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Objective: The septal nuclei are important limbic regions that are involved in emotional

behavior and connect to various brain regions such as the habenular complex. Both the

septal nuclei and the habenular complex are involved in the pathology of schizophrenia

and affective disorders.

Methods: We characterized the number and density of calretinin-immunoreactive

neurons in the lateral, medial, and dorsal subregions of the septal nuclei in three groups

of subjects: healthy control subjects (N = 6), patients with schizophrenia (N = 10), and

patients with affective disorders (N = 6).

Results: Our mini-review of the combined role of calretinin and parvalbumin in

schizophrenia and affective disorders summarizes 23 studies. We did not observe

significant differences in the numbers of calretinin-immunoreactive neurons or neuronal

densities in the lateral, medial, and dorsal septal nuclei of patients with schizophrenia or

patients with affective disorders compared to healthy control subjects.

Conclusions: Most post-mortem investigations of patients with schizophrenia have

indicated significant abnormalities of parvalbumin-immunoreactive neurons in various

brain regions including the hippocampus, the anterior cingulate cortex, and the prefrontal

cortex in schizophrenia. This study also provides an explanation from an evolutionary

perspective for why calretinin is affected in schizophrenia.

Keywords: calretinin, parvalbumin, septal nuclei, post-mortem studies, schizophrenia, affective disorders,
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Introduction

Ca2+-binding proteins (CBPs) are classified as Ca2+-puffer
proteins (CPPs; parvalbumin, calretinin, calbindin, calcineurin,
and the S100 family) or Ca2+-sensor proteins (CSSs; calmodulin,
and VILIP-1,3). The processes by which CPPs and CSSs interact
are not well-understood. In schizophrenia, CBPs are used to
identify altered GABAergic (γ-aminobutyric acid-producing)
interneurons in various brain regions, including the prefrontal
cortex, hippocampus, and amygdala (Inan et al., 2013). Calretinin
belongs to a subset of inhibitory interneurons that uses the
neurotransmitter GABA (Barinka and Druga, 2010; Cauli et al.,
2014). GABA is converted by the action of glutamic acid
decarboxylase (GAD), which exists as two isoforms, GAD65 and
GAD67. GAD65 is localized in axon terminals, and GAD67
is localized in neuronal cell bodies (Blum and Mann, 2002).
Calretinin has been detected in the cingulate and entorhinal
cortices as well as the hippocampus, brainstem, and cerebellum
in the human brain (Nitsch and Ohm, 1995; Mikkonen et al.,
1997; Baizer, 2014). White matter interneurons express GABA,
calbindin, and calretinin (Suárez-Solá et al., 2009), which are
relevant in schizophrenia (review by Kostovic et al., 2011; Yang
et al., 2011; Joshi et al., 2012).

In the present study, we assessed the presence of calretinin
in the anterior, middle, and posterior portions of the human
septal nuclei. Recent findings regarding the involvement of
calretinin in neurogenesis and animal models of psychiatric
diseases imply that it is important to study the role of calretinin
in the septal nuclei in schizophrenia and affective disorders.
A loss of calretinin causes a deficit in adult hippocampal
neurogenesis (Todkar et al., 2012). In adult mice, calretinin-
positive neurons are present in the dentate gyrus, an important
neurogenic zone (Spampanato et al., 2012). The transcription
factor Gsx2 (genetic screened homebox 2) proliferates in the
human cortical subventricular zone and commits cortical stem
cells into calretinin-expressing cells (Radonjic et al., 2014).
Calretinin cells originate from the subventricular zone of
the lateral and caudal ganglion eminences (González-Gómez
and Meyer, 2014). The density of calretinin-positive neuronal
progenitors along the septo-temporal axis of the hippocampus
was decreased by unpredictable chronic mild stress (UCMS), and
this effect was inhibited by the treatment with the antidepressant
fluoxetine (Tanti et al., 2013). Alterations in calretinin expression
have been observed in mouse models of epilepsy and psychiatric
diseases (Shin et al., 2013); however, no significant differences
in the number of calretinin-immunoreactive interneurons in
the cerebral cortices of wild-type and DBZ (DISC1-binding
zinc finger protein) knockout (KO) mice have been reported
(Koyama et al., 2013). Electroconvulsive therapy (ECT) results
in the neurogenesis of calretinin-positive interneurons (Inta
et al., 2013). The septum, via cholinergic and GABAergic
pathways, is involved in the regulation of mesolimbic dopamine
transmission (Lecourtier et al., 2010). The suppression of
the septohippocampal pathway and its GABAergic activity
might represent a novel treatment for the symptoms of
schizophrenia (Ma et al., 2012; Deidda et al., 2014). The
medial habenular complex is connected to the septal nuclei

through the stria medullaris (Sutherland, 1982; Hikosaka, 2013).
Habenular dysfunction is involved in schizophrenia (Heldt and
Ressler, 2006), and habenular calcification has been reported
in schizophrenia (Sandyk, 1992). A reduction in the volume
of the medial and lateral habenular complex and reductions in
the cell number and area of the medial habenula have been
observed in affective disorders (Ranft et al., 2010), mainly a
habenular volume reduction in unmedicated bipolar patients
(Savitz et al., 2011a), but not in patients with post-traumatic stress
disorder (Savitz et al., 2011b). Further, diminished neuronal
density has been reported in the lateral septal nucleus of
brain sections from bipolar patients compared with control
subjects using both Nissl and Heidenhain-Woelke methods
(Brisch et al., 2011).

