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Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflam-
mation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the
fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds,
such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds
in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to
its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in
the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain
bioavailability.

1. Introduction

Neurodegenerative diseases (ND) such as Alzheimer’s (AD)
and Parkinson’s disease (PD) and multiple sclerosis (MS)
primarily affect the neurons in the human brain and are
characterized by deterioration of neurons or myelin sheath,
sensory information transmission disruption, movement
control, andmore [1].The greatest risk factor for ND is aging,
which carries mitochondrial dysfunction, chronic immune-
inflammatory response, and oxidative stress [2, 3], the major
causes of neuronal damage and death. Nowadays, ND are
chronic and incurable conditions whose disabling effectsmay
continue for years or even decades representing an enormous
disease load, regarding human suffering and economic cost.
The ND are more common and have a disproportionate
impact on countries with longer life expectancies and rep-
resent the fourth highest source of overall disease burden in

the high-income countries. According to the World Health
Organization, 37 million people currently have dementia
worldwide, and about 50% of them are being affected by
AD and this number is expected to grow up to 115.4 million
people by 2050 [4].

Recently, a great number of natural medicinal plants have
been tested for their therapeutic properties, showing that
the raw extracts or isolated pure compounds from them
have more effective properties than the whole plant as an
alternative for the treatment of ND. These properties are due
mainly to the presence of polyphenols (Figure 1), alkaloids
(Figure 2), and terpenes (Figure 3(d)), among others, that are
micronutrients produced by plants as secondary metabolites
[5, 6]. There is substantial evidence (epidemiological studies,
animal studies, and human clinical trials) that indicates that
polyphenols reduce a wide range of pathologies associated
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Figure 1: Representative polyphenol compounds. (a) Benzoic acids: 𝑝-hydroxybenzoic acid R
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Figure 2: Some alkaloid compounds in plants. (a) Capsaicin; (b) protoberberines: jatrorrhizine R
1
=OH, palmatine R

1
=OMe; (c) vincamine;

(d) piperine; (e) diallyl sulfide; and (f) sulphoraphane.
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Figure 3: Some miscellaneous antioxidant compounds from plants. (a) Coenzyme Q
6–10; (b) l-theanine; (c) ascorbic acid; and (d) lycopene.

with inflammation [7–9]. The main mechanisms of polyphe-
nols include their well-characterized antioxidant effects [10,
11], inhibition of intracellular kinases activity [12], binding
to cell surface receptors [13], and modifying cell membrane
functions [14]. Also, recently the neuroprotective effects
of polyphenols have been described in several models of
ND and involve mainly signaling pathways mediators [15],
modulation of enzymes in neurotransmission [16, 17], inhi-
bition of neurotoxicity via ionotropic glutamate receptors
[18], antiamyloidogenic [19], and anti-inflammatory effects
[20]. This review focuses on the plant extracts or compounds
isolated from plants that may hold potential in the treatment
of the principal ND.

2. Etiology of Neurodegenerative Diseases

ND are incurable and disabling conditions secondary to
progressive neuronal loss, which leads to chronic brain
damage and neurodegeneration. The etiology of ND is still
unknown, although several ND animal models showed asso-
ciated damage with the blood-brain barrier, protein aggrega-
tion, toxin exposure, and mitochondrial dysfunction, which
lead to oxidative stress and inflammation, and consequently
neuronal death [21].

The blood-brain barrier controls the internal environ-
ment of the vertebrate CNS and represents the border
between the capillary and the extracellular fluid of CNS neu-
rons and glial cells; it also ensures specific brain homeostasis
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allowing adequate neuronal function [22]. Neurovascular
changes normally occur as part of aging, but these are more
evident in chronic ND [23]. About 20% of blood flow
decreases in the aged brain, which associates with reduced
protein synthesis [24]. Interestingly, this blood flow reduction
is higher in the presence of any ND, which may lead to
changes in intracellular pH and accumulation of interstitial
lactate and glutamate [23, 25]. These changes are observed in
specific brain regions in diseases such as AD, PD, MS among
other CNS disorders [25–28].

