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Abstract: Easily accessible biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD),
frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in
an aging society to assist early-stage diagnoses. In this study, we aimed to develop machine
learning algorithms using the multiplex blood-based biomarkers to identify patients with different
neurodegenerative diseases. Plasma samples (n = 377) were obtained from healthy controls, patients
with AD spectrum (including mild cognitive impairment (MCI)), PD spectrum with variable cognitive
severity (including PD with dementia (PDD)), and FTD. We measured plasma levels of amyloid-beta
42 (Aβ42), Aβ40, total Tau, p-Tau181, and α-synuclein using an immunomagnetic reduction-based
immunoassay. We observed increased levels of all biomarkers except Aβ40 in the AD group when
compared to the MCI and controls. The plasma α-synuclein levels increased in PDD when compared
to PD with normal cognition. We applied machine learning-based frameworks, including a linear
discriminant analysis (LDA), for feature extraction and several classifiers, using features from these
blood-based biomarkers to classify these neurodegenerative disorders. We found that the random
forest (RF) was the best classifier to separate different dementia syndromes. Using RF, the established
LDA model had an average accuracy of 76% when classifying AD, PD spectrum, and FTD. Moreover,
we found 83% and 63% accuracies when differentiating the individual disease severity of subgroups
in the AD and PD spectrum, respectively. The developed LDA model with the RF classifier can assist
clinicians in distinguishing variable neurodegenerative disorders.

Keywords: Alzheimer’s disease; Parkinson’s disease; frontotemporal dementia; neurodegenerative
disorders; biomarkers; deep learning model; linear discriminant analysis; classification; multivariate
imputation by chained equations

1. Introduction

According to the World Health Organization (WHO), the global population is aging and the
number of people over 60 years old is expected to rise from 900 million in 2015 to more than 2 billion
in 2050. As populations have aged, the incidence and prevalence of common neurodegenerative
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disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), have risen [1]. AD is the most
important cause of dementia in the elderly population; its pathological hallmarks are intraneuronal tau
accumulations as neurofibrillary tangles and extracellular amyloid plaques depositions. Older adults
can progress to having mild cognitive impairment (MCI) without it affecting their daily activities,
but further cognitive decline deteriorates daily function as AD dementia [2]. The second most
common dementia is frontotemporal dementia (FTD), which is also characterized by intraneuronal
phosphorylated tau depositions. FTD is often hard to differentiate from AD in a clinical diagnosis,
especially in the early stage of the disease. The α-synuclein that contains Lewy body accumulation
in dopaminergic neurons of substantia nigra is the pathological characteristic of PD [3] and loss of
dopamine results in progressive motor dysfunction. Notably, PD patients deteriorate not only in their
motor aspects but also in cognitive function, which is defined as PD with dementia (PDD) [4]. Currently,
there is no cure for neurodegenerative diseases like FTD, AD, and PD, and their diagnoses, which require
a combination of clinical assessments, neuropsychological testing, neuroimaging, and exclusion of
other neurological disorders, most commonly occur when clinical symptoms are developed during
significant underline disease progress [5,6]. Moreover, objective monitoring of disease progression is
hampered by the lack of suitable markers.

Recently suggested AD diagnoses are brain positron emission tomography (PET) scans, which can
detect amyloid and tau depositions, and cerebrospinal fluid (CSF) analysis, which can detect candidates
for pathological proteins [7]. However, these relatively invasive and costly procedures may limit
their clinical usefulness in a large-scale aged population. Given the likely entry of several classes of
mechanism-targeted therapies for mitigating neurodegeneration in AD or PD into early human clinical
trials [8,9], identifying easily accessible blood-based biomarkers to reflect disease severity is urgently
needed. These neuropathology-related proteins, including amyloid-beta 42 (Aβ42), Aβ40, total Tau,
phosphorylated Tau, and α-synuclein, are present in human body fluids, including CSF and blood
plasma [10,11], which are good candidates for surrogate biomarkers for disease severity in patients
with AD and PD. However, overlapping neuropathology findings have been found in patients with AD
and PD. For example, pathological studies have also identified amyloid plaques and tau-containing
neurofibrillary tangles as hallmark pathologies of AD in patients’ post-mortem brains with PDD [12]
and FTD [13]. These overlapping pathology findings suggest that a single molecule biomarker is not
sufficient as a disease-specific biomarker or a marker for monitoring disease progression as mixed
pathology may exist in patients with advanced stage diseases.