The aim of this sudy is to investigate whether alterations of
calretinin-immunoreactive neurons exist in the lateral, medial
and dorsal septal nuclei in patients with schizophrenia and
patients with affective disorders in comparison with healthy
control subjects, based on the pathway between the septal nuclei
and the habenular complex and the importance of calretinin in
neurogenesis and animal models of psychiatric diseases.

Experimental Procedures

Subjects
All brains used in this study were from the Brain Collection
of the University of Magdeburg. Brains were obtained from
pathologists or medical examiner offices in the years 1987–2002
according to the Declaration of Helsinki (1975) and German and
EU laws and after approval by the university’s ethic commission.
The mean demographic data for all individual cases (all were
Caucasian) including brain weight, post-mortem delay, onset of
disease, and duration of disease are present in Table 1. The three
groups were carefully matched for gender, age, post-mortem
delay, the age at onset of illness, and brain weight. The post-
mortem brains of six subjects lacking any signs of neurological
or psychiatric symptoms were used as a control group. Brains
from 10 patients with schizophrenia diagnosed according to the
DSM-IV (Diagnostic and statistical manual of mental disorders)
and ICD-10 (International statistical classification of diseases
and related health problems) criteria were included; most of
these patients had received antipsychotic treatment for at least
several years. In addition, the brains of six patients with affective
disorders according to DSM-IV and ICD-10 were studied. Of
these, three patients were diagnosed with bipolar disorder (DSM
IV-TR: 296.5; F 31.3) with manic and depressive episodes, and
three patients suffered from major depressive disorder (DSM
IV-TR: 296.5; F 31.5). All patients with affective disorders had
received mood stabilizers consistently or periodically and/or
antidepressive medication for several years before death. Only
patients with detailed clinical records and well-documented
psychopathology were included. The criteria for exclusion from
the three groups were as follows: (i) organic brain disease; (ii)
brain injury; (iii) alcoholism or chronic substance abuse; (iv)
chronic somatic diseases affecting the central nervous system
(i.e., cachexia, cancer, chronic liver or kidney diseases, or long
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TABLE 1 | Demographic data and group parameters for healthy control

subjects, patients with affective disorders, and patients with

schizophrenia.

Control Affective Schizophrenia

subjects disorders

N 6 6 10

Males/Females 2/4 2/4 6/4

Age (years) 52.7± 9.7 48.7±11.6 54.8±8.9

Brain weight (g) 1298.3± 169.6 1373.3±155.9 1305.7±155.2

Brain volume (cm3) 1252.0± 163.6 1324.3±150.3 1259.1±149.7

Post-mortem delay (h) 36.0± 20.1 29.2±14.7 31.7±15.2

Duration of illness (years) 9.7±6.8 23.7±12.9

Onset of illness (years) 39.0±10.1 31.1±11.1

Thickness of section (µm) 16.8± 1.2 16.9±1.8 14.9±1.9

Mean ± standard deviation.

term corticosteroid treatment); and (v) age greater than 65 years,
to exclude changes related to normal aging of the brain.

Tissue Processing
Brains were removed within 4–72 h after death (see Table 1 for
the demographic data of control subjects and patients) and fixed
in toto in 8% phosphate-buffered formaldehyde for at least 2
months (pH= 7.0,T = 15–20◦C). The frontal and occipital poles
were separated by coronal cuts anterior to the genu and posterior
to the splenium of the corpus callosum. After embedding all
parts of the brain in paraffin, serial whole brain sections without
midline cut of the middle block were cut (20µm) with a
calibrated microtome and mounted. The shrinkage factor caused
by fixation and embedding and the thickness of the slices were
calculated by methods described previously by Baumann et al.
(1999). The mean volume shrinkage factor for brains in the
schizophrenia, affective disorder, and control groups was 2.2 ±

0.3 (mean ± SD). No significant differences in the shrinkage
factors were observed among the three groups. Every 50th section
was stained for calretinin. The distance between the sections was
1mm.

