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Abstract

Petri nets are a promising modeling framework for epidemiology, including
the spread of disease across populations or within an individual. In particu-
lar, the Susceptible-Infectious-Recovered (SIR) compartment model is founda-
tional for population epidemiological modeling and has been implemented in
several prior Petri net studies. However, the SIR model is generally stated
as a system of ordinary differential equations (ODEs) with continuous time
and variables, while Petri nets are discrete event simulations. To our knowl-
edge, no prior study has investigated the numerical equivalence of Petri net
SIR models to the classical ODE formulation. We introduce crucial numerical
techniques for implementing SIR models in the GPenSim package for Petri net
simulations. We show that these techniques are critical for Petri net SIR mod-
els and show a relative root mean squared error of less than 1% compared to
ODE simulations for biologically relevant parameter ranges. We conclude that
Petri nets provide a valid framework for modeling SIR-type dynamics using
biologically relevant parameter values, provided that the other PN structures
we outline are also implemented.
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1 Introduction

1.1 Prior Work

Petri nets (PNs), a discrete event mathematical formalism, have become an increas-
ingly popular modeling tool in epidemiology, with the number of papers on the sub-
ject steadily increasing. From 1990-2000, there were 11 papers on the subject pub-
lished; from 2000-2010, there were 107 papers published; from 2010-2020, there were
375 papers published; from 2020-June 2024, there have been already 317 papers pub-
lished, as found through Google Scholar and Scopus aggregate filtered search results.
Petri nets have the upside of potentially modeling diverse phenomena across different
types of disease propagation and intriguing framework due to the ease of visualiza-
tion and comprehension of the PN model for those without a strong background in
mathematics. With PNs, it is also straightforward to alter logical statements to fit
the dynamics of a disease with various standard PN structures. Furthermore, Petri
nets can easily scale up and be made non-deterministic, a mathematically intensive
process with ordinary differential equations. Not surprisingly, ordinary differential
equation (ODE) compartment models, a cornerstone in numerous epidemiological
modeling studies with over 16,000 published articles on the subject from 1990-2024,
are used as the mathematical structure from which many biological PN models are
derived. However, the traditional ODE models exist as a system of equations oper-
ating in continuous time with continuous population levels, while Petri nets operate
through discrete event simulations with discrete token levels. Moreover, there is not
a one-to-one relationship between ODEs and PNs. With many PNs in epidemiol-
ogy being transformed from ODEs, the comparative dynamics are essential for the
epidemiological community. To our knowledge, the numerical equivalence between
Petri net-based models and their classical ODE counterparts has not been explored,
nor has Petri nets’ fundamental dynamical limitations been extensively scrutinized
in this context.

In particular, several criteria and critical properties of Petri nets have yet to be
adequately scrutinized to ensure that a PN model’s mathematical, biological, and
computer science properties are appropriate for epidemiology applications. From
papers talking about bio-chemical interactions [1] with over 800 citations to textbooks
on modeling systems biology [2] with over 1400 citations, and within no other paper
on Petri nets in epidemiology that we could find, are the practical application issues
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of rounding errors in discrete token space, discrete time steps versus continuous
time, or Petri net firing dynamics in relation to biological dynamics appropriately
addressed. A SIR derivative PN model is proposed [3] with a method for parameter
fitting, another practical application issue that needs addressing. Unfortunately,
the structure of the PN model in the paper means that the parameters in the PN
model are set to represent concepts different from those in the corresponding ODE
mode, and the method of parameter fitting does not find a global minimum for error.
The theme of less than rigorous validation is continued in other works where the
dynamics of a PN model are not proven across the range of the parameters, the
parameters themselves have different fundamental meanings compared to the ODE
models they are replicating, and the dynamics of the PN model happen in a way that
is impractical for a biological system. Similarly, the fitting and forecasting abilities
in the Petri nets compared against ODEs are unvalidated in [4], [5], [6], and [7].

The contribution of this work is in addressing the two crucial issues of rounding
errors of variable arc weights and the PN time steps per time unit. These issues,
which have not been discussed in all previously mentioned papers, nor in any other
paper we could find on the subject, are addressed here in a way where the parameters
are connected to their real life and ODE definition. This connection allows the two
modeling techniques to be more directly compared, with practical implications for
disease modeling applications. These issues, applied to a fundamental model we
outline in this paper, will allow the publication of our code and subsequent use by
us and others to apply Petri nets in epidemiology further. Before getting to all
this, though, we establish the basics of Petri nets, the basics of an ODE model in
epidemiology, PN setup options for corresponding ODEs, and software for PNs.

The paper is organized first by establishing some basics about PNs, how PNs
are set up in relation to corresponding ODEs, and steps to ensure PN dynamics
correspond with fundamental biological dynamics. Then we get into how we will be
addressing the issues of rounding error and PN time steps per time unit.