Abnormal protein aggregation of specific regions and
neuronal populations is a common feature among ND. For
example, the 𝛼-synuclein inclusions in dopaminergic neu-
rons from the substantia nigra are the main histopathological
marker in PD [29]. Also, insoluble aggregates of the amyloid
beta-peptide (A𝛽) and neurofibrils composed of Tau protein
are found inAD [30, 31] and hyperphosphorylated Tau aggre-
gation in demyelination areas in MS [32]. Finally, superoxide
dismutase 1 (SOD1) aggregations are present in amyotrophic
lateral sclerosis (ALS) [33]. The main relevance of protein
aggregates is that they lead to mitochondrial dysfunction
inducing apoptotic neuronal death.

Redox state imbalance and chronic inflammation, amajor
cause of cell damage and death, characterize ND [34].
Reactive oxygen species (ROS) are key mediators of cell
survival, proliferation, differentiation, and apoptosis [35, 36].
Excessive production of ROS by mitochondria and NADPH
oxidase in oxidative stress is usually thought to be responsible
for tissue damage associated with inflammation and ND [34,
36–38].Moreover,many of thewell-known inflammatory tar-
get proteins, including matrix metalloproteinase-9, cytosolic
phospholipase A

2
, cyclooxygenase-2, inducible nitric oxide

synthase (iNOS), and adhesionmolecules, are associatedwith
oxidative stress and induced by proinflammatory factors such
as cytokines, peptides, and peroxidants agents [36, 39, 40].
Several studies have shown that ROS act as a critical signaling
molecule to trigger inflammatory responses in CNS through
the activation of the redox-sensitive transcription factors,
including nuclear factor-𝜅B (NF-𝜅B) and activator protein-1
[34, 36–39].

Mitochondrial damage leads to neuronal oxidative dam-
age in ND pathogenesis. ROS and reactive nitrogen species,
which are normal byproducts of mitochondrial respiratory
chain activity, are mediated by mitochondrial antioxidants
such as manganese superoxide dismutase and glutathione
peroxidase. In addition to the ROS generation, mitochondria
are also involved with life-sustaining functions including
adenosine triphosphate synthesis by oxidative phosphory-
lation, apoptosis, calcium homeostasis, mitochondrial fis-
sion and fusion, lipid concentration of the mitochondrial
membranes, and the mitochondrial permeability transition.
Mitochondrial disease leading to neurodegeneration is likely,
at least on some level, to involve all of these functions
[41]. In ND several mitochondrial alterations are found like
bioenergetics anomalies in the process of oxidative phos-
phorylation and ATP production, defects of mitochondrial
dynamics, increase sensitivity to apoptosis, and accumulation
of damagedmitochondria with unstable mitochondrial DNA
[2].

The proteins aggregation also plays an important role
in mitochondrial dysfunction; for example, the accumu-
lation of mitochondrial A𝛽 aggregates has been observed
both in patients and in transgenic models of AD [42–44].
Additionally, inhibition of mitochondrial complex I occurs
in PD patients [45] and the two principal models used
for the study of PD. Rotenone—a natural compound used
as an insecticide, piscicide, and pesticide—and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—a neurotoxin
precursor of 1-methyl-4-phenylpyridinium (MPP+), which
destroys dopaminergic neurons in the substantia nigra—
both act by inhibiting mitochondrial complex I [21]. In ALS,
mitochondrial SOD1 enzyme aggregates cause loss of mito-
chondrial function and induce cellular death by apoptosis
[46]. This phenomenon is present in almost all ND and
associated with inflammation, which is one of the points of
therapeutic interest and study.

The CNS inflammation is dependent on inflamma-
tory mediators produced mainly by glial cells, specifically
microglia and CNS macrophages [47]. Microglial activation
is crucial in the pathogenesis and the course of PD [48], AD
[49], prion disease [50], and MS [51], among others. Uncon-
trolledmicroglia activation produces neuronal damage due to
overproduction of proinflammatorymediators such as tumor
necrosis factor 𝛼 (TNF𝛼) [52], and nitric oxide (NO), leading
to the generation of oxidative stress and apoptotic cell death
[48, 52, 53].

3. Main Therapeutic Effects of Plant Extracts

Theplant extracts have become interesting candidates as ther-
apeutic agents due to their antioxidant, anti-inflammatory
properties, and chemical characteristics derived as follows.