Stereological-based Analysis and Morphometric
Delineation Criteria
For the present study, one coronal sections was randomly
selected from each brain. Each section was located at the same
clearly defined anatomical landmarks in either the anterior,
middle, or posterior portion of the human septum. The cross-
sectionals areas of the septal nuclei within each section were
determined using a computerized image system (Digitrace
Imaging System). The borders of the septal tissue were delineated
under a microscope at low magnification with a 2.5 × objective
according to the boundaries described by Horváth and Palkovits
(1987). The anterior border of the septal tissue is the genu
of the corpus callosum; the upper border is the body of the
corpus callosum and the anterior commissure; and the lateral
borders are the lateral ventricles. The septal tissue is surrounded
basally by the nucleus accumbens and the stria terminalis. To
determine interrater reliability, stereological measurements of
eight different, randomly selected brains were performed by two

investigators (R.B., R.S). The interrater reliability for the densities
of calretinin-immuno-positive neurons in the septal nuclei was
0.97 (intraclass correlation coefficient). All measurements were
performed blind to the diagnosis: the investigators were unaware
of the patient’s diagnosis, age, and gender. The cross-sectional
area of the section was scanned with a 2.5 × objective using a
video camera module attached to a Leica light microscope, and
Digitrace software was used to project a picture on a monitor
(22.0 × 15.9mm). A magnification of 400 × was used for
cell counting. Using this apparatus, the counting frame was
superimposed onto one section at clearly defined anatomical
landmarks, with up to 200 systemically, uniformly randomly
sampled counting boxes (i.e., up to 100 counting boxes for
the left and the right portions of the septal nuclei) for each
septal nucleus along the entire extent of the septal nucleus. The
actual section thickness of each section in the septal nuclei was
determined with a 100 × oil immersion objective by focusing on
the upper and lower surfaces of the section and then subtracting
the z-axis distance measured by the a microcator attached to
the Leica DM RB microscope (Leica, Gießen, Germany). To
determine the number of neurons at a higher magnification
(400X) neurons were counted by using the optical disector
method as described earlier (Bernstein et al., 2001; Brisch
et al., 2009; Walløe et al., 2014). The average thickness of the
sections (z-axis) was 16.0 ± 1.9µm (mean ± SD). The mean
thickness of the sections was 14.9 ± 1.9µm (mean ± SD) in the
schizophrenia group, 16.9± 1.8µm (mean± SD) in the affective
disorders group, and 16.8± 1.2µm (mean± SD) among healthy
control subjects. The neuronal density was estimated based on
the square of the counting area, which was determined by the
square of the septal nuclei at the adjacent nuclei, and the number
of calretinin-immunoreactive neurons within the counting boxes
(Brisch et al., 2009). Neurons touching the left and lower borders
of the counting boxes were excluded, and neurons touching the
opposite borders were included (see Figure 1; Pennington et al.,
2008).

Immunohistochemistry
The brain sections were dewaxed with xylol and washed with
distilled water (two 10-min washes). The sections were washed in
a 1% H2O2–10% methanol/phosphate-buffered saline solution.
After repeated washings in phosphate-buffered saline solution,
the sections were incubated in bovine serum albumin in a
humidified chamber for 1 h. A rabbit polyclonal antiserum
(Swant, Bellizona, Switzerland, Code No: 7699/4) was then
applied to the brain sections as the primary antibody in a
dilution of 1:500. The solution consisted of 20µl of calretinin
antibody, 10ml of PBS, 40µl of Triton X-100, and 200ml of
goat normal serum. The brain sections were incubated in a
humidified chamber at 4◦C for 48 h and washed twice for 10min
each in phosphate-buffered saline. The secondary antibody (goat-
anti-rabbit-immunoglobulin E 0432, Dako, Denmark) was then
applied to the sections at a dilution of 1:100, and the sections
were incubated in a humidified chamber for 48 h, followed
by two washes for 5min each in phosphate-buffered saline.
Streptavidin was then applied to the sections at a dilution of
1:100 (Streptavidin-biotin-peroxidase-complex, RPN 1051, Batch
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177351, Amersham Biosciences, Germany). Streptavidin was
used as an antibody marker. The sections were then incubated in
a humidified chamber at a 4◦C for 1 h, followed by two washes
for 10min each in phosphate-buffered saline. To visualize the
reaction products, 3,3′-diamino nickel sulfate hexahydrate was
used. Finally, repeated washings with distilled water (twice for
5min), 60% alcohol (5min), 70% alcohol (5min), 96% alcohol
(5min), and absolute alcohol (5min) were performed. To control
the specificity of the immunostaining for calretinin, we either

FIGURE 1 | Calretinin-immunopostive neurons (arrows) in the Ncl.

lateralis of a patient with schizophrenia (modified from Pennington

et al., 2008).

omitted the primary antiserum or replaced it with buffer or
normal rabbit serum. Control reactions showed a complete
disappearance of specific immunostaining.

Statistical Analysis
The independence of frequency for the variables of gender and
diagnosis was analyzed using Pearson’s chi-square test. The
other demographic variables are presented as their mean ±

standard deviation and were compared among the three groups
using a one-way ANOVA (analysis of variance; see Table 1).
Levene’s-test was used to evaluate the equality of variances
for a given variable, such as the cell numbers calculated for
the three groups (i.e., healthy control subjects, patients with
affective disorders, and patients with schizophrenia). Some of
the morphometric values had distinct asymmetric distributions
(see Table 2) and were therefore using non-parametric tests. The
Kruskal–Wallis test was performed to determine the significance
of the differences in terms of mean cross-sectional area, the
number of neurons, and the neuronal densities among the three
groups (see Table 2). Results were considered significant at the
0.05 level. In cases of significance, the pairwise U-test (Wilcoxon–
Mann–Whitney with the Shaffer-correction) was used to detect
significant differences between pairwise groups (seeTable 2). The
statistical power of each test was also calculated.

