
Research Article
Modified Backtracking Search Optimization Algorithm
Inspired by Simulated Annealing for Constrained Engineering
Optimization Problems

HailongWang,1 Zhongbo Hu ,1 Yuqiu Sun,1 Qinghua Su,1 and Xuewen Xia2

1School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, China
2School of Software, East China Jiaotong University, Nanchang, Jiangxi 330013, China

Correspondence should be addressed to Zhongbo Hu; huzbdd@126.com

Received 10 October 2017; Accepted 20 December 2017; Published 13 February 2018

Academic Editor: Silvia Conforto

Copyright © 2018 Hailong Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization
problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the
convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to
overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (𝐹) is modified based on the Metropolis criterion in
simulated annealing.The redesigned𝐹 could be adaptively decreased as the number of iterations increases and it does not introduce
extra parameters. A self-adaptive 𝜀-constrainedmethod is used to handle the strict constraints.We compared the performance of the
proposed BSAISAwith BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering
design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other
well-known algorithms in terms of convergence speed.

1. Introduction

Optimization is an essential research objective in the fields
of appliedmathematics and computer sciences. Optimization
algorithms mainly aim to obtain the global optimum for
optimization problems. There are many different kinds of
optimization problems in real world. When an optimization
problem has a simple and explicit gradient information
or requires relatively small budgets of allowed function
evaluations, the implementation of classical optimization
techniques such as mathematical programming often could
achieve efficient results [1]. However, many real-world engi-
neering optimization problemsmay have complex, nonlinear,
or nondifferentiable forms, which make them difficult to
be tackled by using classical optimization techniques. The
emergence of metaheuristic algorithms has overcome the
deficiencies of classical optimization techniques to some
extent, as they do not require gradient information and
have the ability to escape from local optima. Metaheuristic
algorithms are mainly inspired from a variety of natural

phenomena and/or biological social behavior. Among these
metaheuristic algorithms, swarm intelligence algorithms and
evolutionary algorithms perhaps are the most attractive [2].
Swarm intelligence algorithms [3] generally simulate the
intelligence behavior of swarms of creatures, such as particle
swarm optimization (PSO) [4], ant colony optimization
(ACO) [5], cuckoo search (CS) [6], and the artificial bee
colony (ABC) algorithm [7]. These types of algorithms
generally are developed by inspirations from a series of com-
plex behavior processes in swarms with mutual cooperation
and self-organization, in which “cooperation” is their core
concept.The evolutionary algorithms (EAs) [8, 9] are inspired
by the mechanism of nature evolution, in which “evolution”
is the key idea. Examples of EAs include genetic algorithm
(GA) [10], differential evolution (DE) [11–14], covariance
matrix adaptation evolution strategy (CMAES) [15], and the
backtracking search optimization algorithm (BSA) [16].

BSA is an iterative population-based EA, which was
first proposed by Civicioglu in 2013. BSA has three basic
genetic operators: selection, mutation, and crossover. The

Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 9167414, 27 pages
https://doi.org/10.1155/2018/9167414

http://orcid.org/0000-0002-3685-2753
https://doi.org/10.1155/2018/9167414

2 Computational Intelligence and Neuroscience

main difference between BSA and other similar algorithms is
that BSA possesses a memory for storing a population from
a randomly chosen previous generation, which is used to
generate the search-direction matrix for the next iteration.
In addition, BSA has a simple structure, which makes it
efficient, fast, and capable of solving multimodal problems.
BSA has only one control parameter called the mix-rate,
which significantly reduces the sensitivity of the initial values
to the algorithm’s parameters. Due to these characteristics,
in less than 4 years, BSA has been employed successfully
to solve various engineering optimization problems, such as
power systems [17–19], induction motor [20, 21], antenna
arrays [22, 23], digital image processing [24, 25], artificial
neural networks [26–29], and energy and environmental
management [30–32].

However, BSA has a weak local exploitation capacity and
its convergence speed is relatively slow. Thus, many studies
have attempted to improve the performance of BSA and
some modifications of BSA have been proposed to overcome
the deficiencies. From the perspective of modified object,
the modifications of BSA can be divided into the following
four categories. It is noted that we consider classifying the
publication into the major modification category if it has
more than one modification:

(i) Modifications of the initial populations [33–38]
(ii) Modifications of the reproduction operators, includ-

ing the mutation and crossover operators [39–47]
(iii) Modifications of the selection operators, including

the local exploitation strategy [48–51]
(iv) Modifications of the control factor and parameter

[52–57].

