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Probabilistic estimation of cardiac electrophysiological model parameters serves an

important step toward model personalization and uncertain quantification. The expensive

computation associated with these model simulations, however, makes direct Markov

Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of

model parameters computationally intensive. Approximated posterior pdfs resulting from

replacing the simulation model with a computationally efficient surrogate, on the other

hand, have seen limited accuracy. In this study, we present a Bayesian active learning

method to directly approximate the posterior pdf function of cardiacmodel parameters, in

which we intelligently select training points to query the simulation model in order to learn

the posterior pdf using a small number of samples. We integrate a generative model into

Bayesian active learning to allow approximating posterior pdf of high-dimensional model

parameters at the resolution of the cardiac mesh. We further introduce new acquisition

functions to focus the selection of training points on better approximating the shape

rather than the modes of the posterior pdf of interest. We evaluated the presented

method in estimating tissue excitability in a 3D cardiac electrophysiological model in a

range of synthetic and real-data experiments. We demonstrated its improved accuracy

in approximating the posterior pdf compared to Bayesian active learning using regular

acquisition functions, and substantially reduced computational cost in comparison to

existing standard or accelerated MCMC sampling.

Keywords: probabilistic parameter estimation, high-dimensional Bayesian optimization, Gaussian process,

variational autoencoder, cardiac electrophysiological model

1. INTRODUCTION

With advanced technologies in medical imaging and image analysis, computational models can
now closely replicate the physiology of a human heart (Taylor and Figueroa, 2009; Morris et al.,
2016). As these models are virtual in nature, they have the potential to enable prediction, diagnosis,
and treatment planning of certain conditions of a patient heart with little to no harm to the patient
(Sermesant et al., 2012; Arevalo et al., 2016; Zahid et al., 2016; Prakosa et al., 2018; Cronin et al.,
2019). However, while the geometry of a specific patient heart can be depicted with increasing
accuracy, patient-specific physiology remains a challenge. A main difficulty arises from the need
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to customize patient-specific material properties (Taylor and
Figueroa, 2009; Neal and Kerckhoffs, 2010), which are typically
spatially varying throughout the 3D organ and may change
over time for the same individual. At the same time, they
often cannot be directly measured in high resolution, but have
to be estimated from relatively limited measurements. This
results in a challenging inverse problem for estimating high-
dimensional (HD) unknown parameters of a complex, nonlinear,
and computationally expensive forward model that relates the
unknown parameters to measurements.

There are two general approaches to this inverse problem:
deterministic optimization and probabilistic inference. In
deterministic optimization, we seek a single optimal value of
the unknown model parameter that will minimize the mismatch
between the model output and the measurement data (Sermesant
et al., 2012; Wong et al., 2012, 2015; Yang and Veneziani,
2015; Balaban et al., 2018; Mineroff et al., 2019; Barone et al.,
2020a,b). These estimates, however, do not take into account
the uncertainty in the measurement data, nor can they offer
insights into the presence of non-unique solutions that can
match the same data. These can be overcome by probabilistic
inference of the posterior pdf of the model parameters given
available measurements.

Existing approaches to the probabilistic estimation of model
parameters are generally based on Markov Chain Monte Carlo
(MCMC) sampling. The computation expense of the forward
simulations of these models, however, makes MCMC infeasible
due to the reliance on a large number of sampling, each requiring
a simulation run. Approaches to accelerating such sampling
can be loosely divided into two categories. On one hand, a
variety of hybrid sampling methods have been developed, which
accelerates random sampling using information about the target
pdf such as its gradient (Roberts et al., 1996; Neal, 2010)
and Hessian matrix (Martin et al., 2012). These information,
however, are often difficult to extract from the posterior pdf
involving a complex simulation model. On the other hand, it is
possible to construct a computationally efficient approximation,
i.e., surrogate model, of the expensive simulation process, such
that the related pdfs become substantially faster to sample.
These surrogate models may be physics-based reduced-order
modeling Lassila et al. (2013), or data-driven approximations
such as Gaussian process (GP) (Kennedy and O’Hagan, 2000;
Rasmussen, 2003) and polynomial chaos (Spanos and Ghanem,
1989; Xiu and Karniadakis, 2003; Marzouk and Najm, 2009).
Directly sampling the surrogate-based posterior pdf, however,
may lead to limited accuracy due to the difficulty to build
a globally accurate approximation of a complex nonlinear
simulation model. In our previous work, we attempted to
mitigate this issue by using this surrogate-based pdf to accelerate,
rather than replacing, the sampling of the actual pdf (Dhamala
et al., 2018a). Specifically, this was achieved by a two-stage
MCMC strategy where the surrogate-based pdf works as a
proposal distribution to increase the acceptance rate of sampling
(Dhamala et al., 2018a). While this ensures the accuracy of
posterior sampling, the reduction in the computation becomes
limited due to the fundamental reliance on sampling the original
pdf involving expensive simulation processes.

In this study, we develop a Bayesian active learning approach
to provide an accurate surrogate model of the posterior pdf
of simulation model parameters such that there is no need of
further MCMC sampling of the original computational-intensive
pdf. This is achieved with two key innovations. First, unlike
most existing approaches that rely on learning a surrogate of the
simulation model over the prior distribution of the parameter
space (Dhamala et al., 2018a), we propose to directly learn a
surrogate of the posterior pdf. We formulate this posterior pdf
estimation as an active learning problem where we intelligently
select a minimal number of training points focused on the
posterior support of the parameter space. Second, we present
new acquisition functions during the active learning to utilize the
shape of the posterior pdf to improve the selection of training
points. To enable this active posterior estimation over a high-
dimensional parameter space, we further combine it with our
previously developed approach that uses generative modeling of
the high-dimensional parameter space (Dhamala et al., 2018b) to
embed active learning of a high-dimensional posterior pdf into a
low-dimensional (LD) space.