One note before continuing on the software we will be using: a considerable variety
of Petri net simulation and software tools are available, all with different advantages
and disadvantages [8][9]. The popular ones like GPenSIM, Snoopy, CPNTools, and
Spike can handle various Petri net types. Nevertheless, the software GPenSIM was
chosen for this work due to its ability to modify PN systems for deep analysis easily,
run variable arc weight PN models, and run them in MATLAB. Beyond MATLAB’s
ability to quickly transfer into running with C, C++, and Python programs, MAT-
LAB has many prebuilt functions that allow for expanding the scope of GPenSIM
to fit more applications in disease modeling in the future.
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2 Methodology – Preliminaries

Understanding the basics of ODE and PN models is crucial, as these basics play a
huge role in the overall dynamics of a model and, later, the mathematical analysis
of the results.

2.1 Fundamentals of Petri Nets and ODE models

A Petri net graph, or Petri net structure, is a weighted bipartite graph [10] defined
as n-tuple (%,), �, F, G) where,

• % is the finite set of places (one type of node in the graph).

• ) is the finite set of transitions (the other type of node in the graph).

• � is the set of arcs from places to transitions and from transitions to places in
the graph � ⊂ (% × )) ∪ () × %).

• "0 is the initial state (aka marking), "0 = [<1, <2, . . . , <=], where <8 is the
number of tokens in place ?8 .

• F : A → {1, 2, 3, . . .} is the weight function on the arcs.

• G is a marking of the set of places P; G = [G(?1), G(?2), ..., G(?=)] ∈ #= is the
row vector associated with G.

A transition C 9 ∈ ) in a Petri net is said to be enabled if G(?8) ≥ F(?8 , C 9) for all
?8 ∈ � (C 9). This allows us to define the state transition function, 5 : N= ×) → #=, of
Petri net (%,), �, F, G) is defined for transition C 9 ∈ ) if and only if G(?8) ≥ F(?8 , C 9)

for all ?8 ∈ � (C 9 ). If 5 (G, C 9) is defined, then we set G′ = 5 (G, C 9 ), where G′(?8) =

G(?8) − F(?8 , C 9) + F(C 9 , ?8), 8 = 1, ..., =. In simple terms, a transition is enabled if
the number of tokens in all places connected to that transition via an incoming arc
is greater than or equal to the arc weight for the respective arc connected to the
transition.

Tokens are assigned to places, with the initial assignment being the initial mark-
ing. By definition, a Petri net can utilize topological analysis. It is important to note
that the number of tokens assigned to a place is an arbitrary non-negative integer
but does not necessarily have an upper bound.

In Section 3.2, we go into more detail about the idea of PN time steps per unit
time, but here we define them as the number of firings each transition is allowed per
one unit of time, defined as g. The graph then can be defined as (%,), �, F, G, g).
Similar concepts were referred to in other works such as [11], where 1

g
is called

sampling frequency. Here, we leave g as defined to indicate the continuity of the
sequence of execution.
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Figure 1: Petri nets model formalism ele-
ments

Petri nets often have corresponding
diagrams that can give all the informa-
tion on the mathematical workings of
the system. While these can get quite in-
tricate, we keep ours simple and utilize
the legend for Petri nets model formal-
ism elements, as seen in Figure 1.

Ordinary differential equation mod-
els are the standard model used in epi-
demiology, drug pharmacokinetics, and
even cell population growth in diseases
like cancer [12], [13], [14], and [15]. As
such, it would be imperative to validate
that Petri nets can mimic the dynamics of ODEs. The SIR model is the most com-
monly used and seen model in epidemiology, as it is the basis on which most other
models are built. Derived initially by Kermack-McKendrick [16] in 1927, With (

defined as the susceptible population, � being the infected population, and ' the
recovered population. In the system of Equations 1-3, the parameter V is the rate
at which susceptible populations become infected. The parameter W is the rate at
which the infected population recovers per unit of time.

3(

3C
= −V(� (1)

3�

3C
= V(� − W� (2)

3'

3C
= W� (3)

The classical SIR model assumes that there is no birth, no death, no immigration,
no emigration, homogeneous mixing, that new infections are not dependent on other
factors besides V(�, and that there is an exponential waiting time for events to
happen in each compartment. In practice today, the base SIR model is typically used
as a foundation for constructing more complex models that include disease-specific
dynamics and various ways of treating or preventing the disease.

2.2 SIR Model in Petri Net Framework

The model we focus on first is the SIR model, with only three equations (Equations
1-3), and relatively few parameters in comparison to other epidemiology models.

