
Mutations Y493G and K546D in human HSP90 disrupt
binding of celastrol and reduce interaction with Cdc37
Bin Peng1,2, Yi-Jun Gu3, Ying Wang2, Fan-Fan Cao2, Xue Zhang2, Deng-Hai Zhang2 and Jian Hou1

1 Department of Hematology, Changzheng Hospital, The Second Military Medical University, Shanghai, China

2 Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China

3 National Center for Protein Science Shanghai, China

Keywords

Cdc37; celastrol; heat shock protein 90;

molecular modeling; protein drug interaction

Correspondence

D. Zhang, Sino-French Cooperative Central

Lab, Shanghai Gongli Hospital, The Second

Military Medical University, 219 Miaopu

Road, Pudong New District, Shanghai

200135, China

Fax: +86 21 588 593 98

Tel: +86 138 181 155 49

E-mail: shanghai_zhang@hotmail.com

and

J. Hou, Department of Hematology,

Changzheng Hospital, The Second Military

Medical University, 415 Fengyang Road,

Shanghai 200003, China

Fax: +86 21 635 200 60

Tel: +86 131 224 320 22

E-mail: houjian@medmail.com.cn

(Received 4 February 2016, revised 18 April

2016, accepted 2 May 2016)

doi:10.1002/2211-5463.12081

Celastrol, a natural compound derived from the Chinese herb Triptery-

gium wilfordii Hook F, has been proven to inhibit heat shock protein 90

(HSP90) activity and has attracted much attention because of its promising

effects in cancer treatment and in ameliorating degenerative neuron dis-

eases. However, the HSP90 structure involved in celastrol interaction is not

known. Here, we report a novel celastrol-binding pocket in the HSP90

dimer, predicted by molecular docking. Mutation of the two key binding

pocket amino acids (Lys546 and Tyr493) disrupted the binding of celastrol

to HSP90 dimers, as detected by isothermal titration calorimetry (ITC).

Interestingly, such mutations also reduced binding between HSP90 and the

cochaperone Cdc37, thus providing a new explanation for reported findings

that celastrol shows more obvious effects in disrupting binding between

HSP90 and Cdc37 than between HSP90 and other cochaperones. In short,

our work discloses a novel binding pocket in HSP90 dimer for celastrol

and provides an explanation as to why celastrol has a strong effect on

HSP90 and Cdc37 binding.

The compound celastrol, an extraction from tradi-

tional Chinese medicine Tripterygium wilfordii, exhibits

inhibitory effects toward several cancer cells of differ-

ent origins, such as hepatoma carcinoma cells [1],

glioblastoma cells [2], lung cancer cells [3], and mela-

noma cells [4]; this action is attributed to HSP90 inhi-

bition. It has been observed that in celastrol’s

presence, the binding affinities of HSP90 to its client

proteins, as well as to cochaperones, decrease with

HSP90–Cdc37 binding showing the most significant

decrease [5]. It has been proven that celastrol can

directly bind to HSP90 and thus disrupt the associa-

tion of HSP90 and Cdc37 [6]; yet the chemical basis

for celastrol’s interaction with HSP90 remains unclear.

It has been about 10 years since celastrol’s ability to

inhibit HSP90 was discovered, and the understanding

of how this inhibition takes place has since developed:

First, Westerheide et al. [7] reported that celastrol

could induce heat shock response by activating HSF-1,

providing indirect evidence that celastrol could inhibit

HSP90, as HSF-1 is always activated when HSP90 is

inhibited. Then, by comparing gene expression
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signatures among different agents, Hieronymus et al.

[8] found that celastrol inhibits HSP90 by binding to a

pocket other than the known ATP-binding site in

HSP90’s N terminus, meaning celastrol is a novel type

of HSP90 inhibitor. Zhang et al. [5] then reported that

celastrol disrupted HSP90–Cdc37 interaction in the

super chaperone complex to exhibit antitumor activity

in vitro and in vivo, with the molecular docking studies

demonstrating that celastrol disrupts a critical interac-

tion between the Glu33 side chain of HSP90 N termi-

nus and Arg167 side chain of Cdc37. However,

Sreeramulu et al. [9], via NMR technology, found that

celastrol does not directly bind to the N-terminal

ATP-binding pocket of HSP90, but rather targets

Cdc37 through a nucleophile reaction. Consistent with

this finding, in another study, Zhang et al. [6], who

had previously suggested that celastrol targets the

HSP90/Cdc37 complex in the N terminus of HSP90,

reported that celastrol directly binds to the C-terminal

region to disrupt HSP90–Cdc37 binding. That celastrol

can directly affect HSP90 is also supported by our

findings that celastrol could reduce HSP90’s intrinsic

ATP activity [10]. While much more is now under-

stood about celastrol’s actions, the chemical basis

behind celastrol’s interaction with HSP90 has not yet

been fully explained.