Our group has previously detected increased plasma levels of Aβ42, total and p-tau T181 in
patients with AD, and increased plasma α-synuclein in patients with PD compared to controls
using an immuno-magnetic reduction method (IMR) [10,11,14]. However, classifying different
neurodegenerative disorders is difficult, especially in early disease stages. A single-molecule detection
in plasma may miss a group of patients with mixed pathology, and strategies simultaneously analyzing
the neuropathology-related biomarker candidates in plasma, combined with deep learning algorithms,
are needed. Therefore, we aimed to develop a machine learning-based model using multiplex
blood-based biomarker information collected from participants of normal aging, AD or PD spectrum,
and FTD to identify patients in the early stage of these diseases. We conducted such a model in the
hopes that patients may benefit from a future clinical trial of disease-modifying therapeutics to mitigate
neurodegeneration and monitor disease progression.

2. Results

2.1. Clinical Characteristics

Table 1 summarizes the demographic data of participants and their five biomarkers’ plasma levels,
including Aβ42, Aβ40, total Tau, p-Tau181, and α-synuclein for all 377 individuals. Neurologically
normal healthy controls (n = 97), patients on the AD spectrum (including mild cognitive impairments
(MCI, n = 41) and AD (n = 35)), patients on the PD spectrum (including PD patients with normal
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cognition (n = 57)), PD patients with MCI (n = 29) and PDD (n = 87), and FTD (n = 31), were enrolled
in the current study. The age and disease duration were significantly higher in patients with AD and
PDD than in other patient groups and in controls (p < 0.01 by ANOVA). Women were more prevalent
on the AD spectrum, and men were more prevalent on the PD spectrum. The mini mental state
examination (MMSE) scores were significantly lower in patients on the AD, PDD, and FTD groups
than other groups and controls (p < 0.01 by ANOVA). Patients with PDD had significantly greater
motor severity (Hohen–Yahr stages) compared with PD with normal cognition, or the PD-MCI group
(p < 0.01 by ANOVA).

Table 1. Clinical characteristics and plasma biomarker levels of study participants in individual groups.

Controls
(n = 97)

AD Spectrum PD Spectrum FTD
(n = 31)

p Value
(n = 76) (n = 173)

MCI AD PD-NC PD-MCI PDD

(n = 41) (n = 35) (n = 57) (n = 29) (n = 87)

Age (years) 64.0 ± 7.8 72.9 ± 7.9 75.2 ± 11.6 62.4 ± 11.2 66.5 ± 11.8 72.8 ± 8.9 60.7 ± 7.1 p < 0.01 **
Gender (M, n, %) 31 (31.9%) 16 (39.0) 14 (40.04%) 31 (54.4) 20 (68.9) 53 (60.9) 6 (19.4) p < 0.01 **

Disease duration (y) N.A. 2.7 ± 0.9 6.2 ± 2.9 2.6 ± 1.1 5.6 ± 1.6 9.6 ± 3.2 5.4 ± 2.1 p < 0.01 **
MMSE 28.9 ± 0.9 26.8 ± 1.2 18.2 ± 5.8 28.3 ± 0.9 26.8 ± 1.1 20.8 ± 4.3 18.6 ± 4.8 p < 0.01 **

Hoehn-Yahr stage N.A. N.A. N.A. 1.7 ± 0.9 2.0 ± 0.8 2.5 ± 1.1 N.A. p < 0.01 **
Aβ42 (pg/mL) 15.66 ± 2.58 18.30 ± 1.85 21.15 ± 7.17 16.56 ± 2.44 15.80 ± 1.75 16.96 ± 3.54 18.26 ± 2.84 p < 0.01 **
Aβ40 (pg/mL) 59.45 ± 13.94 50.28 ± 8.69 49.01 ± 21.10 44.73 ± 9.47 47.10 ± 9.21 46.96 ± 11.93 40.34 ± 10.69 p < 0.01 **