5



The corresponding PN model to the SIR ODE model can be laid out to preserve the
ODEmodel’s assumptions (such as waiting times and closed population) and preserve
biological dynamics (such as positive populations and susceptible populations always
able to be infected). An example of this is seen in the differences between Layout 1
and 2 in Figure 2 the SIR Model, transitioning from the ODE equations.

(a) SIR Layout 1

(b) SIR Layout 2

Figure 2: Two Petri net layout options for SIR
model

With the exclusion/addition
of the arc from place � to tran-
sition C1 the two layout options
are presented. This arc is in-
cluded in many PN structures
when transitioning from ODE
to PN [17],[18]. However, this
arc is not mandated by a mathe-
matical principle and introduces
a hindrance to the number of
susceptible being infected at a
given time step as the number
of tokens in place ( and place
� have to be greater than V(�

in order for transition C1 to fire.
Eliminating this additional arc
and setting the arc weights to a level with the same net flow of tokens as shown
in Layout 1 reduces the number of disabled transition situations that do not have
sound biological principles. This hindrance arc from place � to transition C1 could
be considered biologically plausible in specific scenarios but not for the purposes of
comparing to an ODE. The code for all of the models can be found in the GitHub 1.
The code contains the model laid out as PN, and the corresponding ODE is defined
as a function.

The Petri net structure and ODEs can also be seen in the Segovia paper [17]
Figure 2 and Yang paper [19] Figure 1. The SIR model can easily be adapted to
the SIRS model by adding the term X', representing the rate of re-susceptibility per
unit of time. By adding X' to Equation 1 and subtracting it from Equation 3, we

1https://github.com/trevorreckell/Numerical-Comparison-of-PN-vs-ODE-for-SIR
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get Equations 4-6.

3(

3C
= X' − V(� (4)

3�

3C
= V(� − W� (5)

3'

3C
= W� − X'. (6)

Then using the same technique used to create Figure 2a, we apply Equations
4-6 to yield Figure 3. The resulting PN model structure is utilized throughout the
various tests done on particular aspects of the Petri net. Note that if X = 0, the SIRS
model will perform the same as the SIR model in the code.

Figure 3: SIRS model

2.3 Dealing with extreme values in discrete systems

Although there are Continuous Petri nets (CPN) and Continuous Timed Petri nets
(CTPN) [4], most software systems currently do not allow for either the construction
of these continuous systems or for the development of code to make such Petri nets
useful for analysis or forecasting. With no realistic software options for these types
of PNs, we narrowed our scope to discrete PNs, where discrete refers to both time
and token values.

One impactful drawback of these discrete PNs is dealing with relatively low token
values, which disable the firing of transitions.
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(a) (b)

Figure 4: Petri net layout options for dealing with low population values. In Figure
4a, this can be achieved with a simple ”if else” logic statement. In 4b an additional
transition needs to be installed.

For example, using the layout options outlined in Figure 4, we can allow for the
transition to fire even if the arc weight is initially higher than the place has tokens,
specifically if the system is calling for a number of tokens to be moved from place
( (susceptible population) to place � (infected population), which is larger than the
number of tokens that place ( has. The transition would normally not fire until
enough tokens have built up in place ( (susceptible population) or the arc weight
has changed to a lower value. Alarmingly, this does not follow biological dynamics.
Thus, we can adapt either 4a or 4b implementations to allow a firing to occur still.
In figure 4a, we allow the formula for the arc weight to switch when we transition C1
is disabled, where this transition being disabled corresponds biologically to not being
able to infect the susceptible population. The formula goes from V1(� to V2( where
V2 =

1

�+1
. If V2 ≤ 1

�
, then transition C1 will be enabled, but the formula for V2 could

be set to anything in the range of [0, 1
�
]. The formula will depend on the system

being modeled and the desired dynamics. The method laid out in figure 4b is similar,
just with a different transition being enabled if � > 1

V1
, rather than the formula for

the arc weight changing for the same transition. Another method of dealing with
these extreme values is outlined in the PN time steps per unit time in Section 3.2.

2.4 GPenSIM

General-purpose Petri Net Simulator (GPenSIM) is a new tool for the MATLAB
platform. GPenSIM is for modeling, simulation, and performance analysis of discrete
systems. One of the authors of this paper developed GPenSIM. The main reasons
for developing GPenSIM were [20]:
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• Easiness: GPenSIM should be easy to learn and use.

• Interoperability: GPenSIM should be able to model discrete systems in differ-
ent domains such as Production and Mechanical Engineering, Industrial En-
gineering, Computer science and engineering, etc., taking the full potential of
MATLAB’s numerous functions in diverse toolboxes.

• Extensibility: GPenSIM should be simple, possessing a core engine and an
interface so that users can use the interface to extend GPenSIM functions or
create new functions to model their systems.