Methods of the Mini-review

We searched PubMed in July 2015. Using the following keywords
“calretinin and neuronal density and schizophrenia,” we obtained
12 hits, of which three were relevant studies. We had 18 hits
in PubMed for the keywords “calretinin and neuronal number
and schizophrenia,” two of which were relevant studies. We had
two hits in PubMed for the keywords “calretinin and neuronal

TABLE 2 | Cell numbers and neuronal densities (neurons/mm3) in the septal nuclei of patients with schizophrenia, patients with affective disorders, and

the healthy control subjects.

Cell number (mean, SD, CE) Ncl. lateralis Ncl. medialis (pars fimbrialis and pars intermedia) Ncl. dorsalis

Volume cell density (mean, SD, CE)

Control subjects (N = 6) 123.0 (81.4; 0.27) 171.6 (85.7; 0.22) (N = 5) 131.0 (87.8; 0.27)

2032 (687; 0.14) 1717 (684; 0.18) 1711 (1373; 0.33)

Patients with schizophrenia (N = 10) 257.4 (243.3; 0.32) (N = 9) 329.7 (374.1; 0.43) (N = 7) 224.2 (299.6; 0.45) (N = 9)

2891 (1939; 0.22) 2863 (3452; 0.46) 2110 (2389; 0.38)

Patients with affective disorders (N = 6) 168.2 (91.3; 0.22) 165.4 (98.3; 0.27) (N = 5) 238.0 (150.5; 0.26)

2378 (1193; 0.20) 1744 (730; 0.19) 2856 (1281; 0.18)

Two-group-comparisons

Aff. vs. Ctr. (U-test) 0.48; 0.59 1.00; 1.00 0.24; 0.24

SZ vs. Ctr. (U-test) 0.18; 0.61 0.76; 0.88 0.69; 0.86

SZ vs. Aff. (U-test) 0.78; 0.78 0.88; 1.00 0.78; 0.22

Three-group-comparisons

ANOVA Ctr./Aff./SZ (p-value) 0.34; 0.54 0.46; 0.62 0.65; 0.57

Levene’s-test 0.048; 0.071 0.036; 0.10 0.50; 0.44

K–W-test Ctr./Aff./SZ 0.38; 0.76 0.94; 0.97 0.56; 0.33

The data are presented as the mean, standard deviation (SD), and coefficient of error (CE). Please note that the number of patients with schizophrenia included in the data for the nuclei

lateralis, medialis (pars fimbrialis and pars intermedia), and dorsalis data is less than the original number of patients with schizophrenia (in bold). In addition, the number of patients with

affective disorders included in the nuclei medialis data is less than the original number of patients with affective disorders (in bold). K–W-test, Kruskal–Wallis-test; Ctr, Control subjects;

SZ, Patients with schizophrenia; Aff, Patients with affective disorders; Ncl., nucleus. Shrinkage-corrected data are presented.
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density and bipolar disorder,” one of which was a relevant study.
We had two hits in PubMed for the keywords “calretinin and
neuronal number and bipolar disorder,” one of which was a
relevant study. We had two hits in PubMed for the keywords
“calretinin and neuronal density and major depressive disorder,”
one of which was a relevant study. We had two hits in PubMed
for the keywords “calretinin and neuronal number and major
depressive disorder,” one of which was a relevant study. We had
22 hits for the keywords “parvalbumin and neuronal density and
schizophrenia,” of which six were relevant studies. We had 48
hits for the keywords “parvalbumin and neuronal number and
schizophrenia, three of which were relevant studies.” We had two
hits for the keywords “parvalbumin and neuronal density and
bipolar disorder,” of which one was a relevant study. We had four
hits for the keywords “parvalbumin and neuronal number and
bipolar disorder,” two of which were relevant studies. We also
searched the reference lists of published studies.

Results

Numbers of Calretinin-immunoreactive Neuron
and Neuronal Densities in the septal Nuclei of
Patients with Schizophrenia, Patients with
Affective Disorders, and Healthy Control Subjects
No significant differences were observed in the number of
calretinin-immunoreactive neurons in the lateral (AFF vs. CTR,
P = 0.48; SZ vs. CTR, P = 0.18; SZ vs. AFF, P = 0.78), medial
(pars fimbrialis and pars intermedia; AFF vs. CTR, P = 1.00; SZ
vs. CTR, P = 0.76; SZ vs. AFF, P = 0.88), and dorsal septal nuclei
(AFF vs. CTR, P = 0.24; SZ vs. CTR, P = 0.69; SZ vs. AFF, P =