While our method is generally applicable to posterior
estimation of HD parameters in complex models, in this study
it was applied to estimate tissue excitability as parameters of the
cardiac electrophysiological model. Experiments were performed
on three different groups of data: simulation data with a synthetic
setting of abnormal tissues, simulation data generated from a
high-fidelity biophysics model blinded to the model used in
the posterior estimation, and real data obtained from patients
with infarcts derived from in vivo voltage mapping data. In the
synthetic group, we compared the results with direct MCMC
sampling of the original posterior pdf, two-stage MCMCmethod
(Dhamala et al., 2017a), and direct MCMC sampling of the
surrogate pdf learned using regular Bayesian active learning.
The results showed that the presented method was able to use
0.6% computation of the direct or two-stage MCMC methods
to deliver an accurate estimation of the posterior pdf, with
significantly improved accuracy compared to using regular
Bayesian active learning. In the other two sets of experiments,
we evaluated and interpreted the mean, mode, and uncertainty of
the estimated tissue excitability using in vivomagnetic resonance
(MR) scar imaging or voltage mapping data.

The key contributions of this study can be summarized as:

1. We present a Bayesian active learning approach for fast
approximation of the posterior pdf of the parameters of
expensive simulation models, with acquisition functions
designed to improve the accuracy of the approximation in
order to remove the need of subsequentMCMC of the original
computationally expensive pdf.

2. We leverage our previously developed approach (Dhamala
et al., 2018b) to embed the active learning over HD space
into a LD manifold, enabling active posterior inference over
HD model parameters representing spatially varying tissue
excitability.

3. We thoroughly evaluated the performance of the presented
method in comparison with existing works in probabilistic
parameter estimation in cardiac electrophysiological models,
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both in synthetic data involving MCMC sampling as reference
data, and in real data involving MRI scar imaging and in vivo
voltage mapping as reference data.

The rest of the study is organized as follows. In section
2, we review related works in detail and in section 3, we
present background of this study. In section 4, we present
our methodological developments. We present experiments
and results for both synthetic and real data from the cardiac
electrophysiology system in section 5. Finally, we give some
concluding remarks with limitations and future scope.

2. LITERATURE REVIEW

2.1. Probabilistic Parameter Estimation in
Complex Models
For complexmodels where the posterior pdf of model parameters
is analytically intractable, the area of estimating parameters
largely depends onMCMC sampling. Metropolis-Hastings (MH)
sampling, Gibbs sampling, and many more classical MCMC
methods are developed in Metropolis and Ulam (1949), Hastings
(1970), Geman and Geman (1984), Gelfand and Smith (1990),
and Gelfand et al. (1992) and applied in different areas to estimate
parameter uncertainty (Andrieu et al., 2003). The reason for the
extensive use of MCMC is that it can deal with HD parameters,
non-linear relation between parameters and observations, and
noisy data. However, these properties also make it very slow
as, by design, the sampling takes a large number of simulations
to converge. With rapid developments of parallel computing,
parallel MCMC to accelerate the computation is proposed in
Brockwell (2006) and Byrd (2010), Wang (2014) but these can
improve neither the convergence rate nor reduce the number of
simulations needed. In exploring uncertainty on HD parameters,
reversible jump MCMC is used in Brooks (1998). Combination
of differential evolutions to have subspace exploration is used
in Laloy and Vrugt (2012), while non-differential sparse priors
are developed in Cai et al. (2018). Gradient and Hessian
information of the pdfs are used to accelerate sampling even
with poor initial models in Zhao and Sen (2019), although these
information are nontrivial to extract when the pdf contains
complex simulation models.

Alternatively, surrogate models have been widely employed
to generate a computational-efficient approximation of the
posterior pdf that can be faster to sample. Polynomial chaos
(Spanos and Ghanem, 1989; Xiu and Karniadakis, 2003; Knio
and Le Maitre, 2006) and GP (Kennedy and O’Hagan, 2000;
Rasmussen, 2003) are pioneers in surrogate modeling. In Adams
et al. (2008), Konukoglu et al. (2011), and Gramacy and Lee
(2008), Schiavazzi et al. (2016), to build posterior pdf, GP
surrogate is built of the pdf at first, and then, MCMC sampling
is performed from that to avoid expensive simulations. It is,
however, difficult to obtain an approximation of a complex
simulation model over the prior parameter space. As a result,
when direct sampling of the surrogate pdf is substantially more
efficient than sampling the original pdf, the accuracy is often
largely compromised (Dhamala et al., 2018a). Recently, hybrid
approaches are emerging that use the surrogate pdf to accelerate

rather than replace sampling. In Dhamala et al. (2018a), a two-
stagemodel is introduced where a GP surrogate of exact posterior
pdf is built in the first stage and is used to improve the acceptance
rate of candidate samples inMCMC sampling in the second stage.
In Dunbar et al. (2020), a three-stage model is presented for
uncertain quantification of a complex climate model parameters
where model calibration using Kalman inversion is performed in
the first stage, building GP surrogate to emulate parameter-to-
data map is performed in the second stage, and MCMC sampling
of the posterior pdf of the climate model parameters is performed
in the final stage. While these hybrid approaches improve the
accuracy of sampling, the reliance on sampling the original pdf
limits the extent to which the computation can be reduced.

2.2. Parameter Estimation Using Active
Learning
Popular active learning algorithms such as efficient global
optimization (Jones et al., 1998), famously known as Bayesian
optimization, have been merged with surrogate modeling to
estimate complex model parameters. In Bayesian optimization,
a GP surrogate is built to approximate the objective function
of the optimization, using a small number of sampling to
query the expensive objective function where the samples are
selected based on an acquisition function. In many areas such
as nuclear physics (Ekström et al., 2019), material science (Ueno
et al., 2016), and many more (Khosravi et al., 2019; Vargas-
Hernández et al., 2019; Duris et al., 2020), Bayesian optimization
is applied to estimate complex model parameters. However,
all these techniques are focused on deterministic optimization
to find a single optimal parameter value that best fits the
simulation output to measurement data without considering the
associated uncertainty.

