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Risk prediction for chronic kidney disease
progression using heterogeneous electronic
health record data and time series analysis
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ABSTRACT
....................................................................................................................................................

Background As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documen-
tation as well as laboratory values and demographics into risk prediction modeling.
Objective The authors develop a risk prediction model for chronic kidney disease (CKD) progression from stage III to stage IV that in-
cludes longitudinal data and features drawn from clinical documentation.
Methods The study cohort consisted of 2908 primary-care clinic patients who had at least three visits prior to January 1, 2013 and
developed CKD stage III during their documented history. Development and validation cohorts were randomly selected from this co-
hort and the study datasets included longitudinal inpatient and outpatient data from these populations. Time series analysis
(Kalman filter) and survival analysis (Cox proportional hazards) were combined to produce a range of risk models. These models
were evaluated using concordance, a discriminatory statistic.
Results A risk model incorporating longitudinal data on clinical documentation and laboratory test results (concordance 0.849) pre-
dicts progression from state III CKD to stage IV CKD more accurately when compared to a similar model without laboratory test re-
sults (concordance 0.733, P<.001), a model that only considers the most recent laboratory test results (concordance 0.819,
P< .031) and a model based on estimated glomerular filtration rate (concordance 0.779, P< .001).
Conclusions A risk prediction model that takes longitudinal laboratory test results and clinical documentation into consideration can
predict CKD progression from stage III to stage IV more accurately than three models that do not take all of these variables into
consideration.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
The field of clinical disease risk prediction and progression is well de-
veloped, with hundreds of models published across many diseases.
Given their history predating electronic health records (EHRs), these
models have largely been developed with data easily accessible to cli-
nicians. Likewise, current progression risk models for chronic kidney
disease (CKD) largely rely on commonly obtained laboratory or vital
sign data.1,2 CKD affects a large portion of the population,3 is associ-
ated with significant morbidity and mortality,4 and is a high-risk clini-
cal condition with frequent adverse events.5,6 Despite this, patients
with kidney disease frequently go unrecognized, and their care is often
suboptimal.7–15 Early identification and more accurate prognostication
of these patients using better risk prediction models may improve out-
comes by facilitating timelier initiation of appropriate therapies, moni-
toring, and specialty referral.16

While using readily available data for risk prediction might simplify
computation, this might be at the expense of more robust prognostica-
tion. EHRs contain much information about patient histories and patient
information conveyed both in the discrete elements of the record and in
the narratives. With increasing EHR adoption, clinical documentation is a

potentially rich, underutilized source of information that can aid in clini-
cal decision support.17 Two aspects of the EHR in particular present an
opportunity for automated risk prediction: the presence of longitudinal
data, and the rich information conveyed in the clinical narratives.
Automated information extraction from narratives using natural language
processing (NLP) is an active field of research and has shown promising
results in estimating disease risk;18 increasing appropriate cancer
screening;19,20 and identifying post-operative complications,21 influ-
enza,22 inflammatory bowel disease,23 pneumonia,24–26 and heart
failure.27,28

The goal of the present study was to incorporate longitudinal clinical
documentation as a novel feature in disease progression risk calculation.
While NLP has been used traditionally to look for the presence of partic-
ular pieces of information in the clinical narrative, such as presence of
signs of pneumonia,24–26 recent research in NLP and data science have
proposed methods that discover patterns from large amounts of data
that do not require a specific target. For example, one of the methods
used in this study to incorporate information from the narratives into our
risk modeling discovers topics discussed in a collection of texts in an
unsupervised fashion. Using CKD as a proof of principle, we aimed to
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develop a risk model that can provide satisfactory prediction of progres-
sion from CKD stage III to stage IV using heterogeneous sources of data.
This outcome, with a higher incidence and typically far in advance of
end-stage renal disease (ESRD), may be more meaningful for general
practitioners, providing guidance for therapy and appropriate specialty
referral.

In this study, we investigate the following research questions: (i)
How can longitudinal data from the patient record be incorporated into
risk modeling? (ii) How can EHR data be incorporated into a risk model-
ing paradigm, focusing on two critical data elements of the EHR, labora-
tory data and clinical narrative?

The family of models we investigate to represent patient documenta-
tion is unsupervised. We cast the problem of risk modeling as a survival
analysis task; thus demonstrating that these methods are capable of
producing two valuable outcomes: an interpretable set of variables asso-
ciated with risk of CKD progression at the population level, and an ac-
tionable model to estimate risk of progression for individual patients.