• Industrial Applications: GPenSIM should be able to solve industrial problems
in addition to academic (teaching and research) usage.

The original version of GPenSIM was developed for P/T Petri nets for simple
analysis [20]. Later, coloring capability (Colored Petri nets) was added so that real-
life systems could be modeled [21]. Also, Petri nets pose a huge problem: even for
small systems, their Petri net models tend to become huge. Hence, for modeling
large real-life systems, modular modeling capability was added to GPenSIM [22].

Though Petri nets implemented by GPenSIM are fundamentally deterministic,
GPenSIM allows static Petri nets with non-varying arc weights. At the start of
the simulation, a static Petri net graph must be defined in a separate file (Petri net
Definition File (PDF)), and this file will be used throughout the simulation. However,
with an iterative approach, this weakness can be overcome. In the iterative approach,
we start with a static Petri net graph with some initial arc weights (initial PDF file).
At the end of the simulation, the newer arc weights are found, and these arc weights
are assigned to the corresponding arcs to create a new PDF file for the next iteration.

The iterations are run until the arc weights reach the maximum time interval and
can converge, similar to an ODE, with particular parameter sets to equilibria corre-
sponding to ODE equilibria. With this iterative approach, we can also use GPenSIM
to model and simulate stochastic Petri nets. However, the iterative approach can
take time, and hence, timing (slowness in simulation) can become an issue when
using GPenSIM for stochastic applications.

3 Methodology – Petri Net Modeling Issues

As mentioned earlier, multiple aspects should be considered when validating Petri
nets as an epidemiological modeling tool. However, we will focus on the significant
issues involving the rounding scheme and time steps.
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3.1 Rounding Variable Arc Weights in Discrete Petri Nets

Petri net simulation software, as a whole, does not have a standardized method for
rounding variable arc weights, also called dynamic arc weights or arc expressions in
some software documentation [23][24]. Rounding of the arc weight is necessary to
have the arc weights be whole numbers. Otherwise, continuous weights and token
values would need to be utilized. If using the standard PN approach of a whole
number of arc weights proves insufficient, another approach is to use continuous
values for the arc weights. Unfortunately, the software options for continuous value
arc weights are minimal. Amongst variable arc weight PN software with discrete arc
weight values, there is no standardized rounding system for the variable arc weights.
With this in mind, the question arises about what rounding system should be used.
The initial functions we will define are the ceiling function (weights are rounded up to
the nearest whole number), floor function (weights are rounded down to the nearest
whole number), and standard rounding (weights are rounded down when the tenths
place is less than five and up when the tenths place is greater than or equal to five).

We propose another rounding method that utilizes standard rounding with the
addition of carrying the residual of the rounding process to the next time step. In
the next time step, the residual is added to the same arc’s weight before that weight
is rounded again. This process is repeated each time the variable arc weight is
recalculated. This process could be done with other rounding functions, like ceiling
or floor functions, and we will compare this ”standard + residual” method with many
other possible rounding methods more rigorously in future work. These rounding
methods will each likely have their own drawbacks in terms of computation time and
memory, but crucially selecting one to allow the dynamics of a PN to mimic that of
an ODE closer is the goal.

A rounding scheme can only change a PN model so much. To improve the PN
model further, we must explore time steps, a classic problem with discrete-time
systems.

3.2 Time Steps of Petri Net Models

A Petri net can be set up in various ways, such as with a set number of firings allowed
in a given time interval or with each firing taking a set amount of time, of course, with
firings allowed to happen if the transition is enabled. The best approach depends
on the system being modeled. For our purposes of examining an epidemiological
SIR ODE model, we have allowed for one firing per PN time step. Additionally,
we allow multiple PN time steps to occur for every ”unit of time,” which could be
seconds, hours, or weeks, depending on the disease being modeled. This means we
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could allow for one PN time step for one unit of time used by the ODE or arbitrary
PN time steps, depending on the PN model and desired dynamics. This PN time
step per unit of time g could be seen as a parameter that could be fit to a data
set with the other parameters but also could be set at an arbitrarily high level to
allow for rapid dynamic to occur and then have the same number of fit parameters
as the corresponding ODE system. It should be noted that similar dynamics could
be done by assigning a set amount of time for each transition to fire. The benefit of
this system composition is that each transition could have an independent firing time.
However, combining this dynamic with the variable arc weights would be challenging
to set up, and given that we are considering consistent firing times, we decided to
stay with altering the PN time steps per unit time for this work.

When changing g, the other parameters implemented are dependent on a respec-
tive time unit, so they need to be scaled to ensure they are applied appropriately.
For instance, if the susceptible population becomes infected at a rate of 5%, V = 0.05,
and we are changing the PN time step to twenty-time steps per one unit of time, then
we need to scale V by 1

20
giving V = 0.05 · 1

20
= 0.0025. With the lower parameter

value, this method also has the benefit of avoiding the situation of not allowing the
transition to fire as frequently as laid out in Section 2.3.