2.3. Parameter Estimation in Personalized
Models
In the specific area of estimating parameters of patient-specific
models, existing studies can be classified into deterministic or
probabilistic approaches. There are many optimization methods
developed in the past few decades. Derivative free methods,
such as the Subplex method (Wong et al., 2015), Bound
Optimization BY Quadratic Approximation (BOBYQA) (Wong
et al., 2012), New Unconstrained Optimization Algorithm
(NEWUOA) (Sermesant et al., 2012), and hybrid particle swarm
method (Mineroff et al., 2019), have been used in estimating
cardiac model parameters. Derivative-based variational data
assimilation approaches have also been applied to estimate
cardiac conductivities in ventricular tissue (Yang and Veneziani,
2015; Barone et al., 2020b) and heterogeneous elastic material
properties in personalized cardiac mechanic model (Balaban
et al., 2018). Due to the computational expense associated with
the model simulation during optimization, model reduction
techniques such as Proper Generalized Decomposition (PGD)
have been used to accelerate the estimation of cardiac
conductivities in personalized cardiac electrical dynamics
(Barone et al., 2020a). These methods overall are focused on
finding a single value of cardiac model parameters that best fit the
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available data, lacking any uncertainty measure associated with
the parameters.

On the other hand, limited progress has been made in
the probabilistic estimation of personalized model parameters
where the uncertainty measure can be derived from their
posterior pdf. To reduce the extensive computation associated
with standard MCMC sampling, various approaches of reduced
modeling have been used to reduce the cost of forward simulation
and thereby accelerate the inverse estimation (Lassila et al.,
2013). Recent research reports building surrogate models using
methods like kriging (Schiavazzi et al., 2016) and polynomial
chaos (Konukoglu et al., 2011) to estimate cardiac model
parameters. In Paun et al. (2019), GP emulation is used to
speed up the MCMC process in the area of cardiovascular fluid
dynamics. Probabilistic surrogate modeling through GP using
Bayesian history matching is applied in Longobardi et al. (2020)
for inference of cardiac contraction mechanics. In Neumann
et al. (2014), polynomial chaos method is used to build the
surrogate model for fast sampling to estimate parameters of an
electromechanical model of the heart. However, with the limited
accuracy in the approximated posterior pdf, directly sampling
the surrogate results in improved efficacy but reduced accuracy.
In Dhamala et al. (2018a), GP surrogate model of the posterior
pdf of cardiac model parameters is built to accelerate MCMC
sampling of the original posterior pdf. While this strategy avoids
the loss of accuracy from sampling the surrogate pdf, it achieves a
limited gain of efficiency due to the reliance on MCMC sampling
of the original pdf.

2.4. Estimating High-Dimensional
Parameters
High dimensionality is a bottleneck in estimating parameters,
especially in cardiac physiology. Researchers mostly try to explain
useful functions through dimension reduction in the original HD
parameters. For example, in Malatos et al. (2016), it is shown
that a lower-dimensional model can be useful in explaining
blood flow. In Caruel et al. (2014), to explain cardiac function,
LD muscle samples or myocytes as model parameters are
estimated from HD ones. Estimating local myocardial infarct
uncertainties through reducing the dimension of deformation
patterns is introduced in Duchateau et al. (2016). In Giffard-
Roisin et al. (2018), offline learning from electrocardiographic
imaging (ECGI) is achieved through dimension reduction in the
myocardial shape. As most of the parameters stay on manifold
rather than Euclidean space, in Nakarmi et al. (2017), a kernel-
based framework using LD manifold models to reconstruct
cardiac dynamic MR images is proposed. In Lê et al. (2016),
to reduce dimension, homogeneous tissue excitability (in the
form of a model parameter) is represented by a single global
model parameter. In Wong et al. (2015), and the cardiac mesh is
pre-divided into 3–26 segments, each represented by a uniform
parameter value. As the number of segments increases, the
estimation becomes more challenging and increasingly reliant on
initialization. Alternatively, a multi-scale hierarchy of the cardiac
mesh is defined for a coarse-to-fine optimization, which allowed
spatially adaptive resolution that was higher in certain regions

than the other (Chinchapatnam et al., 2008; Dhamala et al., 2016).
However, the representation ability of the final partition is limited
by the inflexibility of the multi-scale hierarchy: Homogeneous
regions distributed across different scales can-not be grouped
into the same partition, while the resolution of heterogeneous
regions can be limited by the level of scale the optimization can
reach (Dhamala et al., 2017a). In addition, because these methods
involve a cascade of optimization along the hierarchy of the
cardiac mesh, they are computationally expensive.

In our recent work, we present an approach that replaces the
explicit anatomy-based reduction in the parameter space with
an implicit LD (LD) manifold that represents the generative
code for HD spatially varying tissue excitability (Dhamala et al.,
2018b). This is achieved by embedding within the optimization
a generative model, in the form of a variational autoencoder
(VAE) trained from a large set of spatially varying tissue
excitability. In our previous work, we demonstrated the efficacy
of this approach for deterministic optimization of spatially
varying tissue excitability in cardiac electrophysiological models
(Dhamala et al., 2018b). In this study, we leverage this strategy to
enable probabilistic estimation of HD model parameters.

3. BACKGROUND

3.1. Bi-Ventricular Electrophysiology Model
There are many computational models with varying levels
of biophysical details (Aliev and Panfilov, 1996; Mitchell
and Schaeffer, 2003; Clayton et al., 2011). Among these,
phenomenological models like the Aliev Panfilov (AP) model
(Aliev and Panfilov, 1996) is capable of reproducing the key
macroscopic process of cardiac excitation with a small number of
model parameters. To test the feasibility of the presentedmethod,
we utilize the two-variable AP model given below:

∂u

∂t
= ∇(D∇u)− cu(u− θ)(u− 1)− uv,

∂v

∂t
= ε(u, v)(−v− cu(u− θ − 1)).