METHODS
Study Population
The study cohort was derived from the clinical data warehouse of a
single institution, NewYork-Presbyterian (NYP) Hospital. The cohort
consisted of patients of an outpatient primary care clinic known as the
Associates in Internal Medicine (AIM) clinic. As of January 1, 2013, a
total of 21 580 patients were seen at the AIM clinic at least three times
with an average record length of 11.71 years (67.61) and an average
of 981.29 laboratory measurements. There are 64% females and 36%
males in this population. The earliest recorded observation for this co-
hort was August 23, 1988.

Patients who developed CKD stage III (defined as estimated glo-
merular filtration rate (eGFR) consistently <60 ml/min/1.73 m2 for �3
months) during the course of their documented clinical record were in-
cluded in the cohort. The following patients were excluded from the
analysis: left censored patients (i.e., whose first documentation in their
record shows evidence of CKD stage III), patients who meet definitions
for CKD stages III and IV simultaneously, as well as HIV-positive pa-
tients and transplant patients. The study cohort was divided randomly
into development (90%) and validation (10%) cohorts.

The study was reviewed and approved by the institutional review
board at Columbia University Medical Center, and patient informed
consent was waived due to the large scale and retrospective nature of
the study.

Variables
Independent Variables
Table 1 shows the independent variables included in the five different
statistical models that were considered. Demographic variables were
age and gender (ethnicity/race variables were omitted because their
value in the EHR is left as the default value “Other” for most of the pa-
tients). All other variables, as they are time-dependent, were binned by
month and the mean value was used if multiple values were observed
within a month. To handle missing values, the most recent value was
carried forward for each bin prior to stage III onset, and for variables
that had no value for a given patient prior to stage III onset, mean values
from the development dataset were used instead.

Clinical documents included in the study consisted of discharge
summaries, and outpatient primary care and outpatient specialty
notes. The free text notes were preprocessed using the probabilistic
topic modeling technique called latent Dirichlet allocation (LDA)30,31.
LDA is a probabilistic mixed membership model often applied to text
analysis. LDA models a corpus as a set of documents, each of which

is represented by a probability distribution over a set of K topics. In
this analysis, K¼ 50. Each topic, in turn, is represented by a probabil-
ity distribution over all the terms in the vocabulary. In the generative
model for LDA, each document is generated by drawing K topics ac-
cording to the weighting associated with the document and drawing N
terms, according to the weighting over terms associated with each
topic. Given this model of documents and corpora, inference amounts
to identifying the weightings over terms associated with each of the K
topics, and the weightings over topics associated with each document
given the observed documents. A Gibbs sampling approach was em-
ployed to identify the appropriate parameters. More detailed discus-
sion of this model and methods for inference can be found in the
literature.30,31

Example topics can be seen in Tables 2 and 3, where they are rep-
resented by their most highly associated words. As LDA is an unsuper-
vised method, these topics were automatically discovered by the
model and did not require any manual guidance. A given patient’s
notes within each time bin were thus represented as a distribution
over 50 discovered topics.

Statistical Analysis
Survival analysis
The following five multivariate Cox proportional hazards models were fit
on the development dataset: eGFR and Recent Laboratory Tests (RLT)
models and three time series models (Table 1). All models included de-
mographic variables and all other values, as shown in Table 1, at the
time of stage III onset. All variables were standardized to have zero mean
and unit variance.

eGFR Model
This model included eGFR value, age, and gender data at stage III on-
set as independent variables.

RLT Model
This model considered as independent variables the values for the 19
variables included in the study prior to stage III onset.

Time series-based models
In the eGFR and RLT model, a patient’s data immediately prior to CKD
stage III onset is considered, but all other previous values are ignored.
Also, laboratory test results can be very variable depending on the
time of day, recency of meals, or other factors. Furthermore, clinical
documentation can vary significantly from note to note depending on
the author, specialty, and setting. To address this variability and simul-
taneously make risk predictions that incorporate longitudinal patient
data, we combine time series analysis and survival analysis to con-
struct these risk prediction models.

