNP, and DHR123 were washed with a
staining buffer (containing 2% rabbit serum and 1% sodium
azide in PBS) and incubated for a further 45min on ice. After
washing three times with staining buffer, stained cells were
analyzed on a FACScan flow cytometer (Becton-Dickinson,
San Jose, CA, USA).

2.9. Cell Viability Test. After preincubation of RAW264.7
cells (1 × 106 cells/mL) for 18 h, KF (0 to 100𝜇M) or stand-
ard compounds (L-NAME or Indo) were added to the cell
suspensions and incubated for 24 h. The cytotoxic effects of
KF were then evaluated using a conventional MTT assay,
as previously reported [36–38]. Three hours prior to culture
termination, 10𝜇L ofMTT solution (10mg/mL in phosphate-
buffered saline, pH 7.4) was added, and the cells were con-
tinuously cultured until the termination of the experiment.
The incubation was halted by the addition of 15% SDS
into each well, solubilizing the formazan. The absorbance at
570 nm (OD

570–630) was measured using a SpectraMax 250
microplate reader (BioTex, Bad Friedrichshall, Germany).

2.10. mRNA Analysis Using Quantitative Polymerase Chain
Reactions. In order to determine cytokinemRNA expression
levels, total RNA was isolated from LPS-treated RAW264.7
cells using TRIzol Reagent, according to the manufacturer’s
recommended instructions. Total RNA was stored at −70∘C
until use. Semiquantitative RT reactions were conducted as
previously reported [39, 40]. Quantification of mRNA was
performed by real-time RT-PCR with SYBR Premix Ex Taq
according to the manufacturer’s instructions (Takara, Shiga,
Japan) using a real-time thermal cycler (Bio-Rad, Hercules,
CA), as reported previously [41]. All of the primers (Bioneer,
Daejeon, Republic of Korea) used are indicated in Table 1.

2.11. Preparation of Cell Lysates and Nuclear Fractions for
Immunoblotting. RAW264.7 cells (5 × 106 cells/mL) were
washed 3 times in cold PBS containing 1mM sodium ortho-
vanadate and lysed in lysis buffer (20mM Tris-HCl, pH 7.4,
2mM EDTA, 2mM ethyleneglycotetraacetic acid, 50mM 𝛽-
glycerophosphate, 1mM sodium orthovanadate, 1mM dith-
iothreitol, 1% Triton X-100, 10% glycerol, 10 𝜇g/mL aprotinin,
10 𝜇g/mL pepstatin, 1mM benzimide, and 2mM PMSF) for

Table 1: Real-time PCR primers used in this experiment.

Name Sequence (5 to 3)
Real-time PCR
iNOS
F GGAGCCTTTAGACCTCAACAGA
R TGAACGAGGAGGGTGGTG

TNF-𝛼
F TGCCTATGTCTCAGCCTCTTC
R GAGGCCATTTGGGAACTTCT

COX-2
F GGGAGTCTGGAACATTGTGAA
R GCACATTGTAAGTAGGTGGACTGT

GAPDH
F CAATGAATACGGCTACAGCAAC
R AGGGAGATGCTCAGTGTTGG

30min, with rotation, at 4∘C. The lysates were clarified by
centrifugation at 16,000×g for 10min at 4∘C and stored at
−20∘C until needed.

Nuclear lysates were prepared using a three-step proce-
dure [42]. After treatment, the cells were collected with a
rubber policeman, washed with 1 × PBS, and lysed in 500𝜇L
of lysis buffer containing 50mM KCl, 0.5% Nonidet P-40,
25mM HEPES (pH 7.8), 1mM phenylmethylsulfonyl fluo-
ride, 10 𝜇g/mL leupeptin, 20𝜇g/mL aprotinin, and 100 𝜇M
1,4-dithiothreitol (DTT) on ice for 4min. Cell lysates were
then centrifuged at 14,000 rpm for 1min in amicrocentrifuge.
During the second step, the pellet (the nuclear fraction) was
washed once with wash buffer without Nonidet P-40. During
the final step, the nuclei were treated with an extraction
buffer containing 500mM KCl, 10% glycerol, and several
other reagents that were contained in the lysis buffer. The
nuclei/extraction buffer mixture was frozen at −80∘C and
then thawed on ice and centrifuged at 14,000 rpm for 5min.
The supernatant was collected as the nuclear extract.