(1)

Here, u ∈ [0, 1] is the transmembrane potential and v is the
recovery current. The parameter ε = e0+(µ1v)/(u+µ2) controls
the coupling between u and v, and c controls the re-polarization.
D is diffusion tensor, which controls the spatial propagation of
u. θ is tissue excitability parameter that controls the temporal
dynamics of u and v. Based on previous sensitivity analysis
(Dhamala et al., 2017a), in this study, we focus on estimating
parameter θ of the AP model (Equation 1), while fixing the
values for the rest of the model parameters based on the literature
(Aliev and Panfilov, 1996): c = 8, e0 = 0.002, µ1 = 0.2,
and µ2 = 0.3. We solve the AP model (Equation 1) on the
discrete 3D myocardium using the meshfree method described
in Wang et al. (2009). Then, we obtain a 3D electrophysiological
model of the heart that describes the spatio-temporal propagation
of 3D transmembrane potential u(t,θθθ). Note that, compared
to existing works where the model parameter to be estimated
is often assumed to be global or LD based on a pre-defined
anatomical division of the heart, we consider the estimation of
a HD parameter θθθ at the resolution of the cardiac mesh.
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In this study, we demonstrate the presented framework using
body surface electrocardiogram (ECG) that are generated by
spatio-temporal cardiac action potential following the quasi-
static approximation of the electromagnetic theory (Plonsey,
2001). In Wang et al. (2009), this relationship is modeled by
solving a Poisson’s equation within the heart and Laplace’s
equation external to the heart on a discrete mesh of the heart and
the torso, which gives a linear model:

Yb(t) = Hbu(t,θθθ) (2)

where Yb(t) represents ECG data, u(t,θθθ) represents
transmembrane potential, Hb is the transfer matrix unique
to patient-specific heart and torso geometry, and θ is the vector
of tissue excitability to be estimated.

4. METHODOLOGY

The electrophysiological system as defined in section 3 defines a
stochastic relationship between measurement data Y and model
parameter θ as:

Y = M(θ)+ ε (3)

where M is a composite of the whole-heart electrophysiological
model and measurement model reviewed in section 3. ε is the
noise term that accounts for measurement errors and modeling
errors other than that arising from the value of the parameter
θ . Assuming uncorrelated Gaussian noise ε ∼ N(0, σ 2

e I), the
likelihood can be written as:

π(Y|θ) ∝ exp(−
1

2σ 2
e

||Y−M(θ)||2) (4)

The unnormalized posterior density of the model parameter θ

has the following form, using Bayes rule:

π(θ |Y) ∝ π(Y|θ)π(θ) (5)

where π(θ) provides us prior knowledge about the parameters.
In this study, a uniform distribution bounded within [0, 0.5]
is used where the bound is informed by the physiological
values of parameter θ . In this general setup, our goal is to
estimate the pdf function in Equation (5), which has an expensive
likelihood function and a HD parameter θ . Naive MCMC
sampling of Equation (5) would render intensive, if not infeasible,
computation. Here, we cast the problem of estimating the
function of π(θ |Y) into a Bayesian active learning problem: We
aim to learn a GP approximation of the function π(θ |Y) from
training samples of {θ (i),π(θ (i)|Y)}li=1; because the evaluation

of π(θ (i)|Y) involves expensive computation, i.e., an expensive
labeling process, we intelligently select a small number of training
points θ (i) on which to query the label of π(θ (i)|Y). To achieve
this, we bring two innovations to existing Bayesian active
learning methods. First, leveraging our previous work (Dhamala
et al., 2017a), we integrate generative modeling of HD θ into
Bayesian active learning to embed the process of active search of
training samples into a LD manifold. Second, we introduce new
acquisition functions for selecting training points θ (i), such that
it focus on the shape of the posterior pdf of interest.

4.1. Enabling High-Dimensional Bayesian
Active Learning via Generative Modeling
To obtain a generative model of θ = g(z), we use VAE that
consists of two modules: a probabilistic deep encoder network
with network parameters ααα that approximates the intractable
true posterior density p(z|θθθ) as qααα(z|θθθ) and a probabilistic deep
decoder network with network parameters βββ that reconstructs
θθθ given z with the likelihood pβββ (θθθ |z). Given a training data set

2 = {θθθ (i)}Ni=1 that consists of N different spatial distributions
of the tissue excitability θθθ , VAE training involves optimizing
the variational lower bound on the marginal likelihood of each
training data θθθ (i) with respect to network parameters ααα and βββ :

L(ααα;βββ) = −DKL(qααα(z|θθθ (i))||p(z))+ Eqα(z|θθθ (i))[logpβββ (θθθ
(i)|z)].

(6)
We assume the prior p(z) ∼ N (0, 1) to be a standard Gaussian
density. The optimization of Equation (6) with respect to α

and β is achieved with stochastic gradient descent with re-
parameterization trick (Kingma and Welling, 2013). After the
VAE is trained, the decoder as a generative model can be
incorporated into Equation (5) to obtain:

π(z|Y) ∝ [exp(−
1

2σ 2
e

||Y−M
(

E[pβββ (θθθ |z)]
)

||2)][exp(−
1

2
||z||2)]

(7)
where θ is now approximated by the expectation of the generative
model pβββ (θθθ |z), and the prior of z is assumed to be Gaussian:
π(z) ∼ N (0, 1). In another word, the use of pβββ (θθθ |z) allows us to
now perform Bayesian active learning over the LD latent space z.

