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Abstract: Mining interspecies interactions remain a challenge due to the complex nature of microbial
communities and the need for computational power to handle big data. Our meta-analysis indicates
that genetic potential alone does not resolve all issues involving mining of microbial interactions.
Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and
to limit the search space (i.e., number of species and metabolic reactions) to a manageable size.
A reduced search space decreases the number of additional experiments necessary to validate the
inferred putative interactions. As validation experiments, we examine how multi-omics and state of
the art imaging techniques may further improve our understanding of species interactions’ role in
ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial
interactions from genetic potential and propose a new theoretical framework based on: (i) genomic
information of key members of a community; (ii) information of ecosystem processes involved with
a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions
to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through
integration of other data sources.

Keywords: microbial communities; synergistic interactions; ecosystem processes; multi-omics

1. Introduction

In this review, we discuss a roadmap to mine inter-species interactions in microbial
communities. To define this roadmap, we will use an ecosystem process as the unity from
which to mine them. Here, we define an ecosystem process as a specific set of metabolic
functions (e.g., benzoate degradation or in nitrification). In this review we use the term
ecosystem process to define a unit to explore microbial interactions in order to limit micro-
bial community richness to a manageable scale [1]. Currently, a mechanistic understanding
of microbial interactions lies on known connections among genes, protein, reactions and
their participation in an ecosystem process. Hence, we focus on the synergistic inter-species
interactions as these can be directly linked to ecosystem processes. Nevertheless, predicting
antagonistic or competitive interactions may be achieved by the inclusion of information
such as enzyme kinetics and/or metabolic fluxes [2] involved in these interactions.

2. Synergistic Interspecies Interactions Drive Ecosystem Processes

In nature, microbes do not exist alone but rather as members of complex communi-
ties [3]. Synergistic interspecies interactions play an essential role in ecosystems by either
improving adaptation of microbial communities to their habitats or allowing microorgan-
isms to survive in environments for which they lack the complete metabolic capacity [4].
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The type and degree of changes in physicochemical conditions of ecosystems such as the
addition of chemicals affect ecosystem processes but also determine how microbial commu-
nities respond to those alterations. Species-level functional profiling of (meta)genomes is
already possible by providing coverage and abundance estimates on individual pathways
across microbial communities as well as for individual species [5]. Expanding this approach
to ecosystem processes would generate data allowing the definition of groups of species
that cover a full ecosystem process. One first step to determine microbial interactions that
are affected by environmental changes (e.g., the introduction of chemicals or temperature
shifts) and their relationship to ecosystem functioning relies on the identification and
characterization of the constituents of microbial communities as well as their functional
potential [6].

The concept of “everything is everywhere, but the environment selects” proposed by
Baas Becking in 1934 [7] for microbial community assembly has gathered much debate
as reviewed by Peter Girguis [8]. Extrapolating this concept to the functional potential
(i.e., the complete set of functions) of species, however, is not straightforward. While for
core functions such as glucogenesis, the idea that they are genetically widespread in
all microorganisms might seem plausible, this is not true for every ecosystem process.
For example, methanotrophic bacteria [9] and certain filamentous fungi [6] possess genes
that encode a key enzyme in methane degradation—methane monooxygenase—not present
in other microorganisms.

Microbial communities will be able to address changing environmental conditions
(e.g., introduction of chemicals/substrates, shift in temperature and change in pH) if their
combined functional potential encompasses the set of metabolic functions required to
handle these changes. Here, functional profile is defined as a subset of metabolic functions
from the complete functional pool that are needed for a given ecosystem process (definition
adapted from Oh and collaborators [10]). The functional profile can be achieved due to
action of single microbes if they are able to solely perform the set of metabolic functions
for the required ecosystem process. Alternatively, this functional profile can be achieved
by the interaction between two or more species (e.g., acquisition of antibiotic resistance
genes via horizontal gene transfer [11], production of secondary metabolites [12] or cross-
feeding [13]). It is likely that microbial communities with higher species richness will have
a higher number of unique functional traits due to the individual species’ metabolic poten-
tial or as the result of the combined metabolic capabilities of multiple species that arises
from interspecies interactions. Additionally, microbial community functional potential
and functional redundancy is positively correlated with species richness [14]. Fetzer and
collaborators [14] also showed that environmental conditions influenced the type and num-
ber of microbial interactions (Figure 1). Therefore, more studies characterizing microbial
interaction that drive ecosystem processes are necessary as they link microbial diversity
and ecosystem function responses to a changing environment [9,14].

From Where Will One Extract the Genomes to Explore Microbial Interactions?