0.78) among patients with schizophrenia, patients with affective
disorders and healthy control subjects (see Figures 2A, 3A–E;
Table 2). There were no significant differences in the densities of
calretinin-immunoreactive neurons in the lateral (AFF vs. CTR,
P = 0.59; SZ vs. CTR, P = 0.61; SZ vs. AFF, P = 0.78), medial
(pars fimbrialis and pars intermedia; AFF vs. CTR, P = 1.00; SZ
vs. CTR, P = 0.88; SZ vs. AFF, P = 1.00), and dorsal septal
nuclei (AFF vs. CTR, P = 0.24; SZ vs. CTR, P = 0.86; SZ vs.
AFF, P = 0.22) among patients with schizophrenia, patients with
affective disorders, and healthy control subjects (see Figure 2B;
Table 2). The mean cross-sectional areas of the septal nuclei did
not differ siginificantly among the patients with schizophrenia,
patients with affective disorders, and healthy control subjects.
The statistical power (1-β probability of error) was estimated
for the F-tests used in the statistical analysis of number of cells
and cell density, respectively. For the the dorsal septal nuclei, it
was estimated as 0.612 and 0.736, for the medial septal nuclei
(pars fimbrialis and pars intermedia) as 0.933 and 0.763, and
for the lateral septal nuclei as 0.952 and 0.771. Therefore, it was
concluded that our sample size would be large enough to detect
statistically significant differences.

Discussion

The present study demonstrates for the first time that
there are no alterations in the density and number of

A

B

FIGURE 2 | (A) Numbers of calretinin-immunoreactive neuron in the septal

nuclei of patients with schizophrenia, patients with affective disorders, and

healthy control subjects. The data are presented as the mean and standard

deviation. (B) Densities of calretinin-immunoreactive neuron in the septal nuclei

of patients with schizophrenia, patients with affective disorders, and healthy

control subjects. The data are presented as the mean and standard deviation.

calretinin-immunoreactive neurons in the lateral, medial,
and dorsal septal nuclei of patients with schizophrenia or
patients with affective disorders compared to healthy control
subjects.

Although some studies demonstrated significant changes in
calretinin-immunoreactive neurons in schizophrenia and bipolar
disorder compared to control subjects in brain regions such
as the dentate and the dorsolateral prefrontal gyri (Oh et al.,
2012; Walton et al., 2012), the majority of studies of calretinin-
immunoreactive neurons in schizophrenia in brain areas such
as the hippocampus, prefrontal, and cingulate cortices, and the
mammillary bodies (Zhang and Reynolds, 2002; Zhang et al.,
2002; Bernstein et al., 2007; review by Eyles et al., 2002) and in
affective disorders in the cingulate cortex (Cotter et al., 2002; see
Table 3) are consistent with our present findings.

A novel interaction between calretinin and AMPA [(S)-2
amino-3-(3-hydroxy-5-methyl-4-isoazolyl)-propionic-acid] has
been proposed as a potential target for the development of
new antipsychotic therapeutics for schizophrenia (Siekmeier
and vanMaanen, 2013). However, new drugs that affect
this pathway should be developed with caution because the
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FIGURE 3 | (A–E) Calretinin-immunopostive neurons in the Ncl. medialis of a healthy control subject (A); Ncl. medialis of a patient with major depressive disorder (B);

Ncl. lateralis of a patient with major depressive disorder (C); Ncl. medialis of a patient with schizophrenia (D); and Ncl. medialis of a healthy control subject (E). Scale

bars correspond to 50µm. Ncl., nucleus.

GABA-potentiating drug vigabatrin, an irreversible inhibitor of
GABA-transaminase, induces alterations in GAD67, GAD65,
parvalbumin, and calbindin levels in certain brain regions,
including the hippocampus and cerebral cortex (Levav-Rabkin
et al., 2010). Increased density of GAD65/67-immunoreactive
neuropil suggests a GABAergic hyperactivity in the hippocampus
and might compose a risk factor for suicidal behavior in affective
disorders (Gos et al., 2009). Increased densities of GAD65/67-
positive neurons in the dorsolateral prefrontal and superior
temporal cortices and in the hippocampus have been observed
among patients with major depressive disorder compared with
control subjects and patients with bipolar disorder as well
as in the orbitofrontal cortex among patients with major
depressive disorder and bipolar disorder compared to control
subjects (Bielau et al., 2007) and in the posterior subiculum
and parahippocampal gyrus in treated patients with chronic
schizophrenia compared with control subjects (Schreiber et al.,
2011) Further, a reduced level of GAD67 protein in the
prefrontal cortex has been observed in major depressive disorder
compared with control subjects (Karolewicz et al., 2010), and
a reduction in GAD67 along with parvalbumin-positive cells
of the dorsal hippocampus has been observed in a rat model
of schizophrenia (Dickerson et al., 2014). Calbindin/GAD67-
positive and calretinin/GAD67-positive neurons are much more
involved in pathological processes in brain diseases, including
schizophrenia, than are neurons with GAD65 (Rocco et al.,
2015). Alterations in GABAergic interneurons and minicolumns
in the neocortex are characteristic of neuropathological diseases
such as schizophrenia (Raghanti et al., 2010). Moreover,
the dorsolateral prefrontal cortex, with its glutamatergic
and GABAergic populations, has been the focus of recent
schizophrenia research (Lewis et al., 2005; Hoftman and Lewis,
2011). Increased levels of GABA have been observed in prefrontal
cortices in unmedicated patients with schizophrenia (Kegeles
et al., 2012). Reduced numbers of parvalbumin-immunoreactive
neurons in the hippocampus, prefrontal and frontal cortices,