4.2. Bayesian Active Learning With
Posterior-Focused Acquisition Functions
We aim to learn a GP approximation of the log posterior because,
compared to the posterior pdf in Equation (7), and it has longer
scales and lower dynamic range. In other words, we build a GP
to approximate:

GP(z) ∼ −
1

2
(
||Y−M

(

E[pβββ (θθθ |z)]
)

||2

σ 2
e

+ ||z||2) (8)

Bayesian active learning with GP consists of an iterative process.
In each iteration, we 1) first select new training samples via the
optimization of an acquisition function and 2) then obtain the
posterior distribution of the GP from the prior distribution using
newly obtained training samples. For the prior of the GP at the
first iteration, we adopt the commonly used zero-mean function
due to lack of prior knowledge and the anisotropic “Matérn 5/2"
covariance function (Rasmussen, 2003):

k(zi, zj) = α2exp
(

−
√
5d(zi, zj)

)(

1+
√
5d(zi, zj)+ 5/3d2(zi, zj)

)

(9)
where d2(zi, zj) = (zi − zj)

⊺3(zi − zj), 3 is a diagonal matrix
in which each diagonal element represents the inverse of the
squared characteristics length scale along each dimensions of z,
and α2 is the function amplitude.
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4.2.1. Acquisition Function Design
A crucial part of Bayesian active learning is to guide the algorithm
about where to sample next, achieved by designing an acquisition
function that balances between exploiting what is already learned
about the target function of interest and exploring the unknown
region of the input space. Existing GP-based Bayesian active
learning is typically used for finding the optimum of a target
function, using the mean and variance function of the GP
approximations of the target function to exploit high-mean
regions while exploring high-variance regions. In learning to
approximate the posterior pdf function as defined in Equation
(7), our goal differs from standard approaches in two ways.
First, while we choose to build the GP approximation of the log
posterior, we are interested in the accuracy of the posterior pdf
function itself as our target function. Second, we are interested in
the shape of the posterior pdf, rather than any single optimum
value. These motivate the design of new acquisition functions
as follows.

First, based on Equations (7) and (8), our posterior pdf
of interest is an exponential factor away from the function
being approximated by the GP. Since GP(z) at every z

follows a Gaussian distribution, exp(GP(z)) follows log-normal
distribution at every z. In other words, the function of exp(GP(z))
follows a log-normal process. To focus on the accuracy of
approximating the posterior pdf function, rather than using the
mean and variance of the GP to guide acquisition as in regular
Bayesian active learning, we will use the mean and variance of
the log-normal process exp(GP(z)) to guide acquisition.

Second, to focus more on learning the shape rather than
optimum (i.e., mode) of the posterior pdf, we emphasize more
on reducing the uncertainty of the learned exp(GP(z)) (i.e.,
exploration) than exploiting around its mode. Two natural
candidates for measuring the uncertainty in the approximated
exp(GP(z)) include the following: 1) variance of exp(GP(z)), and
2) entropy of exp(GP(z)) at any given z:

Entropy(z) = µ(z)+
1

2
+ ln(

√
2πσ (z)) (10)

Variance(z) = [exp σ 2(z)− 1][exp 2µ(z)+ σ 2(z)] (11)

At the i-th iteration of active learning, we select a single point of
z(i) that maximizes (Equations 10 or 11) to update the GP.

4.2.2. Updating GP With New Training Samples
Once a new sample point z(i) is selected, the value of the log
posterior in Equation (8) is evaluated at z(i) as LLL(i), which
includes the execution of the trained VAE decoder, the bi-
ventricular electrophysiological model, and the measurement
model as described in section 3. The new input-output pair is
used to update the posterior belief of the GP. Following (Williams
and Rasmussen, 2006), the predictive mean and variance of the
updated GP can be evaluated at any z:

µ(z∗) = kTK−1
LLL
(1 : i), σ 2(z∗) = k(z∗, z∗)− kTK−1k (12)

where k is the kernel function. We update the kernel
hyperparameters, including the length-scale and noise variance

mentioned in Equation (9), every time we add a new training
point by maximizing the log of the marginal likelihood.

Overall, the active learning process involves two steps: 1)
adding new training points by maximizing the acquisition
function, and 2) updating the GP posterior mean and variance
function. This iterative process continues until the Kullback–
Leibler (KL) divergence between the most updated predictive
mean pdf function and the average of the last five predictive
mean pdf functions of exp(GP(z)) does not exceed a predefined
threshold. The length-scale and noise variance of kernel
function are optimized every time by maximizing log of the
marginal likelihood.

5. EXPERIMENTS AND RESULTS

5.1. Generative Modeling of
Spatially-Varying Tissue Excitability
Tissue excitability of whole heart from real data is not readily
available. Cardiac images such as contrast-enhanced MRI may
provide a surrogate for delineating different levels of myocardial
injury, yet they are expensive to obtain at a large quantity. In this

study, we utilized synthetic data sets 222 =
{

θθθ (i)
}N

i=1
to train the

VAE. Specifically, we generated a large data set of heterogeneous
myocardial injury by random region growing. Starting with one
injured node, one out of the five nearest neighbors of the present
set of injured nodes was randomly added as an injured node.
This was repeated until an injury of desired size was attained. We
considered binary tissue types in the training data, in which the
value of tissue excitability θ was set to be 0.5 or 0.15 for injured
or healthy nodes, respectively, along with a random noise drawn
from a uniform distribution [0, 0.001].

The VAE architecture used in the following experiments is
shown in Figure 1. Each of the encoder and decoder network
consisted of three fully connected layers with softplus activation,
two layers of 512 hidden units, and a pair of two-dimensional
units for the mean and log-variance of the latent code z. We
trained the VAE with the Adam optimizer with an initial learning
rate of 0.001 (Kingma and Welling, 2013).

Figures 2A,B shows the scattered plots of the two-
dimensional latent codes z encoded by the VAE on the training
data, color-coded by the size and location of the abnormal tissue.
It appears that the latent code accounted for the size of the
abnormal tissue along the radial direction (A), while clustering
by the location of the abnormal tissue as well (B). This shows the
ability of the generative model in capturing meaningful semantic
information in the HD data in an unsupervised manner.

5.2. Synthetic Data Experiments
Synthetic experiments were carried out on three CT derived
human heart-torso models. For ground truth of the tissue
excitability, we divided the left ventricle (LV) into 17 segments
based on the standard recommended by the American Heart
Association (AHA). The region of abnormal tissue was then set as
various combinations of these 17 LV segments. The value of θ in
the abnormal region was set to 0.40, 0.45, or 0.50 to have different
severity levels, and its value in the healthy region was set to 0.15.
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FIGURE 1 | Workflow of the presented method. (A) A generative model of HD spatially varying tissue excitability of the 3D heart is trained offline. (B) The resulting

generative model is embedded into Bayesian active learning to approximate the posterior pdf of model parameters using a small number of intelligently selected

training points guided by the acquisition function.