The research on controlling parameters of EAs is one
of the most promising areas of research in evolutionary
computation; even a little modification of parameters in
an algorithm can make a considerable difference [58]. In
the basic BSA, the value of amplitude control factor (𝐹) is
the product of three and the standard normal distribution
random number (i.e., 𝐹 = 3 ⋅ randn), which is often too large
or too small according to its formulation.Thismay give BSA a
powerful global exploration capability at the early iterations;
however, it also affects the later exploitation capability of
BSA. Based on these considerations, we focus mainly on the
influence of the amplitude control factor (𝐹) on the BSA,
that is, the fourth of the categories defined above. Duan
and Luo [52] redesigned an adaptive 𝐹 based on the fitness
statistics of population at each iteration. Wang et al. [53] and
Tian et al. [54] proposed an adaptive 𝐹 based on Maxwell-
Boltzmann distribution. Askarzadeh and dos Santos Coelho
[55] proposed an adaptive 𝐹 based on Burger’s chaotic map.
Chen et al. [56] redesigned an adaptive 𝐹 by introducing
two extra parameters. Nama et al. [57] proposed a new 𝐹
to adaptively change in the range of (0.45, 1.99) and new
mix-rate to randomly change in the range of (0, 1). These
modifications of 𝐹 have achieved good effects in the BSA.

Different from the modifications of 𝐹 in BSA described
above, a modified version of BSA (BSAISA) inspired by
simulated annealing (SA) is proposed in this paper. In the

BSAISA, 𝐹 based on iterations is redesigned by learning a
characteristic where SA can probabilistically accept a higher
energy state and the acceptance probability decreases with
the decrease in temperature.The redesigned 𝐹 can adaptively
decrease as the number of iterations increases without intro-
ducing extra parameters. This adaptive variation tendency
provides an efficient tradeoff between early exploration and
later exploitation capability. We verified the effectiveness and
competitiveness of BSAISA in simulation experiments using
thirteen constrained benchmarks and five engineering design
problems in terms of convergence speed.

The remainder of this paper is organized as follows.
Section 2 introduces the basic BSA. As the main contribution
of this paper, a detailed explanation of BSAISA is presented
in Section 3. In Section 4, we present two sets of simulation
experiments in which we implemented BSAISA and BSA to
solve thirteen constrained optimization and five engineer-
ing design problems. The results are compared with those
obtained by other well-known algorithms in terms of the
solution quality and function evaluations. Finally, we give our
concluding remarks in Section 5.

2. Backtracking Search Optimization
Algorithm (BSA)

BSA is a population-based iterative EA. BSA generates trial
populations to take control of the amplitude of the search-
direction matrix which provides a strong global exploration
capability. BSA equiprobably uses two random crossover
strategies to exchange the corresponding elements of individ-
uals in populations and trial populations during the process
of crossover. Moreover, BSA has two selection processes.
One is used to select population from the current and
historical populations; the other is used to select the optimal
population. In general, BSA canbe divided into five processes:
initialization, selection I,mutation, crossover, and selection II
[16].

2.1. Initialization. BSA generates initial population 𝑃 and
initial old population oldP using

𝑃𝑖,𝑗 ∼ 𝑈 (low𝑗, up𝑗) ,
oldP𝑖,𝑗 ∼ 𝑈 (low𝑗, up𝑗) , (1)

where 𝑃𝑖,𝑗 and oldP𝑖,𝑗 are the 𝑗th individual elements in
the problem dimension (𝐷) that falls in 𝑖th individual
position in the population size (𝑁), respectively, low𝑗 and
up𝑗 mean the lower boundary and the upper boundary of
the 𝑗th dimension, respectively, and 𝑈 is a random uniform
distribution.