The time series model used in these experiments is a variant of
the well-known Kalman filter (otherwise known as linear dynamical
systems), a time series model for noisy temporal observations which
is designed to infer a set of smooth latent (unobserved) states from
which the noisy observations are based.32,33 In our case, the noisy
observations include the laboratory test results and the clinical doc-
umentation. The model is employed such that the latent state in-
ferred at the time of CKD three onset provides a representation
of a patient at that time, rather than the observed independent
variables.

The specification of the model is as follows: Let x i
0 represents the

initial latent state for patient i , let x i
t be the latent state for patient i at
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time t , and let v i
t be the observation for patient i at time t . Given these

definitions, the full model specification is:

p x i
0

� �
¼ N 0; Ir2

x0

� �

p x i
t

� �
¼ N x i

t�1; Ir
2
x

� �

p v i
t

� �
¼ N W Tx i

t þ b i; Ir2
obs

� �
;

where I is the identity matrix, Nð0;r2
x0
Þ represents a multivariate

Gaussian distribution with mean zero and variance r2
x0

, W is a weight
matrix representing the linear relationship between the latent state
and the observations, b i represents the observation bias terms for

patient i , and r2
x0

, r2
x , and r2

obs are variance parameters. After learn-
ing the model parameters, the latent state, x i

t , at the time of CKD
stage III and the per-patient bias terms, b i , will be used as the final
output of these models. Parameter learning in these models was
achieved through an approximation technique known as mean field
variational inference.34,35

For each of the three time series models considered, a Kalman fil-
ter was fit using the development cohort data and applied to the vali-
dation data using the previously determined parameters. When
applied to the validation data, only observations prior to the onset
of stage III CKD are used to estimate the state of the Kalman filters.

Table 1: Baseline statistics and independent variables for the five studied models

Independent Variables Development cohort
(n¼2617)

Validation cohort
(n¼291)

eGFR
model

LKF
model

TKF
model

LTKF
model

RLT
model

Age 66.95 6 11.43 67.17 6 11.69 X X X X X

Gender (M/F) 912 (35%)/1697 (65%) 107 (36%)/192 (64%) X X X X X

eGFR* 50.34 6 8.47 50.48 6 7.60 X

Laboratory Test-based factors
and biases (24 variables)

X X

Text-based factors and
biases (60 variables)

X X

25OH Vitamin D 19.18 6 7.25 16.83 6 5.11 X

Bicarbonate 25.20 6 3.06 25.23 6 3.22 X

BUN 21.45 6 8.06 21.04 6 7.75 X

Calcium 9.39 6 0.42 9.37 6 0.40 X

Chloride 102.83 6 3.50 102.64 6 3.25 X

Creatinine 1.15 6 0.34 1.10 6 0.36 X

C-reactive protein 7.70 6 8.36 6.13 6 9.86 X

Hematocrit 37.90 6 4.80 37.68 6 4.67 X

Hemoglobin 12.35 6 1.84 12.06 6 1.66 X

(K) Potassium 4.29 6 0.45 4.27 6 0.41 X

Magnesium 1.85 6 0.25 1.86 6 0.25 X

(Na) Sodium 138.97 6 2.81 138.81 6 2.71 X

Phosphate 3.41 6 0.67 3.39 6 0.63 X

Protein 7.29 6 0.66 7.43 6 0.69 X

Parathyroid Hormone 140.69 6 83.64 141.98 6 82.44 X

Triglyceride 147.85 6 72.60 154.47 6 78.15 X

Urine Protein/creatinine 32.51 6 30.56 31.21 6 29.58 X

Urine protein qualitative 2.12 6 1.02 2.12 6 0.93 X

Uric Acid 6.35 6 2.02 6.14 6 1.98 X

eGFR¼ estimated glomerular filtration rate; LKF¼ Laboratory Test Kalman Filter; TKF¼ Text Kalman Filter; LTKF¼ Laboratory Test and Text
Kalman Filter; RLT¼ recent laboratory tests.
*eGFR was calculated using the CKD-EPI equation.29
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The first time series model is called the Laboratory Test Kalman Filter
(LKF) and included the 19 laboratory test variables as input, the sec-
ond time series model is called the Text Kalman Filter (TKF) and in-
cluded the patient notes, as represented by their topic distributions,
and the third time series model is called the Laboratory Test and Text
Kalman Filter (LTKF) and combines the output of the LKF and TKF
models (Table 1). The output of these models are used as independent
variables in the subsequent survival analysis and include, for each pa-
tient, their inferred state at CKD stage III onset and biases for each of
the input variables that represent long term changes.