Currently, advances in single cell sequencing [15], recovery of metagenome assembled
genomes [16,17] and advanced cultivation strategies [18] enormously increased the power
to identify species and their genomes from natural environments such as soils or deep
subsurface. Still, datasets generated from high-throughput sequencing do not provide
absolute abundances of species in a microbial community [19] and extra experiments are
necessary to generate this data (e.g., quantitative PCR or in situ fluorescence hybridization).
Nevertheless, it has been speculated that, in the near future, it will be possible to obtain
the genomic information from all species in complex microbial communities [20] thus
overcoming one of the bottlenecks in predicting interspecies interactions. Moreover, these
approaches have allowed us to gather information on species relative abundance, phy-
logeny and function [21]. The increase in computational power and advances in sequencing
technologies also provides a favorable environment to produce tools and to generate and
analyze data in a timewise manner leading to faster and more reliable data mining [22].
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These improvements allow the prediction of species interactions and estimation of their
functional contribution to ecosystem processes in natural environments, as demonstrated
by Kirwan et al. [23]. In the next section, we will discuss advantages and limitations of
current approaches to predict interspecies interactions and strategies to overcome them.

Figure 1. Interplay between microbial community size, functional potential and interspecies interac-
tions. Functional richness and redundancy increase with microbial community richness. Three micro-
bial communities (A) are represented with different levels of species richness (i, ii and iii), i.e. different
number of unique species (represented by a geometric shape). Each species is capable of performing
a number of functions that are represented by a specific color (B). For example, community i is
composed by two species each capable of performing two different sets of functions. The number
of unique functions illustrates the functional richness of each microbial community. Functional
redundancy is determined by the number of microbes with the genetic potential to perform the same
function. Thus, an increase in the number of unique species is more likely to result in an increase
of the functional redundancy (B1) and richness (B2) of a microbial community. For example, from
community ii to community iii there is an increase of two species and one unique function but the
number of species capable of performing multiple functions (i.e., functional redundancy) also dou-
bled for four functions: orange, yellow, blue and red. Furthermore, the combinations of interspecies
interactions (C) is not only dependent on the individual microorganism’s genetic potential but also
determined by the environmental conditions. For example, growth in Environment 1 requires a
microbe’s ability to perform two functions (blue and yellow) while for Environment 2 three functions
are required (orange, blue and red). Although not a linear relationship, the higher the number of
species in a microbial community, the higher the probability of an increased number of interspecies
interactions (as long as the genetic potential is present).

3. Current Approaches to Predict Microbial Community Functional Profiles and
Interspecies Interactions

As stated in the previous section, the functional potential of microbial communities
might shed light on potential synergistic interspecies interactions. Several modeling
approaches have been proposed to predict microbial community functional profiles [24].
Here, we focus on approaches that take advantage of (meta)genomic data and represent
microbial activity in the context of metabolic networks [25] as well as their suitability to
infer synergistic interspecies interactions. Three main concepts have been proposed which
differ in the level of detail in which they represent the metabolic activity in microbial
communities: the supra-organism approach, the population-based approach and the
guild approach.
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3.1. The Supra-Organism Approach

In the supra-organism approach [2], a community is considered as a singular organism
and the phylogenetic origin of individual enzymes detected to be present in the community
is neglected. Based on metagenomic data, a global metabolic network of enzymatically
catalyzed reactions is constructed, allowing for the prediction of shifts in pathway activity
when comparing two samples. For example, pathway activity has been inferred in gut
metagenomes [26] by calculating gene relative abundance in each individual sample.
The supra-organism approach considers interactions between genes (or the respective
reactions their enzymes catalyze) rather than between species. This allows the comparison
of the functional profiles of microbial communities as whole. However, these models do
not allow the prediction of interspecies interactions since the contribution of individual
species to any metabolic function is not determined.

3.2. The Population-Based Approach

In contrast to the supra-organism approach, species boundaries are explicitly consid-
ered in population-based approaches [27]. Here, community members are represented by
independent species in the model. These models are especially suited for the analysis of
individual species’ functional profile and have been extensively used in metabolic network
reconstruction of single genomes [25,28,29]. Furthermore, this approach allows for the
inclusion of direct metabolic interactions between community members. The inference of
interspecies interactions is possible under this approach since the metabolic contribution of
each species to ecosystem processes can be mapped to their genome. However, generat-
ing genome-scale metabolic models for all species in a community as well as estimating
features such as biomass composition remain challenging [30,31].

3.3. The Guild-Based Approach

In the guild-based approach [32], microbial species performing the same metabolic
function(s) are grouped together and they are represented by a unique entity in the model,
reducing model complexity at the expense of individual species resolution. This approach
has been used in ordinary differential equation-based modeling [33] and can be expanded
to metabolic network-based approaches [34]. The guild approach is useful when microor-
ganisms are known to possess similar functional traits (e.g. similar methods of organic
matter decomposition [35]). However, similar to the supra-organism approach, predicting
interspecies interactions in these models is hampered by their inability to identify the
contribution of individual species to ecosystem processes [2].