2.2. Selection I. BSA’s selection I process is the beginning of
each iteration. It aims to reselect a new oldP for calculating
the search direction based on population 𝑃 and historical
population oldP. The new oldP is reselected through the “if-
then” rule in

if 𝑎 < 𝑏 then oldP fl 𝑃 | 𝑎, 𝑏 ∼ 𝑈 (0, 1) , (2)

Computational Intelligence and Neuroscience 3

where fl is the update operation; 𝑎 and 𝑏 represent random
numbers between 0 and 1. The update operation (see (2))
ensures BSA has amemory. After oldP is reselected, the order
of the individuals in oldP is randomly permuted by

oldP fl permuting (oldP) . (3)

2.3. Mutation. The mutation operator is used for generating
the initial form of trial population𝑀 with

𝑀 = 𝑃 + 𝐹 ⋅ (oldP − 𝑃) , (4)

where F is the amplitude control factor of mutation operator
used to control the amplitude of the search direction. The
value 𝐹 = 3 ⋅ randn, where randn ∼ 𝑁(0, 1), and 𝑁 is
standard normal distribution.

2.4. Crossover. In this process, BSA generates the final form
of trial population 𝑇. BSA equiprobably uses two crossover
strategies to manipulate the selected elements of the individ-
uals at each iteration. Both the strategies generate different
binary integer-valued matrices (map) of size 𝑁 ⋅ 𝐷 to select
the elements of individuals that have to be manipulated.

Strategy I uses the mix-rate parameter (mix-rate) to
control the numbers of elements of individuals that are
manipulated by using ⌈mix-rate ⋅ rand ⋅ 𝐷⌉, where mix-rate
= 1. Strategy II manipulates the only one randomly selected
element of individuals by using randi(𝐷), where randi ∼𝑈(0,𝐷).

The two strategies equiprobably are employed to manip-
ulate the elements of individuals through the “if-then” rule:
if map𝑛,𝑚 = 1, where 𝑛 ∈ {1, 2, . . . , 𝑁} and 𝑚 ∈ {1, 2, . . . , 𝐷},
then, 𝑇 is updated with 𝑇𝑛,𝑚 fl 𝑃𝑛,𝑚.

At the end of crossover process, if some individuals in𝑇 have overflowed the allowed search space limits, they will
need to be regenerated by using (1).

2.5. Selection II. In BSA’s selection II process, the fitness val-
ues in 𝑃𝑖 and 𝑇𝑖 are compared, used to update the population𝑃 based on a greedy selection. If 𝑇𝑖 have a better fitness value
than 𝑃𝑖, then, 𝑇𝑖 is updated to be 𝑃𝑖. The population 𝑃 is
updated by using

𝑃𝑖 = {{{
𝑇𝑖, if fitness (𝑇𝑖) < fitness (𝑃𝑖) ,
𝑃𝑖, else. (5)

If the best individual of 𝑃 (𝑃best) has a better fitness value
than the global minimum value obtained, the global mini-
mizer will be updated to be 𝑃best, and the global minimum
value will be updated to be the fitness value of 𝑃best.
3. Modified BSA Inspired by SA (BSAISA)

As mentioned in the introduction of this paper, the research
work on the control parameters of an algorithm is verymean-
ingful and valuable. In this paper, in order to improve BSA’s
exploitation capability and convergence speed, we propose a
modified version of BSA (BSAISA) where the redesign of 𝐹 is

inspired by SA.Themodified details of BSAISA are described
in this section. First, the structure of the modified 𝐹 is
described, before we explain the detailed design principle for
the modified 𝐹 inspired by SA. Subsequently, two numerical
tests are used to illustrate that the redesigned 𝐹 improves
the convergence speed of the algorithm. We introduce a self-
adaptive 𝜀-constrained method for handling constraints at
the end of this section.

3.1. Structure of the Adaptive Amplitude Control Factor𝐹. The
modified 𝐹 is a normally distributed random number, where
its mean value is an exponential function and its variance is
equal to 1. In BSAISA, we redesign the adaptive 𝐹 to replace
the original version using

𝐹𝑖 ∼ 𝑁(exp(−1/
Δ𝐼𝑖1/𝐺) , 1) , (6)

where 𝑖 is the index of individuals,𝐹𝑖 is the adaptive amplitude
control factor that corresponds to the 𝑖th individual, |Δ𝐼𝑖|
is the absolute value of the difference between the objective
function values of 𝑃𝑖 and 𝑇𝑖 (individual differences),𝑁 is the
normal distribution, and 𝐺 is the current iteration.