With either method, varying time steps or firing times, there will be a significant
trade off of computation time. As such, we will calculate the mean computation time
when running the model for various time steps to get an idea of what times step level
is necessary given the desired dynamic level and computational power available.

4 Results

The methodology laid out will be implemented, starting with looking at the rounding
methods to determine which best mimics ODE dynamics when applied to a PN. From
this, the best rounding method will be applied to the PN for all further simulations,
to determine the effect of PN time steps per unit time (g) on the PN model compared
to the ODE model when parameter values are the same. However, first, we need a
numerical comparison approach between ODEs and PNs.

4.1 Numerical comparison of models

For the purposes of ease of following the associated code2, we follow the notation
used in MATLAB documentation for root mean square error. We denote the observed

2https://github.com/trevorreckell/Numerical-Comparison-of-PN-vs-ODE-for-SIR
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data vector as �, where �8 is a single vector entry indexed by the time point 8. The
forecasted data is denoted as �, where �8 is a single forecasted vector entry again
indexed by the time point 8. Finally, = represents the total number of time points
being compared. Specifically The approach for comparison is relative root mean
square error (RRMSE) as defined in

''"(� = 100 ·

√

1

=

∑=
8=1 |�8 − �8 |2
∑=

8=1 |�8 |2

where �8 is the ODE model data, and �8 is the forecasted PN model data in our
application.

This comparison will inspect the comparison given the parameters V, W, and X,
across their respective ranges of [0,1]. Using as an example the arc weight and ODE
rate of V(�. A level of V = 0 means that an infected individual infects and/or interacts
with 0% of all susceptible individuals, and V = 1 means that an infected individual
infects and interacts with 100% of all susceptible individuals. In a continuous ODE
system, this happens with exponential waiting time in each compartment, and mea-
suring true values for the parameters is not realistic, so they are often estimated
based on other factors. However, the value of one is likely far beyond the biologically
plausible level for V, W, and X. Let us look at the most extreme case for each of the
parameters. First, if we look at the measles (rubeola) with a maximum theorized '0

value of 18 [25]. Within the SIR ODE framework '0 =

V

W
. This would mean even

with V = 1 at maximum theoretical value, W maximum value would be 1

18
≈ 0.05556

for measles. For X with a minimum time of reinfection of 90 days, even for respiratory
diseases, it leads to a X value of 0.25. The parameter V represents a combination of
the percent of susceptible population that an infected person interacts with infects
as well as the interaction rate. Suppose we inspected V further and assumed that
infected population interacted with unrealistically high values of 70% of susceptible
population and the disease infected unrealistically high values of 70% of susceptible
population with every interaction. In that case, it leads to V = 0.49. Current ODE
modeling efforts where the model is applied to real diseases have more compartments
and often more mechanisms for various things like vaccines, age, immigration, etc.
With these come additional equations and parameters that split apart what the pa-
rameters of a reduced model represent. Looking at models of diseases like COVID-19
[19], measles [26], and influenza [27] combined with the examples given above, the
realistic range for each parameter is still far less than the theoretical range of [0,1].
Thus, from these same sources, we define the biologically realistic parameter range
for each respective parameter of [0,0.5].
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4.2 Rounding Variable Arc Weights in Discrete Petri Nets

First, it is necessary to address which rounding method is best, as the rounding
method selected will then be utilized in further experiments. Thus, we tested the
various rounding methods for parameters V, W, and X as laid out in the SIR model for
ODE and PN at extreme values, including (0,0,0) and (1,1,1) and various biologically
plausible values. From here, we use RRMSE to compare the ODE to the PN models
and visually observe the system’s dynamics. Visual observation, although somewhat
subjective, is essential when determining model performance, as large spiking or
missing in inconsistent ways would lead to not wanting to put too much weight on a
model for important decisions.
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Error Method Comparison

Parameters: V = 1, W = 1, X = 1 Parameters: V = 0.05, W = 0.05, X = 0.05
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Figure 5: This is a comparison of different rounding methods for when variables are
V = 1, W = 1, X = 1 for the figures 5a, 5c, and 5e on the left side and V = 0.05,
W = 0.05, X = 0.05 for the figures 5b, 5d, and 5f on the right side. The top row is the
susceptible population, the middle is the infected population, and the bottom is the
recovered population. All rounding method comparisons were conducted at a time
step of 20 PN time steps per unit time per 1 ODE time interval.
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In all of the Figure 5’s subfigures, the PN time steps per unit time (g) is set to
20. Initially, when viewing figures 5a, 5c, and 5e, we can see that the non-residual
rounding methods are unable to capture the dynamics of the ODE at all. Granted,
this is for the most extreme case for the parameter values, but it is important that
the PN model is capable of capturing the dynamics for all values [0,1] for V,W, and
X. When looking at more biologically plausible values of V, W, X = 0.05 in figures 5b,
5d, and 5f we can see that the nature of PN firing only when transitions are enabled
combined with the extreme value situation as laid out in section 2.3, the dynamics
behave like a 2-cycle. Without the extra logic statements laid out in section 2.3, the
dynamics are even less biologically plausible, though, with no new infected even with
high levels of infected and susceptible, simply with ( < V(�.