FIGURE 2 | Distribution of LD latent codes of the training data, color coded by (A) size of the abnormal tissue (the colors represent the percentage size of abnormal

tissue). (B) Location of the abnormal tissue (the colors represent the 17 American Heart Association (AHA) segments of left ventricle).

A randomnoise drawn from a uniform distribution [0, 0.001] was
added. Note that the tissue excitability in this test set is different
from those in the training set, as described in section 5.1, in two
aspects: 1) parameter values within the abnormal region and 2)
shape and size of the abnormal region.

For each tissue excitability to be tested, body-surface
measurements were simulated using the models described in

section 3. A 20dB noise was then added to the measurement data
for posterior estimation of parameter θ . To test the ability of the
trained VAE model to be applied to hearts different from that
used in training, for experiments on heart ♯1 and ♯2, the VAE
was trained on heart ♯3; for experiments on heart ♯3, the VAEwas
trained on heart ♯1. The convergence criteria for each estimation
followed that as defined in section 4.2.2.
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TABLE 1 | Absolute errors in the estimated mean, mode, and standard deviation of the estimated posterior pdf and its KL divergence against directly sampling the exact

posterior pdf: the presented method vs. sampling the surrogate from regular Bayesian active learning (regular BAL) vs. two-stage MCMC.

Method Mean Mode Standard deviation KL divergence

Two-stage MCMC 0.04 ± 0.003 0.02 ± 0.001 0.08 ± 0.002 0.3 ± 0.1

Regular BAL 0.4 ± 0.1 0.03 ± 0.004 1.1 ± 0.2 0.9 ± 0.25

Presented method 0.1 ± 0.02 0.02 ± 0.002 0.12 ± 0.03 0.6 ± 0.2

FIGURE 3 | (A) Comparison of estimated posterior pdf from different methods. (B) Comparison of computation cost from different methods.

5.2.1. Accuracy and Efficiency in Estimating Posterior

pdf Function
We first evaluated the accuracy and efficiency of the presented
method against 1) directly sampling GP approximation of the
posterior pdf based on regular Bayesian active learning and 2)
surrogate-accelerated two-stage MCMC sampling as presented
in our previous work (Dhamala et al., 2017b), all against the
baseline of directly sampling the exact posterior pdf using
the standard MCMC. We considered 15 synthetic cases in
total. All MCMC sampling were run on two parallel MCMC
chains of length 10,000 with a common Gaussian proposal
distribution with two different initial points. The variance
of the Gaussian proposal distribution was tuned by rapidly
sampling the GP surrogate pdf until obtaining an acceptance
rate of 0.22, which is documented to enable good mixing
and faster convergence in higher dimensional problems (Gilks
et al., 1995; Andrieu et al., 2003). After discarding 20% initial
burn-in samples and selecting alternate samples to avoid auto-
correlation in each chain, the samples from two chains were
combined. The convergence of all the MCMC chains was tested
using trace plots, Geweke statistics, and Gelman-Rubin statistics
(Gilks et al., 1995; Andrieu et al., 2003).

The accuracy of estimated pdf in z space was evaluated
through comparing the mean, mode, and standard deviation
from the kernel density estimation of samples selected from our
method and with other existing methods. Let sM be the estimated
mean, mode, or standard deviation of the posterior pdf of z using

direct MCMC sampling and so be the corresponding statistics
estimated from the three methods presented in Table 1. We used
the mean and standard deviation of |sM − so| calculated from
15 synthetic cases to evaluate the accuracy of all the comparison
methods in estimating themean,mode, and standard deviation of
the posterior pdf in comparison to the direct MCMC sampling.
The last column of Table 1 also shows the KL divergence between
the estimated pdf from different methods with that from exact
MCMC, obtained by sampling as described in Hershey and Olsen
(2007). As shown, the accuracy of the estimated posterior pdf was
significantly higher than that obtained by regular Bayesian active
learning (paired t-test on estimated parameters from 15 cases, p
< 0.001). While its accuracy was still lower than the surrogate-
accelerated two-stage MCMC, it used only 0.6% computation
(in terms of the number of model simulations needed) of the
two-stage MCMC method. As detailed in Figure 3B, while the
two-stage MCMC achieved ∼ 40% reduction in the number of
model simulations needed compared to the direct sampling of the
exact posterior pdf, the presented method reached a ∼ 99.65%
reduction in computation. Figure 3A gives examples of the
posterior pdfs estimated from different methods in comparison
to that obtained from direct sampling.

As shown, the presented method (green curve) closely
reproduced the true posterior pdf (red curve) obtained from
direct MCMC, while the function learned by the standard
Bayesian active learning (black curve) fell short in as closely
reproducing the posterior pdf.
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FIGURE 4 | Comparison of (A) DC, (B) RMSE, and (C) CC between estimated mean (blue) or mode (red) tissue excitability in comparison to the ground truth.

FIGURE 5 | (A) The ground truth of tissue excitability. (B) Mean, mode, and standard deviation of tissue excitability estimated from presented method.

5.2.2. Accuracy and Uncertainty in the Estimated

Tissue Excitability
From the estimated posterior pdf of π(z|Y) over the latent LD
manifold, we obtained the posterior pdf of π(θ |Y) over the spatial
space of the heart. We estimated the mean, mode, and standard
deviation in HD space through inserting MCMC samples of z
taken from posterior π(z|Y) to the expectation network of the
trained VAE decoder.