In this work, we used molecular docking analysis

and found a potential celastrol-binding pocket on

HSP90 dimer in the nucleotide-free apo form. We then

mutated two amino acids key to HSP90–celastrol bind-
ing at this site. Through isothermal titration calorime-

try (ITC) experiments, we found that celastrol can

bind to wild-type, but not mutant HSP90. Interest-

ingly, our results also indicate that these two amino

acids are important to binding between Cdc37 and

HSP90, by observing the direct effect of celastrol on

wild-type or mutant HSP90 complex in cell-free

system.

Results and Discussion

Molecular docking studies are a powerful tool to dis-

cover the potential binding sites of proteins to their

ligands, but such studies rely heavily on the initial

model’s accuracy. Recent progress in HSP90 structure

analysis has confirmed that HSP90 forms dimers, and

that the dimeric conformation changes dramatically

along the ATP-driven HSP90 cycle. Four types of

HSP90 dimeric structures have been suggested:

Nucleotide-free Apo, Compact extended ATP (HSP90:

C: ATP), Closed (HSP90: C: ATP/ADP+Pi), and

Extended ADP-bound (HSP90: ADP) [11]. We

thought previous studies’ inability to identify the

binding sites on HSP90 might be due to a lack of

accurate information about HSP90’s structure, so for

this study we reworked molecular docking studies for

celastrol–HSP90 binding using all four of the above

conformations.

Our molecular docking studies demonstrated that in

the Nucleotide-free Apo conformation, a celastrol-

binding pocket consisting of a C-terminal segment

from one monomer and the middle region from

another monomer was identified. The cavity was about

18.0 �A in length and 8.0 �A in depth. When situated in

this cavity, the two oxygen atoms of celastrol’s car-

boxyl group could form two salt bridges, one with

Lys546 (LYS535) (from one monomer) and one with

Lys582 (LYS1292) (from another monomer). These

two bridges enhanced the binding between celastrol

and HSP90 dimers (Fig. 1).

To verify the model, we prepared mutant K546D

(disrupting one of the predicated salt bridges) and

Y493G (damaging one wall of the celastrol-binding

cavity). Using ITC, we found that the mutant pro-

teins lost their ability to bind to celastrol (Fig. 2).

On the contrary, both wild and mutant HSP90 could

bind to 17-AAG, which is known to bind to the

ATP-binding site in HSP90’s N terminus [12,13].

Through cell-free experiments with wild or mutant

HSP90 complex coimmunoprecipitated with beads,

we additionally found that the mutant proteins had

reduced ability to bind to Cdc37 while retaining the

ability to bind with Cdk4 and HSP70 (Fig. 3).

Moreover, celastrol could reduce binding between

HSP90 and Cdc37, Cdk4, and HSP70 in wild

HSP90 complex, while such effects disappeared in

the mutant HSP90 complex (Fig. 3B,C), providing

additional evidence that the mutant sites are impor-

tant to celastrol’s effects on HSP90 function.

Our findings are consistent with previous reports

that celastrol interacts with HSP90’s C terminus [6,14].

Mutation in the celastrol-binding region reduced

HSP90’s ability to bind to Cdc37, indicating that this

region is important for Cdc37 binding. This is also

consistent with the belief that celastrol’s more promi-

nent effects result from disruption of HSP90/Cdc37

binding [5].

Conclusions

In conclusion, based on molecular docking, ITC deter-

mination, and the observed effects on HSP90 complex,

our work provides novel evidence that celastrol can

directly bind to HSP90 dimers, and that some residues

in the C terminus of one monomer and in the middle

region of another monomer of HSP90 dimers formed

730 FEBS Open Bio 6 (2016) 729–734 ª 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Mutations affect HSP90 binding to celastrol and Cdc37 B. Peng et al.



a celastrol-binding pocket. Two oxygen atoms from

celastrol’s carboxyl group could form two salt bridges,

one with Lys546 and one with Tyr493 on HSP90. This

celastrol-binding pocket is the key to HSP90–Cdc37
binding.

Experimental procedures

Molecular docking

HSP90 dimers may exist in four states, i.e., nucleotide-

free apo, ATP-bound compact extended, ATP-bound

closed, and ADP-bound extended states. The coordinates

for each of these models were generous gifts from R.L.

Matts (Oklahoma State University), whose group recently

constructed these models [11]. Initial inspection of the

three-dimensional structures in full-length HSP90 dimer

in the four above states suggests that the nucleotide-free

apo form is most likely to bind to the celastrol molecule;

the other forms do not provide cavities large enough for

small molecule binding in either the M- or C-terminal

domain. Thus, the nucleotide-free apo form of HSP90

was used for our molecular docking studies with

celastrol.