4.3 Time Steps of Petri Net Models

The PN model, as seen in Figure 3, with different PN time steps per unit time (g) are
compared to the ODE model Equations 4-6 with the same parameters values using
RRMSE. The parameter grid chosen was a linearly spaced grid of size ten between
[0,1] for parameters V and W. These are the x-axis and y-axis, respectively, for all of
the sub-figures in Figures 6-10. Then for X there is a logarithmic spaced grid of size
five between [0,1] going from the top to bottom row of Figures 6-10.
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One PN Time Step Per Unit of Time, g = 1

Figure 6: RRMSE percentage across parameter ranges of [0, 1] for each respective
parameter with W the y-axis of each subfigure, V the x-axis of each subfigure, and
X set at a different fixed value for each subfigure. PN Time Step Per Unit of Time
parameter g = 1. Note that red is RRMSE ≤ 44% (43.75% being the max ob-
served RRMSE across all simulations), dark orange is RRMSE ≤ 20%, light orange
is RRMSE ≤ 10%, yellow is RRMSE ≤ 5%, light green is RRMSE ≤ 1%, and dark
green is RRMSE ≤ .1%

When the g = 1, in Figure 6 the RRMSE performance is relatively poor, especially
for higher values of V, W, and X. This low g value displays the problem of comparing a
discrete versus a continuous time system with large swings in population happening
instantly at the time step, not allowing the dynamics of the PN to come close to
matching that of an ODE continuous system. These sharp dynamics combined with
the additional firing mechanisms of PN means the RRMSE values produced are
relatively large.
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Twenty PN Time Steps Per Unit of Time, g = 20

Figure 7: RRMSE percentage across parameter ranges of [0, 1] for each respective
parameter with W the y-axis of each subfigure, V the x-axis of each subfigure, and
X set at a different fixed value for each subfigure. PN Time Step Per Unit of Time
parameter g = 20. Note that yellow is RRMSE ≤ 5%, light green is RRMSE ≤ 1%,
and dark green is RRMSE ≤ 0.1%.

Figure 7 shows the vast improvement in RRMSE with utilizing higher PN time
steps per unit time. With this one change, the maximum RRMSE becomes ≈ 4.3
and the visual improvement at extreme values is immense.
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Forty PN Time Steps Per Unit of Time, g = 40

Figure 8: RRMSE percentage across parameter ranges of [0, 1] for each respective
parameter with W the y-axis of each subfigure, V the x-axis of each subfigure, and
X set at a different fixed value for each subfigure. PN Time Step Per Unit of Time
parameter g = 40. Note that yellow is RRMSE ≤ 5%, light green is RRMSE ≤ 1%,
and dark green is RRMSE ≤ 0.1%.
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Sixty PN Time Steps Per Unit of Time, g = 60

Figure 9: RRMSE percentage across parameter ranges of [0, 1] for each respective
parameter with W the y-axis of each subfigure, V the x-axis of each subfigure, and
X set at a different fixed value for each subfigure. PN Time Step Per Unit of Time
parameter g = 60. Note that yellow is RRMSE ≤ 5%, light green is RRMSE ≤ 1%,
and dark green is RRMSE ≤ 0.1%.
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Eighty PN Time Steps Per Unit of Time, g = 80

Figure 10: RRMSE percentage across parameter ranges of [0, 1] for each respective
parameter with W the y-axis of each subfigure, V the x-axis of each subfigure, and
X set at a different fixed value for each subfigure. PN Time Step Per Unit of Time
parameter g = 80. Note that yellow is RRMSE ≤ 5%, light green is RRMSE ≤ 1%,
and dark green is RRMSE ≤ 0.1%.

In figures 6-10, there is an overall reduction of RRMSE with each subsequent
increase of the PN time steps per unit time, which can be more clearly seen in
Figure 11.
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Figure 11: Mean RRMSE in percentage across parameter ranges of gamma (W) [0,1]
with 10 linearly spaced points, beta (V) [0,1] with 10 linearly spaced points, and
delta (X) [0,1] with 5 logistically spaced points.
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Figure 12: Mean computation time for one PN model run for various times steps as
seen in Figures 6,7,8, 9, and 10.