For accuracy of the estimated tissue excitability, we considered
the mean and mode from the estimated posterior pdf of π(θ |Y)
and evaluated against the ground truth tissue excitability using
three metrics: dice coefficient (DC), root mean square error
(RMSE), and correlation coefficient (CC). As shown in Figure 4,
for DC, the mean and mode from the presented method were
more accurate than those obtained by regular Bayesian active
learning (paired t-test, p < 0.001 for mean and p < 0.05 for
mode) but less accurate than those obtained from the two-stage
MCMC (paired t-test, p < 0.10 for mean and p < 0.001 for
mode). For RMSE, similarly, mean and mode both were more
accurate from regular active learning method (paired t-test, p <

0.005 for mean and p < 0.05 for mode). In comparison with

the two-stage MCMC, there was no difference for mean and
mode with the presented method (paired t-test, insignificant at
20% level of significance). For CC, our presented method showed
similar accuracy with the two-stage MCMC and regular active
learning method for mean estimation. But for CC from mode
estimation, our method showed higher accuracy than the regular
method (paired t-test, p < 0.01) but less accuracy than the
two-stage MCMC (paired t-test, p < 0.05).

Figure 5A provides a visual example of the estimated spatially
varying tissue property on the heart, corresponding to the LD
posterior pdf shown in the left column of Figure 3A. First,
as shown in Figure 5B, the estimated mean provided by the
presented method corrected a false positive in the solution from
regular Bayesian active learning (row one). The high uncertainty
in this region from the regular Bayesian active learning was also
corrected by the presented method (row three). Second, as noted
in the left column of Figure 3A, the underlying LD posterior pdf
is uni-modal, where both the presented method and two-stage
MCMC correctly recovered the mode in comparison to regular
Bayesian active learning. Similarly, the resulting mode in the HD
space of the tissue property was correctly located in position
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FIGURE 6 | Illustrations of training points (blue dots) selected using variance based on the log-normal process (left), entropy based on the log-normal process

(middle), and upper confidence bound (UCB) based on the Gaussian process (right).

in the presented method whereas the mode of regular Bayesian
active learning shifted in accordance with low dimensional shift.
This shows a correct one-to-onemapping of LD toHD generative
process. Finally, as noted earlier, while the two-stage MCMC,
in general, delivered higher accuracy, this performance gain was
achieved with over 167-fold increase in computation.

5.2.3. Exploration vs. Exploitation Using Log-Normal

Process Based Acquisition Functions
To understand the advantage of the presented log-normal
process-based acquisition functions, we examined where the
active selection of training samples took place in the presented
method vs. regular Bayesian active learning. Figure 6 left
and middle shows the acquisition of training samples using
the variance and entropy of the log-normal process, using,
respectively, 100 and 108 sampling points to meet the
convergence criteria. The contour plot inside these figures
showed the shape of the true bivariate posterior pdf. In
comparison, Figure 6 right panel shows training samples selected
based on the GP using upper confidence bound (UCB). To
converge, it took 129 acquisition steps, which were higher than
those used in the presented method. Comparing left and middle
panel, it showed that the regular acquisition, while exploited
the mode of the posterior mode, explored without focusing on
the posterior support. In comparison, the presented acquisition
functions effectively both exploited and explored within the
posterior support.

5.3. Experiments on Post-infarction Hearts
With Blinded Simulation Data
5.3.1. Experimental Data and Data Processing
In this section, we increased the difficulty of active posterior
estimation by: 1) considering hearts with realistic tissue
excitability extracted from contrast-enhanced MRI (CE-MRI)
and 2) simulation data of 3D cardiac electrical activity generated
by a high-fidelity biophysics model blinded to the AP model
used in the active posterior estimation. In comparison to
synthetic data considered in section 5.2, these image-derived
tissue excitability had the following characteristics that increased
its heterogeneity: the presence of 1) both dense infarct core and
gray zone, 2) a single or multiple infarcts with complex spatial

distribution and irregular boundaries, and 3) both transmural
and non-transmural infarcts.

We considered six post-infarction human hearts. The patient-
specific ventricular models along with the detailed 3D infarct
architectures were delineated from MRI images as detailed in
Arevalo et al. (2016). The training of VAE was performed on
one of the hearts described in section 5.1, using synthetically
generated tissue excitability values as described in that section.

Figure 7 summarizes the results of estimated tissue excitability
on the six post-infarction hearts. Overall, estimated tissue
property, especially the estimated mode, was close to the ground
truth. One more source of increased difficulty in this set of
experiments, in comparison to those in synthetic data, was the
presence of non-transmural scar tissue that did not exist in
the training data of the VAE. This difficultly in estimating has
been previously reported in literature (Dhamala et al., 2017a).
As shown in Figure 7 cases 1–3 and 5 (second and third rows),
the estimated mean or mode either missed the region of non-
transmural abnormal tissue property or incorrectly estimated
it to be transmural (case 3-mode). The associated uncertainty
was not captured in the estimated standard deviation (Figure 7
fourth row) either. Another source of difficulty is the presence of
diffused heterogeneous abnormal tissue that was not considered
in the VAE training data. For instance, in case 4 and case 6,
there was a large patchy gray zone mixed within the dense scars.
These regions were reflected in the region of estimated abnormal
tissue excitability; however, the estimated parameter values were
not able to distinguish between the gray zone and dense infarct.
In addition to identifiability issues associated with the presented
method and the available data, this performance may also arise
from the fact that the AP model considered has limited ability in
differentiating electrical behavior from gray zone and infarct core
(Ramírez et al., 2020).

5.4. Experiments on in vivo ECG and
Voltage Mapping Data
Finally, we performed active posterior estimation for tissue
excitability in real data experiments of three patients who went
catheter ablation of ventricular tachycardia due to myocardial
infarction (Sapp et al., 2012). The patient-specific geometrical
models of the heart and torso were constructed from axial CT
images detailed in Wang et al. (2016). In vivo measurements of
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FIGURE 7 | Results of estimated tissue excitability from the presented method in 3D infarcts delineated from in vivo MRI images. Regions with low excitability (high θθθ

values) correspond to infarct regions (0.5 = infarct core, 0.3–0.5 = gray zone). The red circles highlight non-transmural scars or gray zone.

FIGURE 8 | Results of estimated tissue excitability from the presented method in real clinical data. (A) Voltage data from catheter map. (B) Mean, mode, and standard

deviation estimated from multiple observations from different pacing sites. (C) Mean, mode, and standard deviation estimated from a single observation from one

pacing site.