Total tau (pg/mL) 16.95 ± 9.61 30.93 ± 8.67 38.70 ± 9.74 22.32 ± 9.91 20.27 ± 10.01 24.71 ± 10.41 38.16 ± 10.73 p < 0.01 **
Phospho-tau (pg/mL) 2.52 ± 1.17 4.28 ± 1.51 6.04 ± 1.33 3.72 ± 1.43 4.09 ± 1.77 4.15 ± 1.51 6.69 ± 1.19 p < 0.01 **
a-synuclein (pg/mL) 0.09 ± 0.05 0.20 ± 0.11 0.80 ± 0.32 1.15 ± 0.09 1.62 ± 0.28 25.17 ± 7.83 0.05 ± 0.02 p < 0.01 **

** p < 0.01.

2.2. Plasma Biomarker Levels in Different Disease Groups

We compared individual biomarker levels in different disease groups. We found that plasma
levels of Aβ42 were increased in patients on the AD spectrum, whereas FTD patients compared to the
controls (Figure 1a). Among the AD spectrum groups, Aβ42 levels were significantly higher in patients
with AD than in patients with MCI (21.15 ± 7.17 vs. 18.30 ± 1.85, p < 0.01). The levels of Aβ40 were
lower in patients on the AD spectrum groups, PD with normal cognition, and FTD compared to the
controls (Figure 1b). The Aβ40 levels were lower in the AD group than patients with MCI (44.73 ± 9.47
vs. 49.01 ± 21.10, p < 0.01). The plasma levels of total Tau and p-Tau181 were significantly higher in
patients on the AD spectrum groups, PD spectrum groups, and FTD patients, with the highest level
in the FTD group (Figure 1c,d). The plasma α-synuclein levels were increased in all disease groups,
except FTD, when compared to controls (Figure 1e). The α-synuclein levels were highest in patients
with PDD. The changes in plasma biomarkers of amyloid and Tau were indistinguishable between the
FTD and the AD groups.
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Figure 1. Individual plasma biomarker levels of normal controls and in different disease groups. The 
plasma Aβ42 (a) and Aβ40 (b) levels significantly increased in patients with AD and FTD, especially 
when compared to the normal control and other disease groups (p < 0.01). The plasma total tau (c) 
and p-tau181 (d) level significantly increased in patients with FTD and then followed by AD, MCI, 
and PDD group (p < 0.01). The plasma α-synuclein (e) levels were highest in the PDD group than 
other disease groups and controls. The mean ± one standard deviation (SD) was illustrated as 
horizontal lines in each disease group. * p < 0.05; ** p < 0.01. 

2.3. The LDA Model for Classifying Controls, AD Spectrum, PD Spectrum, and FTD 

We applied a linear discriminant analysis (LDA) to reduce the data input from 5 biomarker 
features of 377 participants into 2-dimensional or 3-dimensional information to classify individual 
dementia groups (i.e., AD spectrum, PD spectrum, and FTD). The purpose of LDA is to find the best 
linear combinations of the 5-biomarker features to separate each group with the highest accuracy. 
Among these three dementia groups, differentiating the pattern of 5 biomarkers between AD and 
FTD was crucial because single individual marker levels were comparable between these two groups. 
We then performed a visualization of scatter plots of each participant’s data in a 2-dimensional or 3-
dimensional model. Such reductions can sometimes lead to a better classification accuracy since it 
can avoid the curse of dimensionality. We successfully reduced the 5-dimensional data from 5 
biomarkers’ information to a 3-dimensional model using the correlation matrix between 
each marker, as shown in Figure 2. * p < 0.05; ** p < 0.01. 

Figure 1. Individual plasma biomarker levels of normal controls and in different disease groups.
The plasma Aβ42 (a) and Aβ40 (b) levels significantly increased in patients with AD and FTD, especially
when compared to the normal control and other disease groups (p < 0.01). The plasma total tau (c) and
p-tau181 (d) level significantly increased in patients with FTD and then followed by AD, MCI, and
PDD group (p < 0.01). The plasma α-synuclein (e) levels were highest in the PDD group than other
disease groups and controls. The mean ± one standard deviation (SD) was illustrated as horizontal
lines in each disease group. * p < 0.05; ** p < 0.01.