Whole cell or nuclear lysates were then analyzed using
immunoblotting. Proteins were separated on 10% SDS-
polyacrylamide gels and transferred by electroblotting to a
polyvinylidene difluoride (PVDF) membrane. Membranes
were blocked for 60min inTris-buffered saline containing 3%
FBS, 20mM NaF, 2mM EDTA, and 0.2% Tween 20 at room
temperature.Themembranes were incubated for 60minwith
specific primary antibodies at 4∘C, washed 3 times with the
same buffer, and incubated for an additional 60min with
HRP-conjugated secondary antibodies. The total and phos-
phorylated levels of p65, p50, c-Fos, c-Jun, I𝜅B𝛼, Src, Syk, p85,
ERK, JNK, p38, MKK3, MKK4, IRAK1, IRAK4, TAK1, Akt,
I𝜅B𝛼, Myc, lamin A/C, and 𝛽-actin were visualized using an
ECL system (Amersham, Little Chalfont, Buckinghamshire,
UK), as reported previously [43].

2.12. DNA Transfection and Luciferase Reporter Gene Activ-
ity Assay. Overexpression experiment was performed with
HEK293 cells (1 × 106 cells/mL) by transfection of Myc-
Syk (1 𝜇g/mL) using the PEI method in 12-well plates, as
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reported previously [44, 45]. The cells were utilized for
the experiments 24 h after transfection. KF was additionally
treated to the cells before 12 h of termination. For reporter
gene assay, HEK293 cells (1 × 106 cells/mL) were transfected
with 1 𝜇g of plasmids containing NF-𝜅B-Luc, or AP-1-Luc,
as well as 𝛽-galactosidase, using the PEI method in 12-well
plates, according to the procedure that was outlined in a
previous report [44, 45]. Luciferase assays were performed
using the Luciferase Assay System (Promega, Madison, WI),
as previously reported [46].

2.13. In Vitro Kinase Assay with Purified Enzymes. In order
to evaluate the inhibition of the kinase activities of Src, Syk,
IRAK1, or IRAK4 using purified enzymes, the kinase profiler
service fromMillipore (Billerica, MA) was used. Purified Src,
Syk, IRAK1, or IRAK4 (human) (1–5mU) were incubated
with the reaction buffer in a final reaction volume of 25𝜇L.
The reaction was initiated by the addition of MgATP. After
incubation for 40min at room temperature, the reaction was
stopped by the addition of 5mL of a 3% phosphoric acid
solution. Ten microliters of the reaction was then spotted
onto a P30 Filtermat and washed three times for 5min in
75mMphosphoric acid and once inmethanol prior to drying
and scintillation counting.

2.14. Statistical Analyses. All of the data presented in this
paper are expressed as the means ± SD of experiments.
For the statistical comparisons, the results were analyzed
using either ANOVA/Scheffe’s post hoc test or the Kruskal-
Wallis/Mann-Whitney test. A 𝑃 value <0.05 was considered
to be a statistically significant difference. All of the statistical
tests were carried out using the computer program SPSS
(SPSS Inc., Chicago, IL). Similar experimental data were also
observed using an additional independent set of in vitro
experiments that was conducted using the same numbers of
samples or mice.