Besides the supra-organism, population-based and guild-based approaches, statistical
methods such as Pearson’s and Spearman’s correlation may assist in the identification of
interspecies interactions. These methods identify significant relationships by correlating
the taxon abundance within microbial communities [36]. However, correlating abundance
does not provide information on the underlying mechanisms by which microbes potentially
interact. Furthermore, the vast amount of putative interspecies interactions would also
require intensive experimental validation.

3.4. Advantages and Limitation of Current Approaches Mining Microbial Interactions

As described in Sections 3.1–3.3, the current approaches used to mine microbial inter-
actions rely on links among genes, enzymes and metabolic reactions. The main limitations
and advantages of the different approaches can be found in Table 1. Further, the computa-
tional and manual curation efforts in model generation varies strongly as well as the level of
detail at which predictions are generated. The supra-organism approach requires the least
effort, but only allows for the prediction of general changes in pathways when comparing
different samples. Population-based approaches deliver the most detailed quantitative pre-
dictions down to intracellular metabolic fluxes of individual species, but require substantial
efforts in model generation. These include the generation of genome-scale models and
definition of the biomass equation for each community member [37]. Although an ever-
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increasing number of models become available and semi-automatic pipelines support the
generation of novel genome-scale metabolic models, this step often remains difficult to per-
form. The determination of model parameters regarding cellular maintenance requirements
and uptake kinetics are examples of these difficulties. Furthermore, genome scale-based
approaches require additional types of data such as transcriptomics, metabolomics and
proteomics to validate their results. The inclusion of additional data types would provide
information on gene regulation, structure of microbial communities and possibly a link
to ecosystem processes. In addition, computational challenges (e.g., random access mem-
ory requirements and time) arise in the prediction of putative interspecies interactions
together with the increase of species and pathways studied (Equation (1)). For example,
for a community of 35 species and a set of 3 reactions, a total of 6545 combinations are
possible. A 10-fold increase in the number of species (350) will result in 7,084,700 possible
combinations. Expanding the number of reactions to five will yield more than 42 billion
possible combinations.

Ck (n) =
n!

k!(n − k)!
(1)

where, n is the number of species, k is the number of reactions and C is the number of
possible combinations.

Hence, the main limitations to mine microbial interactions can be summarized as:

• Identification of all species in a community;
• Incomplete functional annotation of genomes;
• Data integration and experimental validation; and
• Exponential increase of search space with relatively small increase of number of

species or pathway size.

In the next section we discuss the knowns and unknowns in microbial interaction
studies through a literature meta-analysis.
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Table 1. Pros and cons of current modelling approaches to predict microbial interactions, environments where the selected
approaches have been used and respective references.

Approach Pros Cons Environments References

Supra-organism
Global reaction network is
possible and allows for
prediction of shifts in
pathway activity by
measuring gene relative
abundance.

Genetic potential of
individual species not
determined

Anaerobic mixed
culture fermentations [38]

Contribution of
individual species to
shifts in pathway
activity not determined
since interactions are
based on
genes/reactions.

Agricultural soil and
seep sea “whale fall”
carcasses

[39]

Population-based

Species boundaries explicitly
defined.

Individual species functional
potential can be determined.

Allows determining direct
metabolic interactions
between species.

High computational
and manual curation
efforts since full
genome-scale metabolic
models for each species
is required.

Corals [40]

Anoxic sediments [41]
Batch and Continuous
cultures [42]

Synthetic microbial
systems [43]

Guild-based

Less complex models since
grouping of species is based
on their known functional
traits.

Requires previous
knowledge on
functional traits.

Individual contribution
of species to ecosystem
processes is unknown.

Soil [44,45]

4. Beyond Genetic Potential: Drawing a Strategy to Mine and Validate Microbial
Interactions

Based on the analysis discussed in Sections 3.3 and 3.4, a road to mine microbial
interactions lies in the exploration of the genetic potential involved in specific ecosystem
processes. Therefore, we suggest dividing mining of microbial interactions into smaller
blocks of information generated from (meta)genomic data. Thus, inference of synergistic in-
terspecies interactions would be determined based on the combined functional potential of
all species in a microbial community similar to the study by Jiménez and collaborators [46].
Nevertheless, our meta-analysis indicates that to validate putative microbial interactions
extra data is needed (see Section 4.1).

Further, we postulate that prior to identifying microbial interaction it is relevant to
focus on specific ecosystem processes. Therefore, estimating the contribution of microbes
to ecosystem processes could be determined by looking at its genomic content as long as
the connections between genes, proteins and reactions involved in said ecosystem process
are known. The identification of a subset of species in a microbial community with the
potential, even partial, to participate in an ecosystem process reduces the search space of
putative microbial interactions. As discussed in Section 3.4, the reduced search space will
make mining relevant inter-species interactions feasible in microbial communities.