For Figure 12 the values were found while being run in MATLAB 2023b, using
GPenSIM v.10 software, on a computer with 2.3 GHz 8-Core processor, with 64 GB
or memory. However, these models were also run on the Arizona State University
SOL supercomputer, where even when allocated 4 cores and 32 GB of memory, only
had a maximum memory used value of 5.6 GB. In other words, this runs as efficiently
on a laptop system in the current formulation. We hope that with these reasonable
computation times and minimal memory usage, others will also be able to build off
of our work in order to improve PN models further.

5 Discussion and Conclusions

The results of Figures 6-11, particularly that of Figure 11 show a clear improvement
of RRMSE for each population (place or compartment) of the basic SIR model.
Although the RRMSE looks relatively high for Figure 6, for the range of biologically
realistic parameters, the RRMSE is still below 10%. By the time we are up to a
level 20 PN time steps per unit time in Figure 7 we are already at a level of less
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than 1% RRMSE for all biologically realistic parameters and less than 5% RRMSE
for the full parameter range. When we increase the PN time steps per unit time 40,
60 and 80, in Figures 8, 9, and 10, respectively the region of less than 0.1% RRMSE
grows. If a model is used in practical application, the most critical population is the
infected. When looking at this population, the RRMSE remains less than 1% across
the entire parameter range. Deaths and hospitalizations are typically viewed as the
most important with extended SIR models, but that will be addressed when models
with compartments/places are tested in future work. Regardless, the PN structure,
rounding method, and time steps per unit time combine to allow the less than 1%
RRMSE performance from PN model. The methodology of this paper can and will
be repeated for many of the most common extensions of the SIR model in future
work. The yellow regions that remain within Figures 8-10 result from rounding arc
weights. While this work addresses some issues Petri nets have when being used to
fit and forecast diseases, many more issues will need to be investigated further in
future work. Further investigation on the best rounding method, assuming discrete
arc weight values are used, is among the most important.

Additional hyper-parameters to scale the parameters of the PN to fit the ODE
better will also be introduced in future work. These larger models and additional
parameters will likely increase the computation time to run the models. These factors
include choosing an appropriate g level to reach a tolerable RRMSE for the chosen
modeling and forecasting objective.

In the basic SIR model structure, a Petri net’s firing dynamics do not benefit
RRMSE or follow standard biological dynamics. However, that is not to say that
having an arc enabled to fire can not provide any benefit, as there are particular
applications, such as batch immunization protocols or event-based infection events,
where firing dynamics will likely be a helpful feature.

All of our code used in this initial paper can be found at https://github.com/trevorreckell/Numer
From here, there are sections in the main simulation file of simple pn SIRv1 preprint.m

to reproduce each figure and alter the code for individual purposes. We hope peo-
ple can use this repository to help with their work. When associated papers are
published, more files with more advanced models and further research will be added.
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1615879, Petar Jevtić, Beckett Sterner, NIH grant 5R01GM131405-02.

23

https://github.com/trevorreckell/Numerical-Comparison-of-PN-vs-ODE-for-SIR


Conflict of Interest

The authors declare no conflict of interest.

24



References

[1] J. H. Moore, “The ubiquitous nature of epistasis in determining susceptibility
to common human diseases,” Human heredity, vol. 56, no. 1-3, pp. 73–82, 2003.

[2] D. J. Wilkinson, Stochastic modelling for systems biology. Chapman and
Hall/CRC, 2018.

[3] S. Connolly, D. Gilbert, and M. Heiner, “From epidemic to pandemic modelling,”
Frontiers in Systems Biology, vol. 2, p. 861562, 2022.

[4] I. Koch, W. Reisig, and F. Schreiber, Modeling in systems biology: the Petri net
approach, vol. 16. Springer science & business media, 2010.

[5] L. Peng, P. Xie, Z. Tang, and F. Liu, “Modeling and analyzing transmission
of infectious diseases using generalized stochastic petri nets,” Applied Sciences,
vol. 11, no. 18, p. 8400, 2021.

[6] M. Chen and R. Hofestaedt, “Quantitative petri net model of gene regulated
metabolic networks in the cell,” In Silico Biology, vol. 3, no. 3, pp. 347–365,
2003.

[7] S. Libkind, A. Baas, M. Halter, E. Patterson, and J. P. Fairbanks, “An algebraic
framework for structured epidemic modelling,” Philosophical Transactions of the
Royal Society A, vol. 380, no. 2233, p. 20210309, 2022.

[8] V. B. Kumbhar and M. S. Chavan, “A review of petri net tools and recommen-
dations,” in International Conference on Applications of Machine Intelligence
and Data Analytics (ICAMIDA 2022), pp. 710–721, Atlantis Press, 2023.