Prediction model validation and Experimental Setup
The coefficients and the baseline hazard function for each of the Cox
proportional hazards models36 were held constant and applied to the
validation dataset. Concordance (C statistic), a measure of discriminatory

power equivalent to the area under the receiver operating characteristic
curve, was used to evaluate model performance on the validation data-
set.37 Pairwise comparisons between the models were tested using the
corrected resampled t-test38 and P-values were adjusted for multiple
comparisons with the Holm-Bonferroni correction.39

All time series models were developed using the Python program-
ming language version 2.6.5 (Python Software Foundation, Delaware,
United States) and statistical analyses were performed using R version
3.0.2 (R Foundation for Statistical Computing, Vienna, Austria).
P-values< .05 were considered statistically significant.

RESULTS
Cohort Description
The development set included 2617 patients and the validation
set included 291 patients. There were 307 stage IV events in the

Table 2: Topics associated with increased risk of progression. (topic titles shown in parentheses were assigned manually
once the topics were generated, and are presented as a way to label the topics)

Topic 3 (heart failure) Topic 32 (diabetes) Topic 29 (dialysis)

Lasix Units q15

Volume Insulin Dialysis

Edema Subcutaneous Fistula

Heart Lantus Volume

Failure Glucose Bid

Worsening Diabetes Lasix

Diuresis Times Placement

Severe 70/30 Improved

Diastolic Diabetic Heparin

Overload Days Examined

Laboratory variables were chosen for their relatedness to CKD and associated comorbidities by a board certified nephrologist (see Table 1).
Dependent Variable
The outcome of interest was defined as progression to CKD stage IV (eGFR consistently <30 ml/min/173 m2 for �3 months).

Table 3: Topics associated with decreased risk of progression. (Topic titles shown in parentheses were assigned manually
once the topics were generated, and are presented as a way to label the topics)

Topic 33
(family history)

Topic 35
(health maintenance)

Topic 41
(non-specific)

Topic 43
(gynecological)

Topic 45
(asthma)

Died Died History Breast Albuterol

Age Flu Pressure Vaginal Asthma

Years Visit Rate Mammo Inhaled

Mother Fasting Count Cancer Lung

Father Colonoscopy Three hx Obstructive

Brother Year Revealed pap Wheezing

Sister Shot Times nl Advair

Worked Vaccine Shortness Age Pulm

Children wnl Discharged Will Restrictive

Deceased Check Creatinine Endometrial Puffs
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development set and 35 events in the validation set. The average age
was 67 and there were more female (65%) than male (35%) patients
in both cohorts. (Table 1).

eGFR model
As shown in Figure 1, low eGFR at onset of stage III CKD was associ-
ated with high risk of progression (P< .001). Younger age was associ-
ated with increased risk of progression (P< .005). Male gender (the
variable for gender was encoded as 1 for male and 0 for female gen-
der) was also associated with increased risk of progression
(P¼ .005).

RLT Risk model
In the RLT model, elevated levels of BUN (P< .001), creatinine
(P< .001), triglycerides (P¼ .0061), and urine protein (quantitative,
P¼ .019; qualitative, P< .001), as well as decreased levels of hemat-
ocrit (P¼ .0043), hemoglobin (P¼ .0034), calcium (P¼ .033), and se-
rum protein (P¼ .0017) were associated with increased risk of CKD
progression (Figure 2). When introducing laboratory variables at the
time of onset in the survival model, age and gender are not associated
with risk of progression anymore.

Kalman Filter Risk models
In the TKF Risk model, topics associated with a higher risk of progres-
sion are shown in Table 2 and contained terms related to heart failure
(P< .001), diabetes (P< .001), and dialysis (P¼ .028). Mention of
these topic words throughout the course of the patient records indi-
cated high risk for progression. Younger age was also found to be

associated with increased risk in this model (P< .001). Topics associ-
ated with lower risk are shown in Table 3 and included terms having
to do with family history (P¼ .031), health maintenance, (P¼ .045),
gynecological care (P¼ .038), and asthma (P¼ .0045). Terms associ-
ated with all 50 topics can be found in the online supplement.