and mammillary bodies have been reported in patients with
schizophrenia compared with control subjects (Beasley and
Reynolds, 1997; Lewis et al., 2001; Reynolds and Beasley, 2001;
Reynolds et al., 2001, 2002, 2004; Beasley et al., 2002; Zhang
and Reynolds, 2002; Zhang et al., 2002; Bernstein et al., 2007;
see Table 3) and in an animal model of schizophrenia (Reynolds
et al., 2004; Penschuck et al., 2006; Harte et al., 2007; Bissonette
et al., 2014). In addition, a significant decrease in parvalbumin-
immunoreactive neurons in the entorhinal cortex of patients
with bipolar disorder compared with control subjects has been
observed (Pantazopoulos et al., 2007).

Increased oxidative stress and changes in antioxidant systems,
such as decreased glutathione, in schizophrenia compromise
the integrity of parvalbumin interneurons in the ventral
hippocampus (Steullet et al., 2010).

Upregulation of parvalbumin in the prefrontal cortex during
adolescence due to pre- and postnatal disturbances has been
observed (Caballero et al., 2014). Age-related changes have
been observed in the calbindin-, calretinin-, and parvalbumin-
immunoreactive neurons of the human cerebral cortex (Bu
et al., 2003) and in the parvalbumin-immunoreactive neurons
of the medial and lateral geniculate nuclei of rhesus macaques
(Gray et al., 2013). Nicotine enhances GABAergic and serotonin
synaptic transmission in the medial septum (Wu et al., 2003;
Aznar et al., 2005; DuBois et al., 2013).

Methylphenidate, which is used to treat children suffering
from attention deficit hyperactivity disorder (ADHD), causes
an increase in calretinin neurons in the medial septum and in
the vertical limb of the diagonal band of Broca (MS/VDB) of
rats (García-Avilés et al., 2015). Furthermore, cannabis abuse
results in decreased expression of GAD67 in the parvalbumin-
containing interneurons of the prefrontal cortex in a rat model of
schizophrenia (Zamberletti et al., 2014). Prenatal lead exposure
results in a loss of parvalbumin-interneurons co-labeled with
GAD67 protein in specific brain regions such asmedial prefrontal
cortex, striatum, and hippocampus but to increased activity of
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TABLE 3 | Post-mortem studies of calretinin-, calbindin-, and parvalbumin-immunoreactive neurons in patients with schizophrenia, bipolar patients, and

patients with major depressive disorder compared to control subjects.

Authors Sample sizes Brain areas Results

Daviss and Lewis,

1995

N = 10 schizophrenia patients Prefrontal cortical areas 9 and 46 Calbindin ↑ (schizophrenia patients compared to

control subjects)

N = 5 control subjects Neuronal cell density Calretinin ↔

Beasley and

Reynolds, 1997

N = 18 schizophrenia patients Prefrontal cortex Parvalbumin ↓ (in layers III, IV of schizophrenia

patients compared to control subjects)N = 22 control subjects Neuronal cell density

Kalus et al., 1997 N = 5 schizophrenia patients Anterior cingulate cortex Nissl ↔ (total neuronal density)

N = 5 control subjects Neuronal cell density Parvalbumin ↑ (soma profile density in layers Va and

Vb in schizophrenia patients compared to control

subjects)
Somal profile density

Woo et al., 1997 N = 15 schizophrenia patients Prefrontal cortex (areas 9 and 46) Parvalbumin ↔

N = 15 control subjects Occipital cortex (area 17)

Neuronal cell density

Somal size

Holt et al., 1999 N = 10 schizophrenia patients Total striatum Choline acetyltransferase↓ (in the total striatum and

most prominent in the ventral striatum in

schizophrenia patients compared to control

subjects)

N = 9 control subjects Neuronal cell density Calretinin ↓ (in the total striatum and most

prominent in the caudate nucleus in schizophrenia

patients compared to control subjects)

Reynolds and

Beasley, 2001

N = 18 schizophrenia patients Prefrontal cortex Parvalbumin ↓ (in layers III, IV of schizophrenia

patients compared to control subjects)

N = 22 control subjects Relative density of neurons Calretinin ↔

Beasley et al.,

2002

N = 15 schizophrenia patients Neuronal cell density Parvalbumin ↓ (in layer III of schizophrenia patients

to control subjects)

N = 15 bipolar patients Calbindin ↓ (in layers II, III and V of schizophrenia

patients compared to control subjects and layer V of

bipolar patients compared to control subjects; by

comparing individual laminar densities between

groups (correction for multiple comparisons) only a

reduction in layer II in schizophrenia patients

compared to control subjects)

N = 15 patients with major depressive disorder

dorsolateral prefrontal cortex (Broadmann area 9)