According to (6), the exponential function (mean value)
decreases dynamically with the change in the number of
iterations (𝐺) and the individual differences (|Δ𝐼𝑖|). Based
on the probability density function curve of the normal
distribution, the modified 𝐹 can be decreased adaptively as
the number of iterations increases. Another characteristic of
the modified F is that there are not any extra parameters.

3.2. Design Principle of the Modified Amplitude Control Factor𝐹. The design principle of the modified 𝐹 is inspired by the
Metropolis criterion in SA. SA is a metaheuristic optimiza-
tion technique based on physical behavior in nature. SAbased
on theMonte Carlomethod was first proposed byMetropolis
et al. [59] and it was successfully introduced into the field of
combinatorial optimization for solving complex optimization
problems by Kirkpatrick et al. [60].

The basic concept of SA derives from the process of
physical annealing with solids. An annealing process occurs
when a metal is heated to a molten state with a high
temperature; then it is cooled slowly. If the temperature is
decreased quickly, the resulting crystal will havemany defects
and it is just metastable; even the most stable crystalline
state will be achieved at all. In other words, this may
form a higher energy state than the most stable crystalline
state. Therefore, in order to reach the absolute minimum
energy state, the temperature needs to be decreased at a
slow rate. SA simulates this process of annealing to search
the global optimal solution in an optimization problem.
However, accepting only the moves that lower the energy
of system is like extremely rapid quenching; thus SA uses a
special and effective acceptance method, that is, Metropolis
criterion, which can probabilistically accept the hill-climbing
moves (the higher energy moves). As a result, the energy of
the system evolves into a Boltzmann distribution during the
process of the simulated annealing. From this angle of view,

4 Computational Intelligence and Neuroscience

it is no exaggeration to say that theMetropolis criterion is the
core of SA.

TheMetropolis criterion can be expressed by the physical
significance of energy, where the new energy state will be
acceptedwhen the new energy state is lower than the previous
energy state, and the new energy state will be probabilistically
accepted when the new energy state is higher than the
previous energy state. This feature of SA can escape from
being trapped in local minima especially in the early stages
of the search. It can also be described as follows.

(i) If Δ𝐸 = 𝐸𝑗 − 𝐸𝑖 ≤ 0, then the new state 𝑗 is accepted
and the energy with the displaced atom is used as the starting
point for the next step, where 𝐸 represents the energy of the
atom. Both 𝑖 and 𝑗 are the states of atoms, and 𝑗 is the next
state of 𝑖.

(ii) If Δ𝐸 > 0, then calculate the probability of 𝑃(Δ𝐸) =
exp(−Δ𝐸/𝑘𝑇𝑐), and generate a random number 𝜃, which is
a uniform distribution over (0, 1), where 𝑘 is Boltzmann’s
constant (in general, 𝑘 = 1) and𝑇𝑐 is the current temperature.
If 𝑃(Δ𝐸) > 𝜃, then the new energy will be accepted;
otherwise, the previous energy is used to start the next step.

Analysis 1. The Metropolis criterion states that SA has two
characteristics: (1) SA can probabilistically accept the higher
energy and (2) the acceptance probability of SA decreases
as the temperature decreases. Therefore, SA can reject and
jump out of a local minimumwith a dynamic and decreasing
probability to continue exploiting the other solutions in
the state space. This acceptance mechanism can enrich the
diversity of energy states.

Analysis 2. As shown in (4),𝐹 is used to control the amplitude
of population mutation in BSA, thus 𝐹 is an important factor
for controlling population diversity. If 𝐹 is excessively large,
the diversity of the population will be too high and the
convergence speed of BSA will slow down. If 𝐹 is excessively
small, the diversity of the population will be reduced so it will
be difficult for BSA to obtain the global optimum and it may
be readily trapped by a local optimum. Therefore, adaptively
controlling the amplitude of 𝐹 is a key to accelerating the
convergence speed of the algorithm and maintaining its the
population diversity.

Based on Analyses 1 and 2, it is clear that if 𝐹 can
dynamically decrease, the convergence speed of BSA will be
able to accelerate while maintaining the population diversity.
On the other hand, SA possesses this characteristic that its
acceptance probability can be dynamically reduced. Based
on these two considerations, we propose BSAISA with a
redesigned 𝐹, which is inspired by SA. More specifically, the
new 𝐹 (see (6)) is redesigned by learning the formulation
(𝑃(Δ𝐸)) of acceptance probability, and its formulation has
been shown in the previous subsection.