(i) Direct Uptake of Free Radicals. Primarily polyphenols
(Figure 1) and alkaloids (Figure 2) function as scavengers due
to their multiple phenolic hydroxyl and nitrogen groups,
respectively, which act as an electron donor to the aromatic
ring. These systems are excellent nucleophiles that readily
lose electrons and easily oxidize. Therefore, they can catch
free radicals and react with ROS, such as superoxide, peroxyl,
hydroxyl radicals, NO, nitrogen dioxide, peroxynitrite, and
singlet oxygen [54–56].

(ii) Chelation of the Divalent Cations in Fenton Reactions
Involved. Many polyphenol compounds chelate iron cations
due to multiple hydrophilic groups and are efficient scaven-
gers because phenolic groups inhibit iron-mediated oxyrad-
ical formation like other iron chelators, such as desfer-
rioxamine, 1,10-phenanthroline, and pyridoxal isonicotinoyl
hydrazone [57, 58].

(iii) Modulation of Enzymes Associated with Oxidative Stress.
ND associate with molecular alterations in cell-signaling
pathways that regulate cell proliferation and differentiation,
such as the family of mitogen-activated protein kinases
(MAPK). Abnormal activation or silencing of the MAPK
pathway or its downstream transcription factors can result
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in uncontrolled cell growth leading tomalignant transforma-
tion. Some plant compounds “switch on” or “turn off” the
specific signaling molecule(s), depending on the nature of
the signaling cascade they target, preventing abnormal cell
proliferation and growth [59, 60].

4. Antioxidant and Anti-Inflammatory
Properties in Central Nervous System

Flavonoids, a type of polyphenolic compounds found in
fruits, vegetables, red wine, and green tea, reduce the risk
to developing ND [61]. In 2010, Vuong and colleagues
showed that cranberry juice in neuronal cultures signifi-
cantly increased the activity of antioxidant enzymes such
as catalase and SOD1 and protected neurons against H

2
O
2

induced cell death, possibly due to the activation of survival
pathways dependent from p38 and blocking death pathway
associated with MEK1/2 and ERK1/2 [62]. A comparative
study of two extracts of Salvia species, S. hydrangea and S.
macilenta, also showed strong antioxidant properties, also
at high concentrations (≥50𝜇g/mL) they can inhibit DNA
damage by free radicals. Moreover, these species not only
showed no cytotoxic effect in cultured PC12 cells, a cell
line derived from a pheochromocytoma obtained from rat
adrenal medulla differentiated with neural growth factor, but
also protected them from peroxide-induced cell death [63].
Similarly selaginellin, a compound extracted from the plant
Saussurea pulvinata, showed a neuroprotective effect in a
glutamate neurotoxicity model in PC12 cells by trapping ROS
and regulating the expression of the klotho gene, which has
an antiapoptotic role [64].

Ginger, the root of Zingiber officinale, an important specie
used in the Chinese, Ayurvedic, and Tibia-Unani traditional
medicine, has anti-inflammatory [65–67] and antioxidant
[68] properties, among others. The hexane fraction of ginger
extract and the methanol extract of Ficus religiosa sheet
significantly decreased the production of NO, prostaglandin
E2, IL-1𝛽, IL-6, and TNF𝛼 through the inhibition of MAPK
and NF-𝜅B in BV2 microglial cell line stimulated with
lipopolysaccharide (LPS) [69, 70].

Similarly, the ethanol extract of Knema laurina exerted
anti-inflammatory and neuroprotective effects in a BV2
microglial cell culture line, in HT-22 hippocampal neurons
and in organotypic hippocampal cultures. Knema laurina
reduced microglial production of NO and IL-6 through the
inhibition of ERK1/2 and IKK𝛽 phosphorylation, and the
subsequent translocation NF-𝜅𝛽 in microglial cells [71].