Calretinin ↔

Cotter et al., 2002 N = 15 schizophrenia patients Anterior cingulate cortex Calretinin ↔

N = 15 bipolar patients Neuronal cell density Parvalbumin ↔

N = 15 patients with major depressive disorder Neuronal cell size Calbindin ↔

N = 15 control subjects

Reynolds et al.,

2002

N = 15 schizophrenia patients Entorhinal cortex Parvalbumin ↓ (schizophrenia patients compared to

control subjects)Prefrontal cortex

N = 15 bipolar patients Neuronal cell density Calbindin ↔

Calretinin ↔N = 15 patients with major depressive disorder

N = 15 control subjects

(Continued)
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TABLE 3 | Continued

Authors Sample sizes Brain areas Results

Zhang and

Reynolds, 2002

N = 15 schizophrenia patients Hippocampus

N = 15 bipolar patients Relative cell density of neurons Calretinin ↔

N = 15 patients with major depressive disorder Neuronal body size Parvalbumin ↓ (cell density in male schizophrenia

patients and bipolar patients (CA 1) compared to

control subjects; neuronal body size ↓ in

schizophrenia patients and bipolar patients

compared to control subjects)

Zhang et al., 2002 N = 15 schizophrenia patients Hippocampus Parvalbumin ↓ (neuronal cell density)

N = 15 control subjects Neuronal cell density

Neuronal cell size Calretinin ↔

Danos et al., 2003 N = 12 schizophrenia patients Anteroventral thalamic nucleus (AN) Parvalbumin ↓

(parvalbumin-immunoreactive-thalamocortical

projection neurons in the left and right AN in

schizophrenia patients compared to control

subjects)

N = 14 control subjects Neuronal cell density

Tooney and Chahl,

2004

N = 6 schizophrenia patients Prefrontal cortex Calretinin ↔

N = 6 control subjects Relative density of neurons Calbindin ↔

Somal size of neurons Parvalbumin ↔

Chance et al.,

2005

N = 12 schizophrenia patients Planum temporale Calbindin ↔

N = 12 control subjects Neuronal cell density

Wheeler et al.,

2006

N = 9 schizophrenia patients Posterior cingulate cortex Calbindin ↔

N = 9 control subjects Visual cortex

Neuronal cell density

Bernstein et al.,

2007

N = 15 schizophrenia patients Mammillary bodies Parvalbumin projection neurons ↓ (schizophrenia

patients compared to control subjects)

N = 15 control subjects Neuronal cell number Calretinin ↔

GAD ↔

Pantazopoulos

et al., 2007

N = 10 schizophrenia patients (SZ)

N = 10 bipolar patients (BP)

N = 16 control subjects (CS)

Entorhinal cortex (EC)

Neuronal cell number

Neuronal density

Soma size

Parvalbumin ↓ (neuronal density and cell number in

bipolar patients (BP) compared to control subjects

(CS))

(neuronal density ↓ of the superficial layers of the

lateral and caudal EC in BP compared to CS)

(neuronal density ↓ of the superficial layers of the

caudal EC in SZ compared to CS)

Rajkowska et al.,

2007

N = 14 patients with major depressive disorder

(MDD)

N = 11 control subjects

Dorsolateral prefrontal cortex

(dlPFC)

Orbitofrontal cortex (ORB)

Neuronal cell density

Neuronal cell size

Calbindin ↓ in cell density and size in dlPFC in

patients with MDD compared to control subjects a

trend for reduction in parvalbumin and

calbindin-immunoreactive neurons in cell density

and cell size in ORB in patients with MDD compared

to control subjects

Konradi et al.,

2011a

N = 13 schizophrenia patients Hippocampus Parvalbumin ↓

N = 20 control subjects Neuron number Somatostatin ↓

Konradi et al.,

2011b

N = 14 bipolar patients Hippocampus Parvalbumin ↓ (CA4, CA1) and somatostatin ↓ (CA1)

(bipolar patients compared to control subjects)N = 18 control subjects Neuron number

(Continued)
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TABLE 3 | Continued

Authors Sample sizes Brain areas Results

Wang et al., 2011 N = 11 patients with schizophrenia

N = 13 patients with type 1 bipolar disorder

N = 15 control subjects

Caudal entorhinal cortex (EC)

Subiculum

Parasubiculum

Neuronal density

Parvalbumin ↓ and somatostatin ↓ (in the caudal EC

and parasubiculum of bipolar and schizophrenia

patients compared to control subjects

Calbindin ↔

Oh et al., 2012 N = 15 patients with schizophrenia

N = 15 bipolar patients

N = 15 patients with major depressive disorder

N = 15 control subjects

Dorsolateral prefrontal cortex

(dlPFC)

Neuronal cell density

Neuronal cell size

Calretinin ↓ (in layer I in patients with major

depressive disorder compared to control subjects)

A significant correlation between reduced density of

calretinin-immunoreactive in the dlPFC of patients

with major depressive disorder and lower density or

size of glial cells and pyramidal neurons in subjects

from the Stanley Neuropathology Consortium

Walton et al., 2012 N = 15 control subjects

N = 15 schizophrenia patients

N = 15 bipolar patients

N = 15 patients with major depressive disorder

Hippocampus

Neuronal cell number

Calretinin ↑ (in the dentate gyrus of schizophrenia

patients and bipolar patients compared to control

subjects)

the subcortical dopaminergic system and intensified locomotor
response to cocaine in a rat model of schizophrenia (Stansfield
et al., 2015).