For the two formulas of the modified 𝐹 and 𝑃(Δ𝐸), the
individual difference (|Δ𝐼𝑖|) of a population or the energy
difference (Δ𝐸) of a system will decrease as the number of
iterations increases in an algorithm, and the temperature of
SA tends to decrease, while the iteration of BSA tends to
increase. As a result, one can observe the correspondence

between modified 𝐹 and 𝑃(Δ𝐸) where the reciprocal of
individual difference (1/|Δ𝐼𝑖|) corresponds to the energy
difference (Δ𝐸) of SA, and the reciprocal of current iteration
(1/𝐺) corresponds to the current temperature (𝑇𝑐) of SA. In
this way, the redesigned 𝐹 can be decreased adaptively as the
number of iterations increases.

3.3. Numerical Analysis of the Modified Amplitude Control
Factor 𝐹. In order to verify that the convergence speed of
the basic BSA is improved with the modified 𝐹, two types
(unimodal and multimodal) of unconstrained benchmark
functions are used to test the changing trends in 𝐹 and pop-
ulation variances and best function values as the iterations
increases, respectively. The two functions are Schwefel 1.2
and Rastrigin, and their detailed information is provided in
[61].The two functions and the user parameters including the
populations (𝑁), dimensions (𝐷), and maximum iterations
(Max) are shown in Table 1. Three groups of test results are
compared in the tests including (1) the comparative curves
of the mean values of the modified 𝐹 and original 𝐹 for
Schwefel 1.2 and Rastrigin, (2) the comparative curves of the
mean values of BSA and BSAISA population variances for
two functions, and (3) the convergence curves of BSA and
BSAISA for two functions. They are depicted in Figures 1, 2,
and 3, respectively. Based on Figures 1–3, two results can be
observed as follows.

(1) According to the trends of F in Figure 1, both the
original F and modified F are subject to changes from the
normal distribution. The mean value of the original F does
not tend to decrease as the number of iterations increases. By
contrast, the mean value of the modified F exhibits a clear
and fluctuating downward trend as the number of iterations
increases.

(2) According to Figure 2, the population variances of
BSAISA and BSA both exhibit a clear downward trend as the
number of iterations increases. The population variances of
BSAISA and BSA are almost same during the early iterations.
This illustrates that the modified F does not reduce the
population diversity in the early iterations. In the middle
and later iterations, the population variances of BSAISA
decrease more quickly than that of BSA. This illustrates that
the modified F improves the convergence speed. As can be
seen from Figure 3, as the number of iterations increases, the
best objective function value of BSAISA drops faster than
that of BSA. This shows that the modified F improves the
convergence speed of BSA. Moreover, BSAISA can find a
more accurate solution at the same computational cost.

Summary. Based on the design principle and numerical
analysis of the modified 𝐹, the modified 𝐹 exhibits an overall
fluctuating and downward trend, which matches with the
concept of the acceptance probability in SA. In particular,
during the early iterations, the modified 𝐹 is relatively
large. This allows BSAISA to search in a wide region, while
maintaining the population diversity of BSAISA. As the
number of iterations decreases, the modified 𝐹 gradually
exhibits a decreasing trend. This accelerates the convergence
speed of BSAISA. In the later iterations, the modified 𝐹 is
relatively small. This enables BSAISA to fully search in the

Computational Intelligence and Neuroscience 5

Table 1: Two benchmark functions and the corresponding populations, dimensions, and max iterations.

Name Objective function Range 𝑁 𝐷 Max

Schwefel 1.2 𝑓 (𝑥) = 𝐷∑
𝑖=1

(𝑖∑
𝑗=1

𝑥𝑗)
2

[−100, 100] 100 30 500

Rastrigin 𝑓 (𝑥) = 𝐷∑
𝑖=1

(𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖) + 10) [−5.12, 5.12] 100 30 500

Note. “𝑁” means populations, “𝐷” means dimensions, and “Max” means maximum iterations.