In summary, the study of microbial communities is challenging due to our limited
capacity to identify all members of a community, to connect genes to proteins and reactions,
and to determine species interactions. Hence, mining microbial interactions would in-
clude: (A) genomic information of all (or key) members of a community; (B) information of
ecosystem processes involved with a specific hypothesis or research question; and (C,D) the
ability to identify putative species’ contributions to ecosystem processes of interest. A step
forward would include standardizing the validation of putative microbial interactions
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(G) through integration of other data sources (F). In Section 4.1, we discuss different strate-
gies to validate putative microbial interactions. In Section 4.2, we describe a hypothetical
workflow including the mapping of specific ecosystem processes in different members of a
microbial community and the validation of putative microbial interactions. In Section 4.3,
we provide an example of a study combining omics, data mining and experimental data to
infer species contributions to specific ecosystem processes.

4.1. Validation of Putative Microbial Interaction through Integration of Different Data Sources

High throughput sequencing has illuminated the black box of microbial diversity.
Metagenomics provided an insight into the functional potential of microbial communities
without the necessity of cultivating and characterizing thousands of isolates [47,48]. There-
fore, metagenomics might provide information on the links between the genetic differences
within species and their effects on hosts or adaptability to novel environmental condi-
tions [49]. However, current approaches focusing on predictions of gene functions based on
(meta)genomes have four major drawbacks, extensively reviewed by Prosser [50]. First, ge-
netic potential studies may assume that gene presence is directly linked to function [51].
Second, microbial communities are three-dimensional structures that play a crucial role
in ecosystem functioning and are not directly assessed by gene presence [52]. Third, dif-
ferent levels of protein activity can be found in different species or among populations of
the same species due to transcriptional or post-translational modifications [53]. Fourth,
temporal and spatial variability of environmental conditions and community dynamics
need to be accounted for when demonstrating microbial interactions [50]. Based on these
four limitations, the next four paragraphs discuss strategies that can be added to genetic
potential to validate microbial interactions.

4.1.1. Assumption that Gene Presence is Directly Linked to Function

The presence of genetic potential to perform an ecosystem process does not guar-
antee this process is active [54]. Doolittle and Zhaxybayeva [55] and later Jansson and
Hofmockel [56] suggested the investigation of the metaphenome to better understand
the functions that are carried out by the active microbial communities under given en-
vironmental conditions. The metaphenome considers both microbial functions encoded
in the metagenome and biotic and abiotic factors influencing the activity of community
members. Thus, it encompasses not only (meta)genomics but also (meta)transcriptomics,
(meta)proteomics, metabolomics and factors such as gene silencing.

4.1.2. Spatial (Three Dimensional) Structure of Microbial Communities

The three-dimensional structure plays an important role in interspecies interactions [57].
Species are not homogeneously distributed within microbial communities but rather structured
based on their relationships with each other [58] and are shaped by their metabolic and
physiological needs. For example, in biofilms found in suburban bath surfaces such as marble
and plaster, growth and microbial community structure are influenced by their susceptibility
to light [59]. Heterotrophic microorganisms adapted to dark were mostly found in plaster
while low-light adapted microbes were found in mortar [59]. In biological soil crusts bacterial
diversity was also shown to be heterogeneous across the different layers [52] and these might
influence the number and degree and microbial interactions. Further, in wastewater treatment
plant granular sludges presented different growth requirements, community structure and
microbial relationships dependent on nitrogen and phosphorous availability [60]. Methods
to determine the 3D structure of microbial communities include protein structures [61] and
advanced microscopy [57].

4.1.3. Different Levels of Protein Activity within Species or Populations

For an ecosystem process to be active the required genes need to be translated, tran-
scribed and encounter favorable environmental conditions. In cases where the focus is to
understand the effect or fate of specific compounds on different ecosystem processes stable
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isotope probing can be used to trace their transformation and turnover within the different
members of a community. Methods such as stable isotope labelling metagenomics [62],
metatranscriptomics [63], metaproteomics [64,65] or metabolomics [66] could serve as vali-
dation strategies by illustrating metabolite fluxes through groups of predicted interspecies
interactions. Other methods such as co-culture experiments could also be employed to
validate predicted inter-species interactions [36]. Stable Isotope Probing has also been
coupled with NanoSIMS imaging and fluorescent in situ hybridization (FISH) to identify
microbial interactions based on the flux of labelled isotopes between microbes [67].

4.1.4. Temporal Variability

It is widely known that microbial communities do not vary only in space but also in
time; as deeply studied by the Earth Microbiome Project [68], the NIH Human Project [69]
and Tara Oceans [70] among others. A major drawback from most, if not all, techniques to
profile microbial communities is that they are based on snapshots of a given community
for that specific technique [71]. The distribution of organisms and their functions are not
homogeneous and species interactions are not constant in time due to abiotic forces and
adaptive mechanisms [72–74]. Therefore, to validate patters of microbial interactions one
need not only to follow the community over time, but also to have appropriate number
of samples in time and space [66,75]. Finally, the time frame for collection of samples and
numbers of biological replicates will depend on the biodiversity of a given ecosystem and
how dynamic the given process is [76].