In the LKF Model, long-standing lower values for sodium
(P¼ .047) and hematocrit (P¼ .039) and long-standing elevated val-
ues for BUN (P< .001), creatinine (P< .001), and urine protein (quan-
titative, P< .001; qualitative, P< .001) were associated with higher
risk of progression (see supplement; eFigure 1).

In the LTKF model, which considered both the clinical notes and
the laboratory values, lower values of bicarbonate (P¼ .021), elevated
levels of BUN (P¼ .0041), creatinine (P¼ .0013), and urine protein
(quantitative, P< .001; qualitative, P< .001), and the presence of
terms associated with heart failure (P¼ .0017) and diabetes
(P¼ .0042) were associated with higher risk of progression
(eFigure2). As in the TKF Model, the presence of terms associated
with asthma (P¼ .022) was associated with a lower risk of progres-
sion. In the LKF model, the learned Kalman-filter states were also pre-
dictive of progression (details can be found in the online supplement)

The learned Kalman-filter states also had statistically significant
coefficients for predicting progression in all 3 models (details can be
found in the online supplement).

Model Performances in the Validation Cohort
Table 4 compares the performances of the 5 models on the validation
set. The concordance was highest (i.e., higher predictive ability) for
the LTKF model (0.849), followed by the LKF model (0.836), RLT
model (0.819), eGFR model (0.779) and TKF model (0.733). The LTKF
model performs significantly better than the RLT (P¼ .031), TKF
(P< .001), and eGFR (P< .001) models, the LKF model performs sig-
nificantly better than the TKF (P< .001) and eGFR (P< .001) models,
the RLT model performs significantly better than the TKF (P< .001)
and eGFR (P¼ .007) models.

DISCUSSION
We have developed and performed an internal validation for five mod-
els for CKD progression from stage III to stage IV. Our models leverage
different types of variables—demographic, laboratory and/or clinical
documentation data that are collected routinely during the course of
clinical care as part of the EHR—as well as the longitudinal aspect of
the records as encoded through Kalman filters.

In absence of laboratory and documentation information, the sim-
plest model (eGFR model) identifies that low eGFR at time of CKD
stage III diagnosis is associated with higher risk of progression.
Furthermore, younger patients with impaired kidney function (stage III
CKD) progress more rapidly toward stage IV CKD. Consistent with cur-
rent knowledge of CKD, male gender was found to be associated with
more rapid loss of eGFR, and the laboratory test models (RLT) identi-
fied laboratory data known to be associated with CKD progression.1,40

We found that text is a valuable predictor for CKD progression and
that the use of time series models to characterize patient state can
substantially improve predictive accuracy for progression. In particular,
the LTKF model which incorporated demographic, laboratory, and clin-
ical documentation data had the highest concordance of the models
considered.

With a concordance of 0.733, the TKF model predicts nearly as
well as the eGFR model where the difference did not reach statistical
significance. Variables of this model with significant coefficients
included well-known risk factors and complications of CKD including
diabetes, heart failure, and dialysis. Conversely, variables associated

Figure 1: Log hazard ratios for the eGFR Model.
Progression of CKD from stage III to stage IV in this
model was associated with low eGFR (P< .001), male
gender (P¼ .0051), and younger age (P< .001). (* in-
dicates P< .05, ** indicates P< .01, *** indicates
P< .001).
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with a decreased risk of progression include topics indicative of docu-
mentation of health care maintenance and outpatient care. Although
the difference did not meet the significance criterion, the LKF model
performs better than the RLT model indicating that incorporating previ-
ous data in the form of a Kalman filter model can improve prognostica-
tion. The LKF model also performs significantly better than the TKF
and eGFR models indicating that laboratory tests are a particularly
valuable source of prognostic information for CKD progression. Lastly,

the LTKF model had the highest concordance at 0.849 and the signifi-
cant coefficients and their directionality corresponded to variables
known to be related to CKD progression.