2.3. The LDA Model for Classifying Controls, AD Spectrum, PD Spectrum, and FTD

We applied a linear discriminant analysis (LDA) to reduce the data input from 5 biomarker
features of 377 participants into 2-dimensional or 3-dimensional information to classify individual
dementia groups (i.e., AD spectrum, PD spectrum, and FTD). The purpose of LDA is to find the best
linear combinations of the 5-biomarker features to separate each group with the highest accuracy.
Among these three dementia groups, differentiating the pattern of 5 biomarkers between AD and
FTD was crucial because single individual marker levels were comparable between these two groups.
We then performed a visualization of scatter plots of each participant’s data in a 2-dimensional or
3-dimensional model. Such reductions can sometimes lead to a better classification accuracy since it can
avoid the curse of dimensionality. We successfully reduced the 5-dimensional data from 5 biomarkers’
information to a 3-dimensional model using the correlation matrix between each marker, as shown in
Figure 2. * p < 0.05; ** p < 0.01.
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correlation coefficients between any two biomarkers. The lower triangular part of the matrix is the 
scattered-plot graphs of any two biomarkers. The main diagonal part of the matrix is the distribution 
graphs of each biomarker. log(α) is the log of α-synuclein. * p < 0.05; *** p < 0.001. 

The established 3-dimensional model was based on the linear discriminant function, as shown 
below, to illustrate the samples’ 3D scatter plot and to accurately classify the three dementia groups 
and controls (Figure 3). 
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f = 0.01408Tau + 0.26819pTau − 0.0040Aβ40 + 0.06062Aβ42 + 0.37553log(α − 
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The f is the best discriminant function of linear combinations of the original 5-biomarker features 
to separate each group. 

2.4. The LDA Model for Classifying Controls and AD Spectrum 

Among patients on the AD spectrum, we applied the same approach to reduce the 
dimensionality from 5 dimensions to 2 dimensions to sperate patients with AD from MCI using the 
correlation matrix between each marker, as shown in Figure 4. 

Figure 2. The correlation matrix between each biomarker from four groups, including healthy controls,
as well as patients with Alzheimer’s disease (AD) spectrum, Parkinson’s Disease (PD) spectrum, and
Frontotemporal Dementia (FTD). The upper triangular part of the matrix is the correlation coefficients
between any two biomarkers. The lower triangular part of the matrix is the scattered-plot graphs of
any two biomarkers. The main diagonal part of the matrix is the distribution graphs of each biomarker.
log(α) is the log of α-synuclein. * p < 0.05; *** p < 0.001.

The established 3-dimensional model was based on the linear discriminant function, as shown
below, to illustrate the samples’ 3D scatter plot and to accurately classify the three dementia groups
and controls (Figure 3).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 15 

 

 
Figure 2. The correlation matrix between each biomarker from four groups, including healthy 
controls, as well as patients with Alzheimer’s disease (AD) spectrum, Parkinson’s Disease (PD) 
spectrum, and Frontotemporal Dementia (FTD). The upper triangular part of the matrix is the 
correlation coefficients between any two biomarkers. The lower triangular part of the matrix is the 
scattered-plot graphs of any two biomarkers. The main diagonal part of the matrix is the distribution 
graphs of each biomarker. log(α) is the log of α-synuclein. * p < 0.05; *** p < 0.001. 

The established 3-dimensional model was based on the linear discriminant function, as shown 
below, to illustrate the samples’ 3D scatter plot and to accurately classify the three dementia groups 
and controls (Figure 3). 

 
Figure 3. The 3D scatter plot demonstrates that LDA separated sample points of different dementia 
groups. AD: AD spectrm, PD: PD spectrum. 

f = 0.01408Tau + 0.26819pTau − 0.0040Aβ40 + 0.06062Aβ42 + 0.37553log(α − 
synuclein) (1) 

The f is the best discriminant function of linear combinations of the original 5-biomarker features 
to separate each group. 

2.4. The LDA Model for Classifying Controls and AD Spectrum 

Among patients on the AD spectrum, we applied the same approach to reduce the 
dimensionality from 5 dimensions to 2 dimensions to sperate patients with AD from MCI using the 
correlation matrix between each marker, as shown in Figure 4. 