5. Therapeutic Opportunities for Plant
Extracts in Central Nervous System
Age-Related Changes

It is clear that aging is a critical factor for developing ND and
facilitates themicroglial promoted proinflammatory environ-
ment [72–74] and oxidative stress [75]. Therefore, studying
potential drugs that prevent or retard age-related changes
has become crucial. Natural antioxidants such as some
cocoa derivatives have shown to contain higher flavonoids

levels [76]. For example, acticoa, a cocoa-derived polyphenol
extract, administered daily orally at 24mg/kg dose in Wistar
rats 15 to 27 months old, improved cognitive performance,
increased life expectancy, and preserved free dopamine
levels in urine [77]. Another extract with high antioxidant
activity is silymarin, a standardizedmixture of flavonolignans
(Figure 1(p)) extracted from the Silybummarianum fruits and
seeds [78]. The treatment with 400mg/kg/day of silymarin
during three days increased reduced glutathione (GSH) and
SOD activity in the brain of aged rats [79]. Vincamine
(Figure 2(c)), a monoterpenoid indole alkaloid purified from
the Vinca minor plant, has antioxidant activity similar to
vitamin E. This compound increased cerebral blood flow,
glucose, and oxygen utilization in neural tissue and promoted
the rise of dopamine, serotonin, and noradrenaline levels
[80]. Also, the treatment of rats with vincamine during 14
days at a daily dose of 15mg/kg reduced about 50% the brain
iron levels, which suggests a beneficial effect in reducing
the oxidative stress associated with the iron deposition in
ND [81]. Moreover, paeonol, a compound extracted from the
Paeonia suffruticosa cortex orPaeonia lactiflora root, has been
ascribed to anti-inflammatory and antioxidant properties.
Paeonol effects were tested in a model of neurotoxicity
induced with D-galactose injected subcutaneously in aged
mice. Paeonol prevented memory loss in this model since
it increased acetylcholine and GSH levels and decreased
the activity of acetylcholinesterase (AChE) and SOD1 in the
hippocampus and cortex, positioning it as a potential drug
useful in age-related ND [15]. Also,Magnolia officinalis com-
pounds, magnolol (Figure 1(h)) and their isomer honokiol,
were tested in a senescence-accelerated prone mice; this
compound prevented learning and memory deterioration,
as well as acetylcholine deficiency by preserving forebrain
cholinergic neurons [18, 82].

6. Plant Compounds Used for
Alzheimer’s Disease

AD manifests as a progressive cognitive and behavioral dis-
order and is characterized by an immediate loss of memory
secondary to neuronal loss in the limbic and association
cortices. This neuronal death results from oxidative stress,
neuroinflammation, and abnormal protein deposition [83],
leading to a therapeutic opportunity for medicinal plants,
which improve AD course principally by modulating A
aggregation, AChE activity, oxidative stress, and inflamma-
tory response [84].

Cryptotanshinone is an active component of Salvia mil-
tiorrhiza with anti-inflammatory, antioxidant, and antiapop-
totic properties [85, 86]. This compound crossed the blood
brain barrier and decreased cognitive deficits in male IRC
mice with scopolamine-induced cognitive impairments [87].
This compound also provided beneficial effects in patients
with ischemia and cerebral infarct [88]. Additionally, cryp-
totanshinone reduced the A𝛽 aggregation in brain tissue
and improved spatial learning and memory in APP/PS1
transgenic mice by promoting amyloid precursor protein
metabolism via 𝛼-secretase pathway [89]. Silymarin also
showed antiamyloid properties in vitro, and its chronic
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administration (half a year) significantly reduced the A𝛽
plaque burden associated with microglial activation, A𝛽
oligomer formation, and hyperactivity and disturbed behav-
ior in APP transgenic mice [90]. The protective effect of
silymarin on A𝛽 accumulation is attributable to the blockade
of its aggregation, not to 𝛽-secretase inhibition [89]. The
use of Centella asiatica in a dementia model in PSAPP mice
improvedmemory retention in rodents [91, 92] anddecreased
amyloid deposition and the spontaneously A𝛽 plaque forma-
tion [93]. Likewise, the grape seed polyphenolic extract from
Vitis vinifera attenuated the cognitive impairment observed
in agingAD transgenicmice and decreasedA𝛽 plaques depo-
sition in the brains [94]. Nobiletin (Figure 1(j)), a flavonoid
purified from Citrus depressa plant, prevents memory loss in
APP695 transgenic mice and A𝛽 treated rats.This compound
reduces the A𝛽 plaques amount in the hippocampus [95, 96],
probably by reducing the inhibition of protein kinase A and
cAMP response element-binding protein phosphorylation
signaling cascade [97]. Nobiletin also stimulated long-term
potentiation in organotypic hippocampal cultures [98].Other
compounds that can prevent A𝛽 aggregation by inhibition
of the metabolic pathway that generates A𝛽 plaques are
berberine, palmatine, jateorrhizine, epiberberine, coptisine,
groenlandicine, and magnoflorine, alkaloids isolated from
Coptis chinensis rhizome [99]. These compounds also exhibit
AChE inhibiting properties [100, 101] and antidepressant
effects [59] and enhance cognitive improvements [102]. Also,
jateorrhizine (Figure 2(b)) and groenlandicine have signifi-
cant peroxynitrite scavenging activities, while coptisine and
groenlandicine present moderate total ROS inhibitory activ-
ities [99].