[9] W. J. Thong and M. Ameedeen, “A survey of petri net tools,” in Advanced Com-
puter and Communication Engineering Technology: Proceedings of the 1st In-
ternational Conference on Communication and Computer Engineering, pp. 537–
551, Springer, 2015.

[10] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer, 2008.

[11] R. Davidrajuh, “Optimizing simulations with gpensim,” Modeling Discrete-
Event Systems with GPenSIM: An Introduction, pp. 59–79, 2018.

25



[12] P. Auger, P. Magal, and S. Ruan, Structured population models in biology and
epidemiology, vol. 1936. Springer, 2008.

[13] J. Lu, K. Deng, X. Zhang, G. Liu, and Y. Guan, “Neural-ode for pharmacoki-
netics modeling and its advantage to alternative machine learning models in
predicting new dosing regimens,” Iscience, vol. 24, no. 7, 2021.

[14] T. Reckell, K. Nguyen, T. Phan, S. Crook, E. J. Kostelich, and Y. Kuang,
“Modeling the synergistic properties of drugs in hormonal treatment for prostate
cancer,” Journal of theoretical biology, vol. 514, p. 110570, 2021.

[15] B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman, and C. B. Marsh,
“Microrna regulation of a cancer network: consequences of the feedback loops
involving mir-17-92, e2f, and myc,” Proceedings of the National Academy of
Sciences, vol. 105, no. 50, pp. 19678–19683, 2008.

[16] W. O. Kermack and A. G. McKendrick, “A contribution to the mathemati-
cal theory of epidemics,” Proceedings of the royal society of london. Series A,
Containing papers of a mathematical and physical character, vol. 115, no. 772,
pp. 700–721, 1927.

[17] C. Segovia, “Petri nets in epidemiology,” arXiv preprint arXiv:2206.03269, 2022.

[18] J. C. Baez and J. Biamonte, “Quantum techniques for stochastic mechanics,”
arXiv preprint arXiv:1209.3632, 2012.

[19] W. Yang, D. Zhang, L. Peng, C. Zhuge, and L. Hong, “Rational evaluation
of various epidemic models based on the covid-19 data of china,” Epidemics,
vol. 37, p. 100501, 2021.

[20] R. Davidrajuh, Modeling Discrete-Event Systems with GPenSIM. Cham:
Springer International Publishing, 2018.

[21] R. Davidrajuh, Colored Petri Nets for Modeling of Discrete Systems: A Practical
Approach With GPenSIM. Springer Nature, 2023.

[22] R. Davidrajuh, Petri Nets for Modeling of Large Discrete Systems. Springer,
2021.

[23] R. Melberg and R. Davidrajuh, “Dynamic arc weight in petri nets,” in Pro-
ceedings of the IASTED International Conference on Applied Simulation and
Modelling (ASM 2009), vol. 682, pp. 83–89, 2009.

26



[24] F. Liu and M. Heiner, “Colored petri nets to model and simulate biological
systems,” Recent advances in Petri Nets and concurrency, vol. 827, pp. 71–85,
2012.

[25] P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, and K. H. Jacobsen,
“Complexity of the basic reproduction number (r0),” Emerging infectious dis-
eases, vol. 25, no. 1, p. 1, 2019.

[26] H. W. Berhe and O. D. Makinde, “Computational modelling and optimal control
of measles epidemic in human population,” Biosystems, vol. 190, p. 104102,
2020.

[27] L. J. Allen, “Stochastic population and epidemic models,” Mathematical bio-
sciences lecture series, stochastics in biological systems, vol. 1, pp. 120–128,
2015.

27



0 10 20 30 40 50 60

Time

0

200

400

600

800

1000

1200

1400

1600

1800

P
o
p
u
la

ti
o
n

Vector Borne Model Petri Net fit to ODE
Infected humans RRMSE=0.12983

H Susceptible
PN

H Infected
PN

H Recovered
PN

M Susceptible
PN

M Infected
PN

H Susceptible
ODE

H Infected
ODE

H Recovered
ODE

M Susceptible
ODE

M Infected
ODE


	Introduction
	Prior Work

	Methodology – Preliminaries 
	Fundamentals of Petri Nets and ODE models
	SIR Model in Petri Net Framework
	Dealing with extreme values in discrete systems
	GPenSIM

	Methodology – Petri Net Modeling Issues
	Rounding Variable Arc Weights in Discrete Petri Nets
	Time Steps of Petri Net Models

	Results
	Numerical comparison of models
	Rounding Variable Arc Weights in Discrete Petri Nets
	Time Steps of Petri Net Models

	Discussion and Conclusions