Figure 3. The 3D scatter plot demonstrates that LDA separated sample points of different dementia
groups. AD: AD spectrm, PD: PD spectrum.

f = 0.01408Tau + 0.26819pTau − 0.0040Aβ40 + 0.06062Aβ42 + 0.37553log(α − synuclein) (1)

The f is the best discriminant function of linear combinations of the original 5-biomarker features
to separate each group.

2.4. The LDA Model for Classifying Controls and AD Spectrum

Among patients on the AD spectrum, we applied the same approach to reduce the dimensionality
from 5 dimensions to 2 dimensions to sperate patients with AD from MCI using the correlation matrix
between each marker, as shown in Figure 4.
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2.5. The LDA Model for Classifying Controls and PD Spectrum 

Among patients on the PD spectrum, we applied the same approach to reduce the 
dimensionality from 5 dimensions to 3 dimensions to sperate individual groups of PD patients, 
including PD with normal cognition (PD-NC), PD with MCI (PD-MCI), and PDD, using the 
correlation matrix between each marker, as shown in Figure 6. 

Figure 4. The correlation matrix between each biomarker from three groups, including normal controls,
patients with mild cognitive impairment (MCI), and AD. The upper triangular part of the matrix is the
correlation coefficients between any two biomarkers. The lower triangular part of the matrix is the
scattered-plot graphs of any two biomarkers. The main diagonal part of the matrix is the distribution
graphs of each biomarker. log(α) is the log of α-synuclein. * p < 0.05; *** p < 0.001.

The established 2-dimensional model was based on the linear discriminant function, as shown
below, to illustrate the 3D scatter plot of the samples and to accurately classify the patients with AD
from MCI, and the controls (Figure 5).
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Figure 5. The 2D scatter plot demonstrates that LDA separated sample points of the AD spectrum.

f = −0.04303Tau − 0.22985pTau + 0.0075712Aβ40 − 0.087502Aβ42 − 0.23726log(alpha_synuclein) (2)

2.5. The LDA Model for Classifying Controls and PD Spectrum

Among patients on the PD spectrum, we applied the same approach to reduce the dimensionality
from 5 dimensions to 3 dimensions to sperate individual groups of PD patients, including PD with
normal cognition (PD-NC), PD with MCI (PD-MCI), and PDD, using the correlation matrix between
each marker, as shown in Figure 6.
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Figure 6. The correlation matrix between each biomarker from four groups, including normal controls,
PD-NC, PD-MCI, and PDD. The lower triangular part of the matrix is the scattered-plot graphs of any
two biomarkers. The main diagonal part of the matrix is the distribution graphs of each biomarker.
log(α) is the log of α-synuclein. ** p < 0.01; *** p < 0.001.

The established 3-dimensional model was based on the linear discriminant function, as shown
below, to illustrate the 3D scatter plot of the samples and classify the patients with normal controls,
PD-NC, PD-MCI, and PDD (Figure 7).
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the PD spectrum.

f = −0.00489Tau−0.156621pTau + 0.006844 Aβ40 + 0.027807 Aβ42 − 0.57530 log(α-synuclein) (3)

2.6. Measure the Performance of the Established Models by LDA

To measure the performance of the established three models based on LDA’s selected features,
we used 7 benchmark deep-learning classifiers to predict the accuracy. These classifiers include
the Naïve Bayes (NB) [15], k-Nearest Neighbor (kNN) [16], support vector machine (SVM) [17],
C4.5 decision tree (C4.5) [18], classification and regression trees (CART) [19], random forest (RF) [20],
and logistic regression (LogReg). A good feature selection method should have high learning accuracy
but less computational overhead (i.e., time complexity and space complexity). We then used the
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leave-one-out cross-validation (LOOCV) method to objectively evaluate our model construction
procedure [21].