3. Results

3.1. Effect of KF on the Inflammatory Response. KF (50 and
100 𝜇M) inhibited the production of NO (26.7𝜇M as nitrite)
and PGE

2
(3.4 ng/mL) in LPS-treatedRAW264.7 cells relative

to basal levels of NO (0.53 𝜇M) and PGE
2
(0.098 ng/mL)

in resting cells up to 98% in a dose-dependent manner
(Figure 1(b) left panel). Similarly, increased levels of NO
(55.2𝜇M) in LPS-stimulated peritoneal macrophages relative
to basal levels (0.39 𝜇M) were also clearly reduced by KF
(Figure 1(b) right panel). Standard compounds (Pred, L-
NAME, and Indo) also displayed a clear dose-dependent
inhibitory pattern under the same NO and PGE

2
production

conditions (Figures 1(c) and 1(d) left panel), as reported
previously [47], indicating that our experimental conditions
were consistent with the literature. Interestingly, combination
treatment (40.6% as percentage inhibition) of KF with Pred
displayed additive inhibitory activity compared to single
treatment of these compounds (KF (19.5%) and Pred (14.2%))
(Figure 1(d) right panel), indicating that the inhibitory mode

of action by KF might be different from that of glucocor-
ticoid drugs (e.g., prednisolone). Moreover, KF also dose-
dependently downregulated the adhesion of U937 cells to FN
(Figure 1(e)). Finally, since KF is a representative antioxidant
flavonoid, we also confirmed its radical scavenging activity
using SNP-induced ROS generation in RAW264.7 cells.
Expectedly, KF showed strong antioxidative activity at both
50 and 100 𝜇M (Figure 1(f)), suggesting that these doses
of KF are pharmacologically effective. Finally, MTT assays
were used to determine if KF and other drugs suppress the
production of NO, PGE

2
, and other radicals without altering

cell cytotoxicity. As Figure 1(g) shows, therewas no significant
reduction in cell viability by the drugs, implying that the
above effects were not derived by nonspecific cytotoxicity.

3.2. Effect of KF onTranscriptional Activation of the Inflamma-
tory Response. Since KF blocked the release of inflammatory
mediators from LPS-stimulatedmacrophages, we next exam-
ined whether the inhibition occurred at the transcriptional
level. For this purpose, the mRNA levels of inflammatory
genes were measured by real-time PCR. As Figure 2(a)
depicts, KF inhibited the expression of genes encoding
COX-2, TNF-𝛼, and iNOS in a dose-dependent manner. In
agreement with this result, KF suppressed the nuclear levels
of major transcription factors (c-Jun at 30, 60, and 120min;
c-Fos at 30 and 60min; p65 at 15, 30, and 60min; and p50
at 120min) in LPS-treated RAW264.7 cells (Figure 2(b) left
panel). At 60min, the nuclear levels of c-Jun, c-Fos, and
p65 were reduced by KF in a dose-dependent manner as
well (Figure 2(b) right panel). Based on luciferase reporter
gene assays, it was revealed that the transcriptional regulatory
activity of NF-𝜅B and AP-1 was suppressed by 50 and 100 𝜇M
of KF (Figure 2(c)), indicating that KF modulates the DNA
binding ability of NF-𝜅B and AP-1.