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

Number of iterations

M
ea

n
va

lu
e o

f F

BSAISA
(a) Modified 𝐹 on Schwefel 1.2

0 100 200 300 400 500
−10

−5

0

5

10

Number of iterations

M
ea

n
va

lu
e o

f F

BSA
(b) Original 𝐹 on Schwefel 1.2

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

Number of iterations

M
ea

n
va

lu
e o

f F

BSAISA
(c) Modified 𝐹 on Rastrigin

0 100 200 300 400 500
−10

−5

0

5

10

Number of iterations

M
ea

n
va

lu
e o

f F

BSA
(d) Original 𝐹 on Rastrigin

Figure 1: Comparisons of modified 𝐹 and original 𝐹 for Schwefel 1.2 and Rastrigin.

6 Computational Intelligence and Neuroscience

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

Number of iterations

M
ea

n
va

lu
e o

f p
op

ul
at

io
n

va
ria

nc
es

BSA
BSAISA

(a) Schwefel 1.2

0 100 200 300 400 500
0

2

4

6

8

10

Number of iterations

M
ea

n
va

lu
e o

f p
op

ul
at

io
n

va
ria

nc
es

BSA
BSAISA

(b) Rastrigin

Figure 2: The mean values of population variances versus number of iterations using BSA and BSAISA for two functions.

0 100 200 300 400 500
0

2

4

6

8

10

Number of iterations

Be
st

fu
nc

tio
n

va
lu

e

BSA
BSAISA

×104

(a) Schwefel 1.2

BSA
BSAISA

0 100 200 300 400 500
0

100

200

300

400

500

Number of iterations

Be
st

fu
nc

tio
n

va
lu

e

(b) Rastrigin

Figure 3: Convergence curves of BSA and BSAISA for two functions.

local region. Therefore, it can be concluded that BSAISA can
adaptively control the amplitude of population mutation to
change its local exploitation capacity. This may improve the
convergence speed of the algorithm. Moreover, the modified𝐹 does not introduce extra parameters, so it does not increase
the sensitivity of BSAISA to the parameters.

3.4. A Self-Adaptive 𝜀-Constrained Method for Handling Con-
straints. In general, a constrained optimization problem can

be mathematically formulated as a minimization problem, as
follows:

min 𝑓 (𝑋)
subject to: 𝑔𝑖 (𝑋) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚,

ℎ𝑗 (𝑋) = 0, 𝑗 = 1, 2, . . . , 𝑛,
(7)

Computational Intelligence and Neuroscience 7

where 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝐷) ∈ 𝑅𝐷 is a 𝐷-dimensional vector,𝑚 is the total number of inequality constraints, and n is the
total number of equality constraints.The equality constraints
are transformed into inequality constraints by using |ℎ𝑗(𝑋)|−𝛿 ≤ 0, where 𝛿 is a very small degree of violation, and𝛿 = 1𝐸 − 4 in this paper. The maximization problems are
transformed into minimization problems using −𝑓(𝑋). The
constraint violation 𝜑(𝑋) is given by

𝜑 (𝑋) = 𝑚∑
𝑖=1

max (0, 𝑔𝑖 (𝑋)) + 𝑛∑
𝑗=1

max (0, ℎ𝑗 (𝑋) − 𝛿) . (8)

Several constraint-handlingmethods have been proposed
previously, where the five most commonly used methods
comprise penalty functions, feasibility and dominance rules

(FAD), stochastic ranking, 𝜀-constrained methods, and mul-
tiobjectives concepts. Among these five methods, the 𝜀-
constrained method is relatively effective and used widely.
Zhang et al. [62] proposed a self-adaptive 𝜀-constrained
method (SA𝜀) to combine with the basic BSA for con-
strained problems. It has been verified that the SA𝜀 has a
stronger search efficiency and convergence than the fixed𝜀-constrained method and FAD. In this paper, the SA𝜀 is
used to combine with BSAISA for constrained optimization
problems, which comprises the following two rules: (1) if
the constraint violations of two solutions are smaller than
a given 𝜀 value or two solutions have the same constraint
violations, the solution with a better objective function value
is preferred and (2) if not, the solution with a smaller
constraint violation is preferred. SA𝜀 could be expressed by
the following equations:

the better one = 𝑓 (𝑋1)
{{{{{{{{{

𝑓(𝑋1) < 𝑓 (𝑋2) , if 𝜑 (𝑋1) , 𝜑 (𝑋2) ≤ 𝜀,
𝑓 (𝑋1) < 𝑓 (𝑋2) , if 𝜑 (𝑋1) = 𝜑 (𝑋2) ,
𝜑 (𝑋1) ≤ 𝜑 (𝑋2) , otherwise,