Molecular docking was carried out using Schrodinger

Suite 2009. The ligand (celastrol) was prepared using the

ligprep module, and the dimeric molecules of full-length

HSP90 were preprocessed using the protein preparation

wizard before docking. The prepared ligand was docked

into the nucleotide-free apo form of HSP90 using the

Glide module at standard precision, and the conformation

with the best docking score was selected as our starting

model for subsequent induced fit docking (IFD). IFD was

carried out using the suite’s IFD workflow, in which side

chains within 5 �A of celastrol were softened and refined

during induced fit docking. No positional or hydrophobic

constraint was used.

Plasmid construction and site-directed

mutagenesis

Prokaryotic expression plasmid pET15b-hHSP90a for

human full-length His-HSP90a protein was kindly gifted

by T. Ratajczak (University of Western Australia,

N-terminal domain Linker region Middle domain C-terminal domain

2370353823221

Monomer 1

Monomer 2

1  2   3 4 5 6 7 8

9                         10

1: His490 (HIS479);  2: Tyr493 (TYR482); 3: Val530 (VAL519); 4: Gln531 (GLN520);  5: Thr540 (THR529);
6: Val542 (VAL531); 7: Lys546 (LYS535); 8: Gly548 (GLY537); 9: Lys582 (LYS1292); 10: Thr683 (THR1393)

LYS1292

LYS535

HIS479

GLN520
VAL519

GLY537

VAL531 THR1393

THR529
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A

C

B

Fig. 1. Binding of celastrol to HSP90a dimer by molecular docking. (A) Celastrol’s binding pocket in the HSP90a dimer. (B) The amino acids

comprising the celastrol-binding pocket on HSP90a dimer. The mutated amino acids are circled. (C) HSP90a dimer scheme. 1–10 refer to

the amino acid sites in celastrol’s binding pocket.
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Australia). By cloning, HSP90a (NCBI accession number:

NP_005339) was inserted into prokaryotic or eukaryotic

expression vector pSUMO-Mut or pCMV-tag2a for site-

directed mutagenesis and protein expression or for tran-

sient transfection (Fig. S1).

Mutants containing two sites (Y493G and K546D) of

HSP90a were created by QuickChange kit (Stratagene,

Santa Clara, CA, USA), and sequenced to confirm the cor-

rect incorporation of the mutations.

Protein expression and purification

Wild-type human HSP90a and mutant proteins were

expressed in E. coli strain BL21 (DE3) and purified by

nickel affinity chromatography. After the purification, the

proteins were dissolved in a buffer containing 10 mM Hepes

pH 7.4, 150 mM NaCl, and 0.5 mM EDTA, and stored at

�80 °C. The purified proteins were confirmed by gel elec-

trophoresis (Fig. S2).

Isothermal titration calorimetry

The purified wild or mutant HSP90a proteins were dialyzed

against in the buffer containing 10 mM Hepes pH 7.4, 150 mM

NaCl, and 0.5 mM EDTA using Slide-A-LyzerTMDialysis Cas-

settes (Thermo Fisher Scientific Inc., Rockford, lL, USA)

three times [15]. Then, the dialyzed proteins were loaded with

celastrol or DMSO by MicroCal iTC200 (GE Healthcare,

Marlborough, MA, USA). The cells were thermostated at

25 °C. The reaction between wild or mutant HSP90a proteins

and celastrol was conducted with 60 lM protein in the cell and

600 lM ligand in the syringe, while the reaction between

Kd = 1 μM

Kd = 1.4 μM Kd = 1.7 μM

A B

C D

Fig. 2. Binding of celastrol or 17-AAG to

wild or mutant human HSP90a, identified

by ITC. Celastrol and wild HSP90a (A) or

mutant HSP90a (B), tested by ITC (1 : 10

mixture of celastrol/HSP90a). 17-AAG and

wild HSP90a (C) or mutant HSP90a (D),

tested by ITC (1 : 10 mixture of 17-AAG/

HSP90a).
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proteins and 17-AAG was performed with 30 lM protein in

the cell and 600 lM ligand in the syringe. The experiment was

conducted with 13 injections, with a volume of 3 lL and

180 s spacing.

Transient transfection, coimmunoprecipitation,

cell-free treatment, and western blot

Transient transfection was performed into 293T cells

according to the manufacturer’s instructions (lipofectamine

2000; Invitrogen, Carlsbad, CA, USA).

For coimmunoprecipitation, transfected cells were incu-

bated in lysis buffer (20 mM Tris/HCl, 25 mM NaCl, 0.1%

NP40, 2 mM DTT, 20 mM Na2MoO4, and protease inhibi-

tor cocktail, pH 7.4). Two milligrams of proteins were incu-

bated with 4 lg of anti-Flag antibody, and then 60 lL

Protein A/G plus agarose was added. Beads were washed

three times with PBS.

The wild or mutant HSP90 complexes captured by

agarose beads were used for cell-free treatment. The

beads were divided into two groups, and incubated with

DMSO or celastrol (final concentration of 12.5 lM) in

PBS, respectively. After reaction at room temperature for

10 min, the beads were heated and the proteins collected

for western blot, which was carried out according to

routine protocol.
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