3.3. Effect of KF on Upstream Signaling for NF-𝜅B and AP-1
Activation. After confirming that both the nuclear transloca-
tion of p65 andp50 and their promoter binding activitieswere
strongly suppressed (Figure 2), we next examined the effect
of KF on upstream signaling for NF-𝜅B activation. First, the
time dependent inhibitory pattern of I𝜅B𝛼 phosphorylation
was investigated [39, 48]. Interestingly, KF decreased the
phosphorylation of I𝜅B𝛼 at 5min and marginally suppressed
this activity at 30min (Figure 3(a)). Since the early phospho-
rylation of I𝜅B𝛼 is mediated by the early activation of protein
tyrosine kinases Syk and Src, we confirmed the inhibitory
activity of KF on the autophosphorylation patterns of Syk
and Src. As Figure 3(b) shows, the phosphorylation of Src
and Syk was suppressed by KF at 5min. Moreover, the
phosphorylation of p85/PI3K, a downstream substrate of Syk
and Src involved in regulating the NF-𝜅B activation pathway
[2, 49, 50], was also similarly diminished (Figure 3(b) left
panel), indicating that the Syk/Src-mediated NF-𝜅B activa-
tion pathway could be targeted by KF. To determine whether
KF is able to directly suppress the kinase activities of Src and
Syk, enzyme assays were conductedwith purified Src and Syk.
Intriguingly, 100𝜇MofKF clearly blocked the activity of these
enzymes (Figure 3(c)). Using an overexpression strategy with
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Figure 2: The effects of KF on iNOS, COX-2, and TNF-𝛼 gene expression and transcriptional regulation in LPS-treated RAW264.7 cells. (a)
RAW264.7 cells (5 × 106 cells/mL) were incubated with LPS (1𝜇g/mL) in the presence or absence of KF for 6 h. iNOS, COX-2, and TNF-𝛼
mRNA levels were determined using real-time PCR. (b) RAW264.7 cells (5 × 106 cells/mL) were incubated with LPS (1𝜇g/mL) in the presence
or absence of KF for the indicated times. After preparing the nuclear fractions, the translocated levels of total transcription factors (p65, p50,
c-Fos, and c-Jun) were identified using immunoblot analyses. (c) HEK293 cells cotransfected with the NF-𝜅B-Luc or AP-1-Luc (1 𝜇g/mL each)
and𝛽-gal (as a transfection control) plasmid constructs were treatedwithKF in the presence or absence of adaptormolecule (MyD88 or TRIF)
for 12 h. Luciferase activity was determined using luminometry. Relative intensity was calculated using total levels by the DNR Bio-Imaging
System. All of the data are expressed as the mean ± SD of experiments that were performed with six or three (b) samples. ∗𝑃 < 0.05 and
∗∗
𝑃 < 0.01 compared to the control group.

Syk, which showed an increased kinase inhibitory pattern,
we also validated that increased autophosphorylation levels
of Syk from overexpressed Myc-Syk were also decreased by
KF similar to inhibition levels by the Syk inhibitor piceatan-
nol (Picea) (Figure 3(d)). In addition, Syk-induced NF-
𝜅B mediated luciferase activity was also reduced by KF
(Figure 3(e)), indicating that Syk can be directly suppressed
byKF at the enzyme and related functional levels.Meanwhile,
the PP2 and Picea, inhibitors of Src and Syk, respectively,
exerted clear anti-inflammatory effects by diminishing the
production levels of NO and PGE

2
(Figure 3(f)).

Since LPS-induced translocation of c-Jun and c-Fos
(Figure 2(b) left panel) and MyD88-dependent AP-1 acti-
vation were reduced by KF, the inhibitory effect of KF on
upstream signaling for AP-1 activation was examined. As
Figure 4(a) shows, the phosphorylation of JNK and p38 was
inhibited by KF at 30 and 60min, indicating that the activity
of upstream kinases for JNK and p38 could also be regulated
by KF. In fact, KF suppressed the phosphorylation of MKK3
and MKK4 kinases at 5, 15, 30, and 60min (Figure 4(b)).
Because IRAK1, IRAK4, andTAK1 are known as the upstream
enzymes responsible for phosphorylatingMAPKkinases [51],
although these enzymes are also involved in the activation of
NF-𝜅B pathway, we investigated the phosphorylation pattern
of these proteins. Interestingly, the level of phospho-TAK1
was diminished at 5min, while the degradation of IRAK1
and IRAK4 at 2 and 3min by LPS was restored by treat-
ment with 50 and 100 𝜇M of KF, respectively (Figure 4(c)).
Finally, the ability of KF to directly suppress IRAK1 and
IRAK4 enzyme activity was examined using enzyme assays.