120-lead ECG were collected during pacing from known sites
of each heart. The surrogate used for evaluating the estimated
tissue excitability was in vivo bipolar voltage data collected
by catheter mapping. As illustrated in Figure 8, based on the
voltage data, the myocardium tissue can be divided into three
groups: infarct core (red: bipolar voltage < 0.5 mv), infarct
border (green: bipolar voltage 0.5–1.5 mv), and healthy (blue:
bipolar voltage > 1.5 mv). Among the three patients, we

consider 120-lead ECG data collected from a total of six different
pacing sites.

1) Case 1: In this case, we were able to estimate the posterior
pdf of tissue excitability by combining ECG data from two
different pacing locations. As shown in Figure 8A (first row),
this subject had a small infarct in the lateral-basal area of
LV. The presented method was able to capture the location
of this infarct core, although much more smoothed out in
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comparison to the voltage data as illustrated in Figure 8B, first
row). The estimated pdf also exhibited uncertainty higher than
the rest of the myocardium in this location. These results were
obtained by 129 active acquisitions of simulations with the
presented method.

Interestingly, when estimating the posterior pdf using only
data from one pacing location, the mode of the estimated pdf
was incorrectly shifted from the actual location of the infarct
tissue—and the uncertainty at that location correspondingly
became higher compared to that associated with estimation using
multiple ECG data (Figure 8C, first row).

2) Case 2: In this case, we were able to estimate the posterior
pdf of tissue excitability by combining ECG data from three
different pacing locations. As illustrated in Figure 8A (second
row), this subject had a highly heterogeneous infarct in the
lateral region of the LV. The presented method, using 153
active acquisitions of simulations, was able to recover the
correct location of the infarct, with an attempt to recover the
heterogeneity in the tissue excitability (Figure 8B, second row).
The mode solution was also shifted from the target region. The
heterogeneity, however, was not captured in fine detail, likely
due to the lack of such heterogeneous data in the VAE training.
The associated uncertainty of the solution was accordingly high.
When reducing the measurement data to only ECG data from
one pacing site, the estimated solution is almost similar when we
used three pacing sites.

3) Case 3: In this case, we only had access to one-paced ECG
data for estimating the posterior pdf of tissue excitability. As
illustrated in Figure 8A (third row), this case had a relatively
dense scar in inferolateral LV with only one set of measurement
data. The presented method was able to locate the infarct using
147 active acquisitions of simulations, with an uncertainty lower
than that of the previous two cases (Figure 8C, third row).

6. LIMITATIONS AND FUTURE WORKS

In this study, we demonstrated the feasibility of Bayesian
active learning for fast approximation of posterior pdf involving
heavy simulations. Our key innovation was to modify the
acquisition functions in regular Bayesian active learning, such
as to focus more on approximating the shape of the posterior
pdf of interest rather than finding the mode of the pdf when
using regular acquisition functions. Following this idea, in this
study, we demonstrated the feasibility of guiding acquisition
with the variance or entropy of the log-normal process being
learned. Future work will continue to explore this idea in other
acquisition functions, with a goal to modulate the trade-off
between exploitation and exploration over the space of z based
on the prior knowledge of its distribution. One possible example
is to consider the improvements in the KL divergence between
the actual and approximated posterior pdf.

While the parameter θθθ was represented in Euclidean space
in this study, organ tissue excitability is actually defined over
a physical domain in the form of a 3D geometrical mesh. By
representing this non-Euclidean data in a Euclidean space, we
have ignored the 3D spatial structure of the physical mesh.

A future step would be to construct the generative model in
non-Euclidean space by considering the geometrical mesh as
a graph (Dhamala et al., 2019). We fixed other parameters
values in the electrophysiological model in Equation (1) to
estimate θθθ , while a better strategy could be varying all the
parameters through respective distributions (Niederer et al.,
2020). As a feasibility study, we considered a scalar parameter
per cardiac mesh node; this simplifies the problem, although
the parameter space was still HD since the parameter values
change across space. Future studies should consider diffusion
tensor D, which requires considering fiber directions that are
largely approximated and associated with errors. The lack of
real data of organ tissue excitability is the main challenge for
training the generative model. A natural next step is to investigate
the possibility of using accessible tissue excitability data derived
from in vivo and ex vivo optical mapping (Gizzi et al., 2013;
Kappadan et al., 2020; Uzelac et al., 2021). In this study, the
VAE was trained by synthetic data only, that is simplified in
shape, transmurality, and heterogeneity. It thus may have a
limited ability to generalize to realistic conditions where tissue
abnormality is more complex in these aspects. An important
direction of future work is to investigate means to improve the
training data for the generative model.

While the VAE provides a probabilistic generative model
pβ (θθθ |z), we only adopted the expectation network of this
probabilistic model, E[pβ (θθθ |z)], as the generative model to
achieve the HD-to-LD embedding of the optimization objective.
An immediate next step is to investigate the incorporation of the
uncertainty in the generative model into both the active learning
of π(z|Y) and the estimated pdf π(θ |Y).

Finally, this study focuses on the specific component of
tissue excitability estimation within the much bigger pipeline of
personalized cardiacmodeling.We thus focused on validating the
estimated tissue excitability using synthetic and in vivo imaging
andmapping data. A next step will be to evaluate the personalized
model in predictive tasks, such as predicting the risk (Arevalo
et al., 2016) or the optimal treatment target (Trayanova et al.,
2018) for lethal ventricular arrhythmia, and investigate how the
uncertainty propagates to simulation outputs and may impact
clinical decisions.

7. CONCLUSIONS

In this study, we present a novel framework for fast
approximation of the posterior pdf of HD simulation parameters
through intelligently selecting training points. This is achieved
by casting posterior inference into the setting of Bayesian
active learning, integrated with 1) generative modeling to
allow active search over HD parameter space and 2) novel
acquisition functions to focus on the shape rather than modes
of the posterior pdf. Future work will investigate the design
of additional acquisition functions, the incorporation of the
uncertainty in the generative model, and the extension of the
presented methodology to probabilistic estimation in other
complex simulation models.
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