Risk prediction in CKD has been studied extensively, with dozens
of available risk models with acceptable performance (discrimination
0.56–0.94). Most developed classifiers use readily obtainable informa-
tion, including age, demographics, and laboratory data. Hence, labora-
tory data, comorbidities, and occasional vital signs are the sole

Figure 2. Log hazard ratios for the Recent Laboratory Tests Model. Progression of CKD from stage III to stage IV in this
model was associated with elevated levels of BUN (P< .001), creatinine (P< .001), triglycerides (P¼ .0061), and urine
protein (quantitative, P¼ .019; qualitative, P< .001) as well as decreased levels of hematocrit (P¼ .0043), hemoglobin
(P¼ .0034), calcium (P¼ .033), and serum protein (P¼ .0017). (* indicates P< .05, ** indicates P< .01, *** indicates
P< .001).
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Table 4. Concordances and concordance comparisons for the 5 studied models: Laboratory Test and Text Kalman Filter
(LTKF), Laboratory Test Kalman Filter (LKF), Text Kalman Filter (TKF), Recent Laboratory Tests (RLT), and estimated
Glomerular Filtration Rate (eGFR)

D LTKF D LKF D TKF D RLT D eGFR Concordance

LTKF *** * *** 0.849

LKF *** ** 0.836

TKF *** 0.733

RLT ** 0.819

eGFR 0.779

*P< .05, **P< .01, ***P< .001.
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dimensions of contemporary CKD classifiers. Age, sex, and eGFR are
included in almost all models, but fewer than half use proteinuria
(qualitative assessment or quantitative proteinuria or albuminuria), se-
rum creatinine, serum albumin, or blood pressure. A minority of mod-
els incorporate other features, including comorbidities (e.g., diabetes,
hypertension, stroke, peripheral vascular disease, or heart failure),
common laboratory tests (e.g., serum calcium, bicarbonate, phospho-
rus, or cholesterol), or other vital signs (e.g., body mass index or
weight). Our work here combines a novel feature —clinical documen-
tation—with more established features used for risk prediction to
demonstrate the potential of such an approach.

While ESRD or death as hard outcomes have significant value for
prediction, complications of CKD begin early and worsen progressively
through the various CKD stages.41–44 From stage III to IV CKD,
cardiovascular risk increases,4 anemia and bone-mineral disease
worsens,42–47 and myriad other considerations—including appropriate
dosing of medications6,48 and potential for renal replacement therapy
preparation49 —need to be evaluated. It is well known that the report-
ing of eGFR with routine laboratory results has led to an overall in-
crease in nephrology referrals,11,50,51 with a concern that much of
the increase may be inappropriate.52 Patients with non-progressive
CKD stage III can often be safely and appropriately managed in the
primary care setting, whereas those apt to progress to CKD stage
IV may benefit from earlier referral to nephrologists who can as-
sist with the medical management of CKD complications and
considerations.16,53

Although the outcome in this study is largely based on laboratory
test results (eGFR) and nephrology, as a field, is very laboratory test
oriented, it was beneficial to include features drawn the clinical
documentation. Many other fields and diseases are not as focused on
laboratory test results, and are based much more on clinical documen-
tation. We, therefore, would expect a benefit in extending a similar
analysis to other fields and diseases.

Limitations
Because our dataset consists of a non-curated, real-world set of pa-
tient characteristics, as recorded through clinical care, there is some
potential noise in the collected variables. For instance, given the lack
of high quality information about ethnicity, we cannot assess which
ethnic groups are well represented in our dataset. This fact may intro-
duce noise in the eGFR calculations.

The models we designed and validated are based on data from a
single institution. While there is value in focusing on a single institution
at a time (the risk predictions are relevant to the characteristics of the
institution’s patient population for instance), the model validity and its
generalizability would be better demonstrated over data from several
institutions. In particular, because of the potential variations in clinical
vocabulary and overall language in the documentation across different
institutions, there would likely be a benefit to generalizing the risk
model to patient records from other institutions. Our study requires
longitudinal documentation (both inpatient and outpatient notes over
many years, for a large set of patient records). Since there are no pub-
licly available datasets (even de-identified) with these properties, ex-
tending this study to other datasets is outside the scope of this study
and an important limitation of the work. Short of training a model for
data from different institutions, the models presented in this study are
in theory portable to different institutions. In particular, the unsuper-
vised NLP techniques described here (topic modeling) are actually
conducive to such an approach, as they identify patterns in the lan-
guage of any given corpus without any prior knowledge of the topics
or vocabulary to expect. To address the potential differences in

language from one institution to another, the topic models would have
to be learned on documentation from the new institutions.

CONCLUSIONS
A risk prediction model that takes longitudinal laboratory test results
and longitudinal clinical documentation into consideration can statisti-
cally significantly predict CKD progression from stage III to stage IV
more accurately than three models that do not take all of these vari-
ables nor their longitudinal aspect into consideration.
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