As expected, KF blocked the catalytic activity of IRAK1
and IRAK4 (Figure 4(d)), implying that these enzymes are
directly targeted and the protein tyrosine kinases Src and
Syk were suppressed (Figure 3(c)). Furthermore, inhibitors
(SB203580 and SP600125) of p38 and JNK pathways sig-
nificantly inhibited the production of PGE

2
but not NO

(Figure 4(e)), indicating that suppression of p38 and JNK by
KF could contribute to the decrease in PGE

2
production.

4. Discussion

KF, an abundant flavonoid, is involved in two target inhibitory
pathways in inflammation-inducing macrophages. KF inhib-
ited the nuclear translocation of the redox-specific tran-
scription factors, NF-𝜅B and AP-1 (Figure 2(b)), which play
critical roles in the induction of inflammatory genes [52].
These results strongly suggest that the upstream enzymes
regulating the translocational activation of NF-𝜅B and AP-
1 might be directly targeted by KF. In fact, immunoblotting
analyses, molecular biological approaches, and kinase assays
strongly indicate that KF is able to directly suppress the
kinase activities of Src, Syk, IRAK1, and IRAK4 (Figures
3(c) and 4(d)). In addition, a suppressive activity of KF
was linked to the suppression of subsequent downstream
pathways comprised of I𝜅B𝛼 or MKK3/4, JNK, and p38
(Figures 3(a) and 4(a), top panel, and Figure 4(b)), which
are involved in the modulation of NF-𝜅B and AP-1 activation
[2, 49].

Thus far, only a few papers have reported the molecular
pharmacological targets of KF. It was reported that the 90 kDa
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Figure 3:The effects of KF on NF-𝜅B activation signaling. (a and b) RAW264.7 cells (5 × 106 cells/mL) were incubated with LPS (1𝜇g/mL) in
the presence or absence ofKF for the indicated times. After preparing thewhole lysates, the levels of total or phosphorylated I𝜅B𝛼, Src, Syk, and
p85 were identified using immunoblot analyses. (c)The inhibitory effects of KF on Src and Syk activity were determined using a conventional
kinase assay with purified Src and Syk. (d) HEK293 cells transfected withMyc-Syk cDNA (1𝜇g/mL) for 24 h were treated with KF or Picea for
12 h. After preparing the whole lysates, the levels of total or phosphorylatedMyc, Syk, and 𝛽-actin were identified using immunoblot analyses.
(e) HEK293 cells cotransfected with the NF-𝜅B-Luc (1 𝜇g/mL each) and 𝛽-gal (as a transfection control) plasmid constructs were treated with
KF in the presence or absence of Myc-Syk for 12 h. Luciferase activity was determined using luminometry. (f) The inhibitory effects of PP2
or Picea on the production of NO or PGE

2
were examined using the Griess assay and EIA. Relative intensity was calculated using total levels

by the DNR Bio-Imaging System. All of the data are expressed as the mean ± SD of experiments that were performed with six or three (a, b,
c, and d) samples. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the control group.
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Figure 4: The effects of KF on AP-1 activation signaling. (a, b, and c) RAW264.7 cells (5 × 106 cells/mL) were incubated with LPS (1𝜇g/mL)
in the presence or absence of KF for the indicated times. After preparing the whole lysates, the levels of total or phosphorylated ERK, JNK,
p38, MKK3, MKK4, IRAK1, IRAK4, and TAK1 were identified using immunoblot analyses. (d) The inhibitory effects of KF on IRAK1 and
IRAK4 activity were determined using a conventional kinase assay with purified IRAK1 and IRAK4. (e) The inhibitory effects of SB or SP
on the production of NO or PGE

2
were examined using the Griess assay and EIA. Relative intensity was calculated using total levels by the

DNR Bio-Imaging System. All of the data are expressed as the mean ± SD of experiments that were performed with six or three (a, b, c, and
d) samples. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the control group.