The ethanol extract from Cassia obtusifolia has potential
use inAD,which reduced scopolamine-inducedmemory loss
inmice by inhibiting AChE [103]. Similarly, methoxsalen, the
main component of the aqueous extract of Poncirus trifoliata,
inhibited AChE activity reducing memory loss and learning
problems associated with a neurotoxicity in vivo model
induced with trimethyltin [16]. In the AD model induced
with ethylcholine aziridinium, which mimics the cholinergic
hypofunction present in AD [104], piperine (Figure 2(d)),
an alkaloid present in Piper longum, lowered the cognitive
deficits and the hippocampal neurodegeneration associated
with this ADmodel [105].These effects could be probable due
to its anti-inflammatory [106] and antioxidant activities [71].

The treatment for 5 weeks with L-theanine (Figure 3(b)),
an amino acid present in green tea Camellia sinensis, sig-
nificantly decreased memory loss associated with intra-
ventricular A𝛽

1–42 AD model. L-theanine as well reduced
cortical and hippocampal neuronal death, also inhibited lipid
peroxidation and protein damage, and increased GSH levels,
suggesting its potential use in AD prevention and treatment
[17]. Also, Dioscorea opposita chloroform extract, which has
been used to treat memory-related diseases such as AD
and others ND, prevented neuronal death, and significantly
increased spatial learning andmemory improvement, proba-
bly due to its antiexcitotoxic and antioxidant effects [107].

Sanmjuanhwan (Sjh), a multiherbal formula from orien-
tal traditional medicine, composed of Morus alba, Lycium
chinense, and Atractylodes japonica, showed neuroprotective

effects on primary neuronal cultures exposed to A𝛽
25–35. Sjh

increased the expression of antiapoptotic proteins such as
Bcl-2 and avoided cytochrome c release and caspase-3 acti-
vation [108]. B. monnieri and its active components bacoside
A, bacopaside I and II, and bacosaponin C [109, 110] have
anti-inflammatory, antimicrobial, and antidepressant effects
[111–113]. Treatment with B. monnieri prevented neuronal
death by the inhibition of AChE activity in primary cortical
culture pretreated with A𝛽

25–35 [114]. Furthermore, animals
and volunteers treated with this plant presented enhanced
memory [115–117]. The antioxidant effect of S-allyl cysteine
(SAC), an amino acid isolated from aged garlic, was tested in
the A𝛽

25–35-AD ratmodel, showing ROS scavenger activity in
vivo [118]. Also, in themiceADdementiamodel inducedwith
the intracerebroventricular streptozotocin infusion, SACpre-
treatment decreased p53 expression, restored Bcl-2 protein
expression, reduced, and prevented DNA fragmentation
[119].

Mono- and diacetyled cyanidin and peonidin, the purple
sweet potato anthocyanins (PSPA; Figure 1(o)) extracted
from Ipomoea batatas, can easily attract ROS, which has high
clinical value as antioxidant therapy in AD and other ND
[120, 121]. For example, pretreatment of PC12 cells with PSPA
reduced A𝛽 toxicity preventing lipid peroxidation, caspase-3
activation, and A𝛽-induced apoptosis, suggesting a possible
use in the treatment of AD [122].