When designing strategies to validate microbial interactions, it is necessary to keep
in mind that different methods will encompass different limitations and potential levels
of detail regarding inter-species microbial interactions (Table 2). For example, studies
employing 16S rRNA gene sequencing provide an estimate of the phylogeny of the different
species in a microbial community but not their functional potential. Predicting inter-species
interactions based on the microbial community’s combined functional potential is in
this case not possible. Metabolic network reconstruction of individual genomes from
environmental samples can provide substantial detail on the metabolic capabilities of
individual species and potential metabolic exchanges. However, the high computational,
physiological and chemical information requirements (e.g., biomass equation, reaction
reversibility, ATP) to generate reliable genome-scale metabolic networks for such complex
environments are seemingly difficult.

The influence of species on the growth of other community members can also be
inferred from co- and mixed-culture experiments by comparing their growth to pure
cultures. However, understanding the mechanisms by which species interact requires
additional data from complex wet-lab experiments such as stable isotope labelling. A last
bottleneck to the validation of interspecies interactions in complex environments is our
inability to grow most species in the laboratory [77]. Hence, only a small number of species
interactions can be experimentally validated without highly-complex wet-lab procedures.

4.2. From Mining to Validation: A Workflow to Identify Mechanisms Underlying Microbial
Interactions

In this review, we indicate that defining putative interspecies interactions based solely
on genomic potential is only the first piece of the puzzle in gaining a greater in-depth
understanding of microbial interactions. Additional information from other data sources
and experiments are required (Section 4.1). In this section, we discuss a workflow for itera-
tive mining of microbial interactions by integrating in silico approaches and experimental
validation using a thought experiment. In this thought experiment, we use a hypothetical
microbial community composed of four species and a hypothetical ecosystem process
composed of seven enzymatic reactions (Figure 2). We also assume these reactions require
the presence of seven single protein-encoding genes and five protein-encoding genes that
participate in the formation of two protein complexes (as you may have multiple proteins
involved in the same reaction).



Microorganisms 2021, 9, 840 9 of 19

Figure 2. Theoretical work frame for prediction of interspecies interactions. Here, a microbial
community is composed of four species (A) and a hypothetical ecosystem process/pathway of
interest (B) requires the presence of five single protein-encoding genes and five protein-encoding
genes that participate in the formation of two protein complexes. First, annotation of individual
genomes from the microbial community is performed using only the set of target genes (C). From
here, one can determine which species possess the complete functional potential to perform the
target pathway (D). Additionally, one can also determine which species or groups of species possess
a combined genomic potential to perform the complete ecosystem process (E) putative interacting
species. Further refinement of the generated lists can be achieved by the inclusion of experimental
data, species absolute abundances, literature searches, specialized databases and other omics data
types (e.g., transcriptomics, metabolomics and proteomics) (F) leading to increased robustness of
predictions and reduction of the number of interspecies interactions for experimental validation (G).

First, it is necessary to obtain the genomes of all or key members of the microbial
community (Figure 2A). Second, a set of genes are selected that represent the reactions
involved in the pathway of interest (Figure 2B). Third, genome annotation is performed
using only the set of genes defined in the second step (Figure 2C). Fourth, the genetic
potential of each species is mapped to the pathway of interest (Figure 2D). This mapping
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allows to determine which species or groups of species possess the genetic potential for
all reactions in the pathway of interest (Figure 2E). Next, additional types of data are inte-
grated in the analysis to validate putative species interactions (Figure 2F). Among others,
these can include multi-omics data, such as: (i) (meta)transcriptomics (gene expression),
(meta)proteomics (protein expression) and metabolomics (measurement of metabolite
production); (ii) three-dimensional structure of the microbial community; (iii) protein
abundances measured through stable isotope labelling; (iv) species growth profiles; and,
(v) literature and specialized databases. The integration of all these types of data confirms
or excludes putative synergistic species interactions (Figure 2G). To note, this process
should be iterative as new insights concerning microbial communities and the addition of
data to repositories are obtained. For example, genome re-annotation might be necessary if
novel species are identified or a better understanding of the reactions that are involved in a
specific ecosystem process.

In the next section we provide an example of a study combining the use of multi-omics,
data mining and experimental data. We also provide examples of how their study could be
supplemented with additional tools and methods to improve prediction and validation of
interspecies interactions.

4.3. Assembling a Workflow to Determine Microbial Interactions

Generating and analyzing the data needed to predict microbial interactions focused on
specific ecosystem processes can come from a variety of sources such as axenic, enrichment
or co-cultures and environmental samples. Additionally, several methods and tools exist
to assemble genomes and to assess their quality, to perform functional annotation and to
determine the contributions of microbes to ecosystem processes.