We found that the RF was the best algorithm to classify each of the different dementia syndromes
(i.e., AD, PDD, and FTD), with an accuracy rate of 3 transformed features in the respective axis of the
3D-model over 0.76 (Figure 8a). For the AD spectrum (MCI and AD), the accuracy was measured by
different classifiers and is shown in Figure 8b. RF provided the highest accuracy rate of 0.83 with two
transformed features in the individual axis of the established 2D-model. For the PD spectrum (PD-NC,
PD-MCI, and PDD), the accuracy is shown in Figure 8c, with the highest accuracy rate reaching
up to 0.68.
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3. Discussion

The results of this study demonstrated that integrated plasma biomarkers combined with
deep-learning models could be applied to classify normal aging controls from patients with different
spectrums of neurodegenerative diseases. Furthermore, the established models simultaneously
incorporate information from five disease-pathology related biomarkers, which could provide
a better classification between different disease severity on the AD and PD spectrums. Several
machine-learning-based approaches were used in this study to classify different disease groups. We use
MICE for imputing missing data; LDA was applied for dimensionality reduction and feature extraction
to show the samples’ biomarker information as a 2D or 3D scatter plot for better visualization of
separation. Moreover, several deep-learning algorithms were employed to examine the established
models’ accuracy, and the RF classification system was found to have the best performance for accuracy.
These developed models with multiplex biomarker information could help clinicians distinguish
diseases in their early-stages and reflect disease severity on the AD and PD spectrums.

We previously used the IMR method to establish platforms to detect plasma levels of
disease-related proteins, including Aβ42, Aβ40, total Tau, p-Tau181, α-synuclein, and p-α-synuclein
Ser129 [10,11,14,22]. The two hallmark pathologies of AD are the extracellular Aβ plaque deposits
and the flame-shaped neurofibrillary tangles of the microtubule-binding protein tau. Our findings
revealed that in this current mixed neurodegenerative population, Aβ42 plasma levels increased
in patients with AD compared to MCI and controls. Besides, Aβ42 plasma levels were higher in
MCI than those in controls compatible with a previous study, suggesting that Aβ42 plasma levels
can differentiate healthy control from subjects with MCI [23]. From a pathological point of view,
Aβ deposition plateaus when patients progress into the clinical MCI phase of AD at the time of
cognitive symptoms [24]. On the contrary, Aβ40 levels decreased in AD patients compared to MCI
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and controls. Our results were in line with recent findings that plasma Aβ peptide ratio (Aβ42/Aβ40)
predicts brain amyloid-β-positive or negative status via amyloid-β-PET imaging [25]. Previous studies
have utilized the IMR method that demonstrates an increase in plasma Aβ42 in AD patients compared
to controls, which correlated negatively with the CSF levels of Aβ42 [26,27]. The amyloid plaques
in the post-mortem brain pathology of AD patients mainly consists of Aβ42, although Aβ40 is more
abundant than Aβ42 in the brain and plasma [28]. Oligomers form readily from the Aβ42 peptide
but much less from the more abundant Aβ40 [29]. The C-terminus of Aβ42 is critical for oligomer
formation. There is a close correlation between the ratio of Aβ42/Aβ40 and the age of disease onset
in familial AD [30]. Our findings in the plasma may reflect the increased aggregative Aβ42 in the
AD disease process. Another hallmark of AD, tau, was also increased in the plasma and CSF of AD
patients [31].

Further studies have shown a strong correlation between plasma p-tau181 with Tau PET, and a
high concordance with CSF p-Tau levels [32,33]. These findings indicate that plasma levels of total Tau
and p-Tau combined with the Aβ42/ Aβ40 ratio could be a surrogate marker for AD. On the other hand,
another dementia syndrome, FTD, which was characterized by neuronal tau accumulations, showed
increased levels of total Tau and p-Tau181 rather than the Aβ42/Aβ40 ratio. Furthermore, patients
with PDD revealed increased levels of α-synuclein rather than other marker proteins, compared to
those with PD-MCI and PD with normal cognition. These results suggested that higher levels of
plasma α-synuclein are associated with poorer cognitive performance in PD patients. This association
supports Braak’s hypothesis that cortical Lewy body/neurotic pathology is more extensive in PDD than
in PD without dementia [3]. However, differentiating neurodegenerative disorders is challenging [34],
especially in the early disease stages. Pathologically dementia with Lewy bodies (DLB) and PDD
cannot be easily distinguished; both diseases may show concomitant AD pathology, especially in
older individuals; however, this is more commonly observed in DLB. It has even found that cortical
and striatal Aβ depositions are virtually always present in DLB [35]. The concurrence of multiple
biomarkers such as Aβ and tau abnormalities and alpha-synuclein suggests different proteinopathies
may add specificity of underlying pathology to mixed dementia.