Finally, the use of ginseng, Panax ginseng, was evaluated
in AD patients, those who received a daily dose 9 g of Korean
red ginseng for 12 weeks showed a significant improvement
in the AD assessment scale and the clinical dementia rating
scale compared to control patients [123].

7. Plant Compounds for Parkinson’s
Disease Treatment

PD is the second most frequent ND and is primarily a
movement disorder characterized by the loss of dopamine-
producing neurons in substantia nigra. Activation of neu-
ronal death pathways involves oxidative stress, neuroinflam-
mation, and mitochondrial dysfunction [124].

Green tea extract and its isolated (–)-epigallocatechin-3-
gallate polyphenol, as well as ginseng extract, have neuro-
protective effects since their use diminished dopaminergic
neuron loss in the substantia nigra and oxidative damage
in an MPTP and its toxic metabolite MPP+ in PD animal
models [125, 126]. Also, Chrysanthemum morifolium, which
has antioxidant activity [126], inhibitedMPTP-induced cyto-
toxicity and maintained cell viability of SH-SY5Y cell line,
preventing ROS formation, decreasing Bax/Bcl2 ratio and
caspase-3 activation [127]. The administration of 20mg/kg
of echinoside, a compound isolated from Cistanche salsa,
before MPTP intoxication maintained striatal dopamine
levels, reduced cell death, significantly increased the tyrosine
hydroxylase enzyme expression, and reduced the activa-
tion of caspase-3 and caspase-8 expression, thus preventing
neuronal death [128]. Likewise, silymarin treatment pre-
served dopamine levels, diminished the number of apoptotic
cells, and preserved dopaminergic neurons in the substantia
nigra of MPTP- and 6-hydroxydopamine-intoxicated mice
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(6-OHDA) [74, 129–131]. Besides, pelargonidin (Figure 1(o)),
an anthocyanidin with neuroprotective effects, reduced the
motor deficit and histological damage and prevented lipid
peroxidation in the 6-OHDAmodel [132–134].

In the MPTP-intoxicated model of PD, SAC prevented
lipid peroxidation and mitochondrial dysfunction [135],
protected the striatum of mice from the morphological
alterations with a reduction in TNF-𝛼 and iNOS expressions,
and further reduction in astrocyte activation [136] and also, at
120mg/kg dose by five days, partially ameliorated theMPTP-
induced striatal and nigral dopamine and tyrosine hydroxy-
lase depletion, attenuated the loss of manganese-dependent
superoxide dismutase and heme oxygenase-1 activities, and
preserved the protein content of these enzymes [137]. These
findings suggest that SAC can exert neuroprotection since
the origin of the dopaminergic lesion—at the substantia
nigra—not only by using direct antioxidant actions but also
through Nrf2 nuclear transactivation and phase 2 enzymes
upregulation [137].

The commercial extract of Anemopaegma mirandum, a
Brazilian tree, and the crude extract of Valeriana officinalis
increased the viability of SH-SY5Y cells after rotenone expo-
sure [138, 139], while the extract of Rhus verniciflua decreased
ROS production, preserved the mitochondrial integrity, and
decreased the number of apoptotic cells [140]. An extract
from Tripterygium regelii, a plant with antioxidant properties,
reduced oxidative stress-induced cell death through the
inhibition of apoptotic cascades, preserved mitochondrial
function, and promoted tyrosine hydroxylase expression
and brain-derived neurotrophic factor (BDNF) production
in H
2
O
2
treated SH-SY5Y cells [141]. Also, in the MPP+-

intoxicated SH-SY5Y cells, the orchid increased cell viabil-
ity, decreased cytotoxicity and ROS production, and pre-
vented caspase-3 activation by diminishing the Bax/Bcl2 ratio
[142].