In the next four paragraphs, we will discuss different strategies and tools involved in
mining and validating microbial interactions. To foster this discussion, we will analyze the
work from Tláskal and collaborators [91]. In this study the authors hypothesize that the
decomposition of deadwood required the combined efforts of fungal and bacterial species.

4.3.1. Identifying Microbial Species and Their Genetic Potential

In order to test their hypothesis, Tláskal and collaborators [91] first identified which
species were present in deadwood samples. As most soil microorganisms remain uncul-
tured [92], the authors decided to explore the microbial diversity in their system using
amplicon metagenomics and metatranscriptomics [91]. Regarding the identification of
microbial species, metagenomics was used to recover metagenome-assembled genomes
(MAGs) and Metatranscriptomics was used to identify the transcription levels of the small
subunit ribosomal RNA. The analysis of small subunit ribosomal RNA transcriptional
levels indicate that an organism may be active but does not make a direct link with ge-
netic potential [18]. Although working well for dominant Prokaryotes and DNA viruses,
the recovery of MAGs (extensively reviewed by Chen and collaborators [93]) has sev-
eral limitations for low abundance taxa and Eukaryotes. Other techniques that can be
used to identify simultaneously the genetic potential and phylogeny of microbial species
encompass single-cell genomics [94] and advanced culturing techniques [95,96].
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Table 2. Outcomes and limitations of different methods to study microbial interactions. We assigned four validation strategies to confirm microbial interaction as following: (1) Expression
or activity assays (e.g., transcriptomics, proteomics, metabolomics, RT-PCR, FBA); (2) 3D structure and spatial variability; (3) Substrate specificity; and, (4) Temporal variability.

Outcome Limitations
Methods Environment

Validation Ref. a

1 2 3 4

Improvement in the
identification of
microbial community
species.

Lack of mechanistic
understanding of species
interactions.

Combination of MALDI-TOF
MS b analysis and
high-throughput sequencing
16S rRNA c.

Kimchi X O O X [78]

16S rRNA gene sequencing. Human oral environments O X O O [79]

Demonstration of the
influence of abiotic
factors on microbial
community dynamics.

High computational and
data requirements for
reconstruction of
individual metabolic
models.

Metagenomics, metabolic
network reconstruction and
FBA d.

Anaerobic digestion
microbiomes

X O X O [80]

Lack of mechanistic
understanding of species
interactions.

PLS-PM e Rice soil rhizosphere O X O X [81]

16S rRNA gene sequencing. Urban and forest park soil
litter layers

O X O X [82]

In vivo experiment of meadow
steppe soil under different
precipitation regimes.

Topsoil X X O X [83]

High computational and
data requirements for
reconstruction of
individual metabolic
models and complex
wet-lab experiments
required for validation.

Metabolic network
reconstruction, EFM f and FBA.

Acid-sulfate-chloride
springs

X O X O [84]
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Table 2. Outcomes and limitations of different methods to study microbial interactions. We assigned four validation strategies to confirm microbial interaction as following: (1) Expression
or activity assays (e.g., transcriptomics, proteomics, metabolomics, RT-PCR, FBA); (2) 3D structure and spatial variability; (3) Substrate specificity; and, (4) Temporal variability.

Outcome Limitations
Methods Environment

Validation Ref. a

1 2 3 4

Demonstration of the
influence of interspecies
interactions on microbial
community dynamics.

Lack of mechanistic
understanding of species
interactions.

Co-culture of isolates,
RNA-Seq g and RT-qPCR h.

Wine fermentation X O O X [85]

qPCRi and 16S rRNA gene
sequencing.

Mixed bacterial consortia X O O X [86]

Improved mechanistic
understanding of
interspecies interactions.

Complex wet-lab
experiments required for
validation.

SIP j and Metagenomics. Continuous up-flow
anaerobic sludge blanket
reactors

X O X X [87]

Pure and co-cultures and cyclic
voltammetry analysis.

Palm oil mill effluent O O X X [88]

High computational and
data requirements for
reconstruction of
individual metabolic
models.

Mono- and co-culture,
metabolic network
reconstruction, bipartite graphs,
HPLC k, CGQ l, GC-MS m; SIP.

In silicon experiments with
pure and co-culture

X O X X [89]

Metabolic network
reconstruction and cFBA n.

In silicon experiments pure
cultures

X O X O [27]

Metabolic network
reconstruction, evolutionary
game theory and FBA.

In silicon experiments pure
cultures

X O O O [90]

Metagenomics,
Metatranscriptomics.