A major limitation of the present study is the small numbers
of healthy control subjects, patients with schizophrenia, and
patients with affective disorders. It was not possible to determine
the numbers of smokers and non-smokers in our study’s
population, a minor drawback of the study. The psychotropic
medication in patients with schizophrenia and patients with
affective disorders was only recorded during the last 3 months
before the patients’ lives.

Our findings of no significant differences in the density
and number of immunoreactive calretinin neurons in the
medial, lateral, and dorsal septal nuclei in patients with
patients with schizophrenia, patients with affective disoders, and
healthy control subjects should be interpreted as a preliminary
result. Future research examining the distribution of calretinin
neurons in the septal nuclei of patients with schizophrenia or
patients with affective disorders should utilize larger sample
sizes. Forthcoming investigations should also focus on the
distribution and the densities of parvalbumin-immunoreactive
neurons in the septal nuclei of patients with schizophrenia
and patients with affective disorders compared with healthy
control cases.

Evolutionary Trade-off of Calretinin and
Schizophrenia
An evolutionary perspective on why calretinin is affected in
the neurodevelopmental disorder schizophrenia provides some
insight into this disorder. While several evolutionary theories
have been proposed for the persistence of schizophrenia (Davis
et al., 1991; Adriaens, 2008; da Silva Alves et al., 2008).
Although it is impossible to verify these theories using ancestral
hominin remains because brain tissue cannot be fossilized.
Numerous hypotheses have been proposed for the superior
cognitive abilities of Homo species, and these have been largely
based on the threefold increase of the human neocortex

during the Pleistocene period (2 Ma–13 kya). However, much
of this research has focussed on brain anatomy in relation to
cerebral volume size rather than neuro-hormonal regulation. It
has been established that GABAergic interneurons are crucial
in the diverse activities of pyramidal cells (Hendry et al.,
1987; Zaitsev et al., 2009). From an evolutionary perspective,
GABA has been shown to have an inhibitory function in
the nervous systems of both vertebrates and invertebrates
(Fiorillo and Williams, 1998; Gou et al., 2012). Although, it
has been established that there exists a relationship between
glutamatergic pyramidal neurons and GABAergic interneurons
(of which calretinin-positive neurons are a subtype of GABAergic
interneurons; Radonjic et al., 2014), this relationship is not
well-understood in relation to the development of schizophrenia
in humans.

Evolution of the Neurotransmitters
Gamma-aminobutyric Acid and Glutamate and
their Receptors
A recent theory hypothesizes that there may have been
positive Darwinian selection in the modification of interneuron
populations in humans, leading to cognitive specializations
in Homo species (Sherwood et al., 2010). Current studies
indicate that there is an evolutionary continuity between human
and non-human primates, as well as changes in subcortical
descending projections during human evolution (Rilling et al.,
2008; Sherwood et al., 2010). Calretinin-positive interneurons are
the most abundant GABAergic neurons in primates (Hladnik
et al., 2014). Interestingly, anatomical and neurohormonal
changes to the brain during human evolution may have
informed changes in glutamatergic and GABAergic processes in
interneurons, thereby possibly altering calretinin regulation in
the hippocampus and in key motor centers. The development
of obligate bipedalism required a host of morphological and
neuro-hormonal changes: CNS, metabolic and cardiovascular
responses due to sustained running, swivel hips, slow-twitch
muscles, plantar arches and longer femurs, as well asmodification
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of eccrine glands (Mattson, 2012). A recent theory contends that
the advent of endurance hunting from Homo erectus onwards
mediated thermo-regulatory changes in the dopaminergic
system (Previc, 2002) and that such changes influenced neuro-
hormonal regulation (Mattson, 2012). This theory also states that
endurance hunting demanded retention of geographical areas
and mnemonic recall in hippocampal areas to maximize resource
acquisition (Mattson, 2012; Brisch et al., 2014). It could be
suggested that the increase in physical activity levels (PAL) from
Homo erectus onwards, may have caused an evolutionary trade-
off in which higher metabolic demands in ancestral hominins
may have come at an evolutionary cost of making GABA
interneurons more vulnerable. Even slight physiologic variations
in brain temperature may alter neuron composition and function
(Andersen and Moser, 1995). Research indicates that GABA
in the preoptic area and anterior hypothalamus (POAH) acts
in heat regulation (Ishiwataa et al., 2005), while hyperthermia

may increase hippocampal excitability and decrease GABA
regulation in pyramidal cells (Qu et al., 2007; Qu and Leung,
2009). Therefore, selective pressures informing human brain
evolution may have come at a cost of altering calretinin
regulation of GABAergic hippocampal-interneurons, which may
have contributed to the development of schizophrenia in
humans.
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