In the same model, the flavonoid luteolin (Figure 1(k))—
a compound present in celery, green pepper, pear leaves, and
chamomile tea—provided neuroprotection against oxidative
stress [143]. Also, luteolin inhibited LPS induced microglial
activation, as well as the production of TNF𝛼, NO, and super-
oxide in a midbrain mixed primary cultures [144]. Pedic-
ularoside A, a glycosylated phenylethanoid isolated from
Buddleja lindleyana, has anti-inflammatory properties and is
a good scavenger of superoxide anions and hydroxyl radicals
[145]; it protected against MPP+-induced death in mixed
midbrain primary culture by increasing tyrosine hydroxylase
expression and decreasing caspase-3 cleavage [146].The plant
extract from Uncaria rhynchophylla decreased cell death
and ROS production and increased GSH levels in cultured
PC12 cells, while 6-OHDA-induced caspase-3 activation was
attenuated preventing cell death and rotational behavior
was significantly reduced in the 6-OHDA PD model [147].
The ethyl extract from Myracrodruon urundeuva displayed
similar properties in mesencephalic cultured cells since it
preserved cell viability and attenuated oxidative stress after
6-OHDA exposure [148].

Panax notoginseng (PN) has the property to increase the
expression of certain molecules such as nestin and BDNF,
promoting neural plasticity and recovery after cerebral

ischemia [149, 150]. Also, PN induces the expression of
thioredoxin-1, an oxidoreductase with antiapoptotic and cell
growth promoter effects [151], reducing MPTP-induced cell
death in PC12 cells [152]. Likewise, the root extract of
Withania somnifera promoted axon and dendrite growth
[153, 154] and also increased the levels of SOD1, catalase, and
GSH, preventing deficit motor in MPTP-intoxicated animals
[155].

The isoflavones daidzin, daidzein, and genistein con-
tained in Pueraria thomsonii protected PC12 cells stimu-
lated with 6-OHDA through the inhibition of the caspase-
3 activation [156]. Moreover, genistein, a soy phytoestrogen,
protected neurons from substantia nigra pars compact and
attenuated the rotational behavior in a hemiparkinsonian
6-OHDA model [157]. Interestingly, the administration of
Mucuna pruriens preceding 6-OHDA intoxication was more
efficient than levodopa in controlling motor symptoms,
since it restored dopamine and norepinephrine levels in the
nigrostriatal track exhibiting a neuroprotective effect [158].
The mechanism of action of Mucuna pruriens is not fully
understood; however, it has been proposed that increases
the mitochondrial complex I activity without affecting the
monoamine oxidase B activity, probably due to its high
content of NADH and Q-10 coenzyme (Figure 3(a)), and its
ability to scavenge ROS [159].

The herbal mixture Toki To (TKT), prepared of ten
different plants (Angelicae Radix, Pinelliae Tuber,Cinnamomi
Cortex, Ginseng Radix, Magnoliae Cortex, Paeoniae Radix,
Astragali Radix, Zanthoxyli fructus, Zingiberis siccatum Rhi-
zoma, and Glycyrrhizae Radix), has excellent results against
PD [159]. TKT orally administered reducedmotor symptoms
such as bradykinesia, prevented dopaminergic neurons loss
in the substantia nigra, and increased tyrosine hydroxylase
and dopamine transporter expression in MPTP-intoxicated
mice [159]. Through microarray it was determined that TKT
per se regulates the expression of serum- and glucocorticoid
regulated kinase gene (sgk), which are implicated in the PD
pathogenesis [159].

Psoralea corylifolia seeds, specifically Δ3,2-hydroxybaku-
chiol monoterpene, which has been used for years in Chinese
medicine for the treatment of cerebral aging and dementia
[102, 160], protected SK-N-SH cells from MPP+ intoxication
and prevented the dopaminergic neurons loss in MPTP-
intoxicated mice by inhibition of the monoamine transporter
[161, 162]. Also it is worth mentioning that Rosmarinus
officinalis, a plant used as flavoring in Mediterranean cui-
sine, has antioxidant properties [163]. Rosmarinus officinalis
inhibits NO production [164] and protects dopaminergic
neurons in different degenerative disease models [165–168],
probably due to its a high content of polyphenols and terpenes
such as carnosol, carnosic acid, and rosmarinic acid and
antiapoptotic effects [169].