Synthetic human gut X X O O [5]

a Ref., numbers in between brackets represent references for the different studies; b MALDI-TOF: matrix-assisted laser desorption/ionization; c rRNA: Ribosomal ribonucleic acid; d FBA: Flux Balance Analysis; e

PLS-PM: Partial least squares - path model; f EFM: elementary flux mode; g RNA-Seq: Ribonucleic acid sequencing; h RT-qPCR: Real Time quantitative polymerase chain reaction; i qPCR: Quantitative polymerase
chain reaction; j SIP: stable isotope probing; k HPLC: High-performance liquid chromatography; l CGQ: cell growth quantifier; m GC-MS: Gas chromatography mass spectrometry; n cFBA: Community Flux
Balance Analysis.
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4.3.2. Defining an Ecosystem Process and Links between Genes, Enzymes and Reactions
for a Given Ecosystem Process

Assessing the contribution of species to any given ecosystem process requires func-
tional annotation of the predicted coding sequences to the reactions involved in said process.
The National Center for Biotechnology Information (NCBI) [97] is one of the largest repos-
itories for functional annotation [98]. However, mining sequencing data from a large
non-specialized database is time-consuming and requires substantial manual curation, as
users need to search for all links between genes, enzymes and reactions and to identify and
to correct misannotated entries [99]. On the other hand of the spectrum, subject-specific
databases are often built upon experimentally validated and/or manually curated data.
For example, the Comprehensive Enzyme Information System (BRENDA) [100] collects
information on functional enzymes and metabolism. BRENDA’s data includes manual cura-
tion obtained from text mining and linked to other curated databases of protein sequences
such as the Swiss-Prot [101] from the Uniprot Knowledgebase [102]. In the study by Tláskal
and collaborators [91], the authors used one general and two specialized databases for
functional annotation. The Kyoto Encyclopedia of Genes and Genomes (KEGG) [103],
a non-specialized database, was used to identify all genes in deadwood present in the
KEGG database. Using its output, Tláskal and collaborators [91] identified species with
the genetic potential to perform methylotrophy and nitrogen cycling. Further, two spe-
cialized databases were used to annotate genes involved in carbohydrate utilization in
bacteria; respectively, Functional Ontology Assignments for Metagenomes (FOAM) [104]
and database of carbohydrate-active enzyme (CAZyme) sequence and annotation (dbCAN
HMM) database [105].

4.3.3. Mining Putative Species Interactions

After functional annotation, microbial interactions can be mined by mapping the
genetic potential of the different species to each reaction in the selected ecosystem pro-
cess. In the study by Tláskal and collaborators [91], the contributions of each species
to deadwood decomposition was manually assessed by integrating species abundance
profiles and relative abundance of genes involved in deadwood decomposition. As a
semi-automated alternative, the HMP Unified Metabolic Analysis Network (HumanN2) [5]
processes metagenomic and metatranscriptomic data allowing the identification of micro-
bial interactions in complex microbial communities. In the near future, studies involving
high-throughput mining of microbial interactions may become broadly used by micro-
biologists. Therefore, the scientific community is developing automated pipelines such
as the Network-Based Tool for Predicting Metabolic Capacities of Microbial Species and
their Interactions (NetMet) [106]. NetMet performs automated mining of microbial in-
teractions by linking species-specific enzymatic reactions to metabolites in user-defined
environments. In addition, the number of potential combinations can create computational
hurdles for mining microbial interactions (Equation (1)). Therefore, limiting the search
space is an important step to predict microbial interactions and may be done in silico
or in vivo. In silico approaches may consist of correlation analysis or machine learning
identification of key microbial species, as previously demonstrated in different environ-
ments; such as, coral reefs [107], bioreactors [108] and batch cultures [108]. Current in vivo
approaches to deal with the search space involve co-cultures and the use of stable isotopes.
Co-cultures limit the search space by controlling the number of species used in the experi-
ments [109]. In addition, stable isotope labeling may limit the search space for the active
metabolites [110], proteins [111] or species [112] directly involved in transformations of the
labeled compounds.

4.3.4. Validating Microbial Interactions

As discussed in Section 4.2, validation of microbial interaction may consist of the inte-
gration of other data beyond genetic potential. For example, Tláskal and collaborators [91]
integrated gene expression patterns obtained from metatranscriptomics and experimentally
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determined C and N gas fluxes with the metagenomic data to validate the microbial contri-
butions to deadwood decomposition. Microbial interactions were validated when genes
mapped to each species and their expression patterns correlated with C and N production
rates. However, these links are based on statistical methods (such as correlation analysis)
which do not guarantee causality. Furthermore, correlation analysis does not necessarily
identify indirect interactions between species [113]. Although integration of metagenomics,
metatranscriptomics, CO2 production and nitrogen fixation measurements increased sub-
stantially the robustness of the predictions, further validation may expand the conclusions
achieved by Tláskal and collaborators [91]. For example, studies have shown that spatial
structure of microbial communities influence ecosystem processes [114–116] and should be
taken into account. The 3D structure of the microbial communities could be determined
using a molecular ecology network approach as previously demonstrated in biological
soil crusts [117]. Tracking the flow of 13C-labelled substrates through the metabolism
of microbes has also been shown as a valuable method to assess microbial community
activity and function [118] even in highly complex and diverse environments [112,119].
Nevertheless, such an approach cannot be carried out in natural forest studies such as the
one by Tláskal and collaborators [91].