ribosomal S6 kinase (RSK) and mitogen and stress-activated
protein kinase (MSK) proteins are directly suppressed by KF
[19]. Silent information regulator 2 (SIR2), a member of the
sirtuin family of NAD+-dependent histone deacetylases, was
also found as a direct target protein of KF [53]. KF also
suppressed the kinase activity of right open reading frame-
2 protein kinase [54]. Phosphatidylinositol 3-kinase was also
previously identified as a strong target of KF [21]. In addition
to protein kinases, cdc25A tyrosine phosphatase was also
inhibited by KF [55]. As a nonsignaling enzyme, fatty acid
amide hydrolase was also revealed to be suppressed by KF
[56]. Through a direct enzyme assay, we found additional
enzymes, including Syk, Src, IRAK1, and IRAK4 (Figures
3(c) and 4(d)), which are involved in the inflammatory
signaling events of activated macrophages and monocytes to
regulate their production of inflammatory cytokines [2, 49]
and 𝛽1/𝛽2 integrin-mediated cell migration and adhesion
[57]. Indeed, KF strongly suppressed the production and
expression of inflammatory mediates such as NO, PGE

2
,

and TNF-𝛼 in LPS-activated macrophages (Figures 1(b) and
2(a)). The adhesion event of U937 cells to FN was also dose-
dependently diminished by KF (Figure 1(e)). Interestingly,
the suppressive activities of these enzymes by KF, as mea-
sured by phosphorylation levels of the enzymes, were also
found in stomachs treated with HCl/EtOH and pancreas
exposed with LPS/CA (data not shown), implying that these
enzymes play a central role in many different types of in
vivo inflammatory symptoms, regardless of inflammatory
stimuli. In fact, it is known that damage-associatedmolecular
patterns including HMGB1 and ATP, which are released
by sterile, damaged conditions, and pathogen-associated
molecular patterns including LPS and peptidoglycan share
TLR signaling pathways to generate cellular inflammatory

responses [58, 59]. Thus, tissue and cellular damage that
occurs under both infected and sterile conditions can induce
the activation of NF-𝜅B and AP-1 via pattern recognition
receptors such as TLRs in a similar manner [58]. Previous
reports [60–62] and our data strongly indicate that the
activation of Src, Syk, IRAK1, and IRAK4 is present in both
in vitro and in vivo inflammatory models (Figures 3 and
4, data not shown). In addition, KF strongly inhibits the
phosphorylation and subsequent enzyme activity of Src, Syk,
IRAK1, and IRAK4, which is linked to its anti-inflammatory
action (Figures 3 and 4). Several papers have speculated
that KF might bind to the ATP binding sites of kinases,
increasing ATP levels attenuated by the inhibitory potency of
KF [54, 63], although identification of the amino acids of the
ATP binding domain that are affected by KF remains unclear
and needs further studies. This property could allow KF or
other flavonoids broad-spectrum pharmacological activities
in numerous molecular and cellular responses. It is known
that steroid-backbone drugs (e.g., prednisolone or saponins)
display variety of pharmacological actions by antagonizing
intracellular glucocorticoid receptor [64, 65]. However, the
fact that there is additive NO inhibitory activity during com-
bination treatment of KFwith prednisolone (Figure 1(d) right
panel) seems to indicate that KF-mediated direct enzyme
inhibition and steroid drug-mediated glucocorticoid receptor
antagonism are distinctive pharmacological actions.

In summary, we have shown that KF is capable of effect-
ively suppressing in vitro inflammatory responses as well as
its radical scavenging activity. In particular, it was identified
that KF serves as a direct inhibitor of Src, Syk, IRAK1, and
IRAK4, playing a central role in the activation of NF-𝜅B and
AP-1 as summarized in Figure 5. Since KF is included inmany
edible plants and fruits, we propose that KF-rich fractions
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from edible sources could be applied for the development of
functional foods with anti-inflammatory properties.
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