8. Plant Compounds for Cerebral
Ischemia Management

In cerebral ischemia, severe neuronal damage occurs during
the reperfusion period due to excitotoxicity, which consists of
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an overstimulation ofN-methyl-d-aspartate (NMDA) recep-
tors leading to glutamate production, which in turn triggers
oxidative and inflammatory processes [26]. The intraperi-
toneal administration of 200mg/kg of cactus polysaccha-
rides, the active component isolated from Opuntia dillenii,
prior to the middle cerebral artery occlusion showed neu-
roprotective effects [170, 171]. Opuntia dillenii significantly
reduced infarct volume, decreased neuronal loss in the
cerebral cortex, and diminished importantly the nitric oxide
synthase (NOS) synthesis, which is usually induced during
the experimental period of reperfusion and ischemia [171].
Also, oral pretreatment with 30 and 50mg/kg daily of
Smilacis chinae rhizome (SCR) methanol extract reduced
the histological changes associated with ischemic injury
[172]. It is possible that SCR prevented excitotoxicity-induced
neuronal death by decreasing ROS generation, similar to the
observationsmade in vitro in primary cultures of cortical cells
treated with 1mM NMDA [172]. Additionally, intravenous
pretreatment with silymarin reduced infarcted area size,
as well as neurological deficits associated with ischemic
damage [173]. Also, silymarin inhibited protein expression
associated with inflammation such as iNOS, cyclooxygenase-
2, myeloperoxidase, the nuclear transcription factor NF-
𝜅B, and proinflammatory cytokines like IL-1𝛽 and TNF𝛼,
avoiding neurodegeneration associated with ischemia [173].

Similarly, SAC administration reduced infarct volume in a rat
brain ischemia model [174] and decreased lipid peroxidation
to basal levels suggesting SAC beneficial effects in brain
ischemia and that the major protective mechanism may be
the inhibition of free radical-mediated lipid peroxidation
[175].

9. Conclusions

Neurodegenerative diseases (ND) are chronic and progres-
sive conditions, characterized by neuronal loss secondary to
oxidative stress and neuroinflammation (Figure 4). Until now
ND have no cure and represent high costs for the health
system and patients families. Exploring alternative sources
for ND therapy has led to set eyes on herbal medicine
since most herbal compounds have antioxidant and anti-
inflammatory properties. At present, the use of several plants
in the treatment of ND is being supported by numerous sci-
entific investigations (themain effects of herbal plants against
NDare listed inTable 1).However, information is stillmissing
on relevant aspects such as metabolism, pharmacokinetics,
and bioavailability in the brain as well as any changes that
they may have in the CNS. Nevertheless, plant compounds
or extracts remain interesting therapeutic candidates for ND
management.
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Abbreviations

AChE: Acetyl cholinesterase
AD: Alzheimer’s disease
A𝛽: Amyloid beta-peptide
ALS: Amyotrophic lateral sclerosis
Bax: Apoptosis regulator
Bcl-2: B cell lymphoma 2; family of regulator

proteins of apoptosis
BDNF: Brain-derived neurotrophic factor
CNS: Central nervous system
CAMP: Cyclic adenosine monophosphate
DNA: Deoxyribonucleic acid
ERK: Extracellular signal-regulated kinase
GSH: Glutathione reduced
H
2
O
2
: Hydrogen peroxide

IL-1𝛽: Interleukin 1𝛽
IL-6: Interleukin 6
iNOS: Inducible nitric oxide synthase
LPS: Lipopolysaccharide
MAPK: Mitogen-activated protein kinase
MEK: Mitogen/extracellular signal-regulated

kinase
MPP+: 1-Methyl-4-phenylpyridinium
MPTP: 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine
MS: Multiple sclerosis
NADPH: Reduced form of nicotinamide adenine

dinucleotide phosphate
NO: Nitric oxide
NMDA: N-Methyl-D-aspartate
ND: Neurodegenerative diseases
NF-𝜅B: Nuclear factor-𝜅B
Nrf2: Nuclear factor (erythroid-derived 2)-like 2
NOS: Nitric oxide synthase
6-OHDA: 6-Hydroxydopamine-intoxicated mice
PC12: Cell line derived from a

pheochromocytoma of the rat adrenal
medulla

PD: Parkinson’s disease
PN: Panax notoginseng
ROS: Reactive oxygen species
SAC: S-Allyl cysteine
Sjh: Sanmjuanhwan
SCR: Smilacis chinae rhizome
SOD1: Superoxide dismutase 1
TKT: Toki To
TNF𝛼: Tumor necrosis factor 𝛼.
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