In summary, each of the different steps from mining to validation of microbial interac-
tions is not limited to a single method or strategy. The selection of approaches to determine
microbial interactions will depend on the research questions posed by a study, its source
material, the acquisition of the genetic potential for species in a given community and
complexity of ecosystem processes of interest.

5. Conclusions

Understanding how interspecies interactions contribute to ecosystem functioning is
a central issue not only in microbiology but the large field of ecology. Rather than solely
depending on diversity measures or correlations, future research should be directed into
searching mechanisms underlying causal relationships between community components
and their abiotic environments. To optimize the road to uncover interspecies interactions,
it is of utmost importance to first identify an ecosystem process of interest. It is relevant
to highlight that this ecosystem process should have known connections between genes,
proteins and reactions. The next step is to collect genomes of all (or key) species in
the microbial community of interest. Mapping of the different reactions to the different
genomes is a crucial step as it determines the functional potential of each individual
species. This step should be carefully performed since the databases being used to link
gene, proteins and reactions are constantly being updated. One must be aware that the size
of the pathways involved with the ecosystem process of interest together with the number
of species in the respective microbial community has a high-impact on the computational
demands to determine microbial interactions and the interpretation of the analysis. In silico
correlation analysis and machine learning or in vivo experiments involving co-cultures
and stable isotope labeling may circumvent this hurdle. In addition, genetic potential
alone is not indicative of microbial interactions. Therefore, the methods needed to validate
putative microbial interactions should be chosen based on the complexity of the ecosystem
process, the diversity of the microbial community and other biotic and abiotic factors in
the ecosystem.
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91. Tláskal, V.; Brabcová, V.; Větrovský, T.; Jomura, M.; López-Mondéjar, R.; Monteiro, L.M.O.; Saraiva, J.P.; Human, Z.R.; Cajthaml,
T.; da Rocha, U.N.; et al. Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition.
mSystems 2021, 6, e01078-20. [CrossRef]

92. Da Rocha, U.N.; Van Overbeek, L.; Elsas, V.; Dirk, J. Exploration of Hitherto-Uncultured Bacteria from the Rhizosphere. FEMS
Microbiol. Ecol. 2009, 69, 313–328. [CrossRef] [PubMed]

93. Chen, L.-X.; Anantharaman, K.; Shaiber, A.; Eren, A.M.; Banfield, J.F. Accurate and Complete Genomes from Metagenomes.
Genome Res. 2020, 30, 315–333. [CrossRef]

94. Kaster, A.-K.; Sobol, M.S. Microbial Single-Cell Omics: The Crux of the Matter. Appl. Microbiol. Biotechnol. 2020, 104, 8209–8220.
[CrossRef]

95. Lagier, J.-C.; Hugon, P.; Khelaifia, S.; Fournier, P.-E.; Scola, B.L.; Raoult, D. The Rebirth of Culture in Microbiology through the
Example of Culturomics To Study Human Gut Microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [CrossRef]

96. Karimi, E.; Keller-Costa, T.; Slaby, B.M.; Cox, C.J.; da Rocha, U.N.; Hentschel, U.; Costa, R. Genomic Blueprints of Sponge-
Prokaryote Symbiosis Are Shared by Low Abundant and Cultivatable Alphaproteobacteria. Sci. Rep. 2019, 9, 1999. [CrossRef]

97. NCBI Resource Coordinators. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018,
46, D8–D13. [CrossRef]

98. Attwood, T.K.; Agit, B.; Ellis, L.B.M. Longevity of Biological Databases. EMBnet. J. 2015, 21, e803. [CrossRef]
99. Schnoes, A.M.; Brown, S.D.; Dodevski, I.; Babbitt, P.C. Annotation Error in Public Databases: Misannotation of Molecular

Function in Enzyme Superfamilies. PLoS Comput. Biol. 2009, 5, e1000605. [CrossRef] [PubMed]
100. Chang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D. BRENDA,

the ELIXIR Core Data Resource in 2021: New Developments and Updates. Nucleic Acids Res. 2021, 49, D498–D508. [CrossRef]
[PubMed]

101. Bairoch, A.; Apweiler, R. The SWISS-PROT Protein Sequence Data Bank and Its New Supplement TREMBL. Nucleic Acids Res.
1996, 24, 21–25. [CrossRef] [PubMed]

102. The UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef]
[PubMed]

103. Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG Resource for Deciphering the Genome. Nucleic Acids
Res. 2004, 32, D277–D280. [CrossRef]
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