In addition to targeting these disease pathology-related proteins, several groups have adopted
an unbiased approach, including proteomics, metabolomics, and gene expression profiling [36–38].
However, most of these previous studies are limited to relatively small sample size or have had
difficulty replicating their findings [39]. Therefore, we developed a machine learning-based model
that used plasma biomarker data collected from 377 participants experiencing normal aging, on the
AD or PD spectrums, and FTD to predict and differentiate different neurodegenerative disorders.
Machine learning algorithms are broadly applied to support healthcare systems, i.e., early diagnosing,
precision medicine, and genetic screening [40]. Recently, an aptamer-based technology (SOMAmer
assay, SomaLogic) combined with an RF deep-learning classification system was used to measure
1047 proteins in three tissue types from PD patients and controls (e.g., serum, CSF, post-mortem
brain tissues). The results showed that testing the serum samples offered promising results with
an AUC (area under the receiver operating characteristic curve) of 0.77 [41]. Moreover, a recent
study that applied a typical approach of training machine learning algorithms using the public gene
database from 160 AD and 127 healthy controls produced models with an average sensitivity of
48.7% (95% CI = 34.7–64.6) [42]. Our study applied LDA to reduce dimensionality and extract features
from the multiplex blood biomarkers and then distinguished individual disease subgroups using
the RF classifier, which provided an average accuracy of 76% for the AD and PD spectrums, as well
as FTD. Moreover, accuracies of 83% and 63% were found when differentiating individual disease
severity subgroups on the AD and PD spectrums, respectively. Future studies should combine other
markers, including neuroimages and genetic risk factors, and are needed to polish the model to further
classify and predict individual neurodegenerative disorders in the early-stage or prodromal stage of
the disease process.
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This study used the multiplex biomarker information from various patients with the most
common neurodegenerative disorders and age/gender-matched healthy controls, which provided more
comprehensive data about plasma levels of disease-related pathology proteins than just assaying a
single marker. Overlapping neuropathology was found in patients with AD and PD, and even in PDD.
These overlapping pathology findings suggest the need for an integrated multiple biomarker panel,
which incorporates a novel strategy combing suitable data processing and deep-learning algorithm
to identify surrogate biomarker information for assessing the risk and monitoring the progression of
neurodegenerative disorders.

However, our study has several limitations. First, most of the patients diagnosed with AD, PD,
or FTD already receive medication treatments. As therapeutic drugs may affect plasma protein profiling,
such as memantine (a common drug used to treat AD symptoms) [43], the established classification
models may have inadvertently learned protein expression perturbations due to treatment rather than
disease biology. Therefore, it would fail in the clinical setting to diagnose AD or PD patients who are
naïve to medication. Second, the mean age of our controls is younger than those in the AD spectrum
and PDD. Age may influence the expressions of targeted proteins in the plasma. Plasma levels of
the total Tau and Aβ42 levels have modest but significant correlations with chronological age [44]
while there is no significant correlation between age and plasma α-synuclein levels in neurologically
healthy controls [11,22]. This age effect was not considered in our machine-learning algorithm,
and future classification models incorporating age effects are warranted. Another limitation is the lack
of inclusion of the TDP-43 biomarker in this report. FTD consists of a spectrum of clinical syndromes
associated with several underlying neurodegenerative diseases characterized by frontotemporal lobar
degeneration (FTLD) [45] and neuropathologically, most (90–95%) FTLDs are caused by intracellular
aggregates of p-tau or TAR DNA-binding protein 43 (TDP-43) [46]. Finally, the clinical diagnosis was
not confirmed neuropathologically and is therefore susceptible to misclassification. However, the final
diagnosis was based on thorough clinical and ancillary investigations (including nuclear imaging
and neuropsychological assessment) after extensive clinical follow-up and following international
consensus criteria in specialized memory or movement disorder clinics. Large-scale cohort studies
with a long-term follow-up combined with drugs and co-morbidity information are needed to validate
our results.

In conclusion, our study used information from the 5-disease pathology-related plasma biomarkers
from 377 patients with various neurodegenerative disorders and age/gender-matched controls.
We explored several classification models using deep learning algorithms and found that the RF
classifier can best help clinicians distinguish patients with different neurodegenerative diseases and
monitor their progression. Future validation in a large-scaled heterogeneous aging population is
needed to confirm our findings. A future application of this integrated approach combing with
multi-domain markers, including structural brain MRI or molecular PET images and biomarkers
in other biofluids, will assist identification of disease even at the earliest asymptomatic pre-clinical
stage. In this context, patients would benefit most in the pre-clinical stage from this biomarker-guided
intervention, which could provide the best chance to mitigate neurodegeneration.

4. Materials and Methods

4.1. Study Participants

All participants were recruited from the memory or movement disorder clinics in the National
Taiwan University Hospital (NTUH), a tertiary referral center in Taiwan. We analysed 377 plasma
samples from patients with MCI (n = 41), AD (n = 35), PD with normal cognition (PD-NC,
n = 57), PD with mild cognitive impairment (PD-MCI, n = 29), PDD (n = 87), FTD (n = 31), and
age/gender-matched healthy controls (n = 97). MCI and AD were diagnosed according to the National
Institute on Aging–Alzheimer’s Association (NIA-AA) workgroup for clinical diagnosis of MCI and
AD [47]. PD was diagnosed according to the United Kingdom PD Society Brain Bank clinical diagnostic
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criteria [48]. PD-MCI was diagnosed according to the Movement Disorder Society (MDS) task force
diagnostic criteria using the level I global cognitive function test [49]. MDS task force criteria also
were used to diagnose PDD, with an MMSE score of 25 or less as the cut-off for identifying significant
cognitive impairment in PD patients, as well as impairment of instrumental activities of daily living
(e.g., inability to manage finances and cope in social situations) [4]. This study was approved by the
National Taiwan University Hospital’s institutional ethics board committee (201406125DSC, 20160470
MINC, NTUH 201903094RINA). All participants or their proxy provided written informed consent to
participate in the study.

4.2. Biomarker Assessments

A total of 10 mL of venous blood was drawn from each participant and centrifuged (2500× g
for 15 min) within 3 h of collection. The plasma levels of Aβ42, Aβ40, total Tau, phosphorylated Tau
(p-Tau181), and α-synuclein were measured via IMR methods, as previously described [11,14,27].

4.3. Statistical Analyses for Clinical and Biomarker Characteristics

Numerical variables are expressed as means± standard deviations or medians with 95% confidence
intervals (CIs). For variables following a Gaussian distribution, data were compared using two-tailed
t-tests, and multiple comparisons were performed using analysis of variance (ANOVA). For variables
not following a normal distribution, data were compared using the Mann–Whitney test, which is the
non-parametric equivalent of the independent samples t-test, and the Kruskal–Wallis test was used for
comparing three or more groups. We performed all analyses with Stata (StataCorp LP, College Station,
TX, USA) software. A p value of <0.05 was considered significant.

4.4. Data Processing and Dimensionality Reduction

For some missing values of biomarker data in the dataset due to the plasma samples’ suboptimal
quality, we used multivariate imputation by chained equations (MICE) to perform data imputation [50].
Moreover, we performed the following two data adjustment operations to make the dataset more
compliant for machine learning. First, the values of α-synuclein were transformed into the logarithm
function for their ultra-low levels in the plasma. Second, we put each biomarker feature into a linear
min-max normalization. Therefore, each feature had a minimum value of 0 and a maximum value of 1
to make each feature have a similar distribution range.

In statistics and machine learning, dimensionality reduction is the process of reducing the number
of features such that the characteristics of the reduced dataset can be retained as much as possible.
Approaches of dimensionality reduction can be divided into feature selection and feature extraction.
In the current study, we employed LDA to perform dimensionality reduction and feature extraction.
We visualized scatter plots in 2D or 3D. Such reduction can sometimes lead to a better classification
accuracy since it avoids the effects of the curse of dimensionality.

We used 7 deep-learning classifiers (i.e., SVM, CART, C4.5, NB, LogReg, kNN, and RF) to
compare the accuracy of multiclass classification in individual models. We also used the leave-one-out
cross-validation (LOOCV) method to objectively estimate the performance of our model construction
procedure [21]. LOOCV is essentially an estimate of a model’s generalization performance trained on
n−1 samples of data, which is generally a slightly pessimistic estimate of the performance of a model
trained on all n samples. The workflow of the abovementioned data preprocessing is illustrated in
Figure 9.
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