(9)

where 𝜀 is a positive value that represents a tolerance related
to constraint violation.The self-adaptive 𝜀 value is formulated
as the following equation:

𝜀0 = 𝜑 (𝑃𝜃0) , (10)

𝜀1 (0) = 𝜀0, (11)

𝜀2 (𝑡) = {{{
𝜑(𝑇𝜃𝑡) , if 𝜀0 > Th1,
𝜀0, else, (12)

𝜀1 (𝑡)
= {{{

𝜀2 (𝑡) , if 𝜀2 (𝑡) > Th2, 𝜀2 (𝑡) < 𝜀1 (𝑡 − 1) ,
𝜀1 (𝑡 − 1) , else,

(13)

𝜀 (𝑡) = {{{
𝜀1 (𝑡) (1 − 𝑡𝑇𝑐)

cp , if 𝑡 ≤ 𝑇𝑐
0, else, (14)

where 𝑡 is the number of the current iterations. 𝜑(𝑃𝜃0) is the
constraint violation of the top 𝜃th individual in the initial
population. 𝜑(𝑇𝜃𝑡) is the constraint violation of the top 𝜃th
individual in the trial population at the current iteration. cp
and 𝑇𝑐 are control parameters. Th1 and Th2 are threshold
values. 𝜀𝑡 is related to the iteration 𝑡 and functions 𝜀1(𝑡) and𝜀2(𝑡).

Firstly, 𝜀0 is set as 𝜑(𝑃𝜃0). If the initial value 𝜀0 is bigger
thanTh1, 𝜑(𝑇𝜃𝑡) will be assigned to 𝜀2(𝑡); otherwise 𝜀0 will be
assigned to 𝜀2(𝑡). Then, if 𝜀2(𝑡) < 𝜀1(𝑡 − 1) and 𝜀2(𝑡) is bigger
thanTh2, 𝜀2(𝑡)will be assigned to 𝜀1(𝑡); otherwise 𝜀1(𝑡−1)will
be assigned to 𝜀1(𝑡). Finally, 𝜀𝑡 is updated as (14).The detailed

information of SA𝜀 can be acquired from [62], and the related
parameter settings of SA𝜀 (the same as [62]) are presented in
Table 2.

To illustrate the changing trend of the self-adaptive 𝜀
value vividly, BSAISA with SA𝜀 is used to solve a well-known
benchmark constrained function G10 in [61]. The related
parameters are set as 𝑁 = 30, 𝜃 = 0.3𝑁, cp = 5, 𝑇𝑐 = 2333,
Th1 = 10, and Th2 = 2. The changing trend of 𝜀 value is
shown in Figure 4. Three sampling points, that is, 𝜀(500) =0.6033, 𝜀(1000) = 0.1227, and 𝜀(2000) = 1.194𝐸 − 4, are
marked in Figure 4. As shown in Figure 4, it can be observed
that 𝜀 value declines very fast at first. After it is smaller than
about 2, it declines as an exponential way.This changing trend
of 𝜀 value could help algorithm to sufficiently search infeasible
domains near feasible domains.

The pseudocode for BSAISA is showed in Pseudocode 1.
In Pseudocode 1, the modified adaptive 𝐹 is shown in lines
(14)–(16).WhenBSAISAdeals with constrained optimization
problems, the code in line (8) and line (40) in Pseudocode 1
should consider objective function value and constraint
violation simultaneously, and SA𝜀 is applied to choose a better
solution or best solution in line (42) and lines (47)-(48).

4. Experimental Studies

In this section, two sets of simulation experiments were
executed to evaluate the effectiveness of the proposed
BSAISA. The first experiment set performed on 13 well-
known benchmark constrained functions taken from [63]
(see Appendix A). These thirteen benchmarks contain dif-
ferent properties as shown in Table 3, including the number
of variables (𝐷), objective function types, the feasibility ratio
(𝜌), constraint types and number, and the number of active
constraints in the optimum solution. The second experiment

8 Computational Intelligence and Neuroscience

Table 2: The parameter setting of SA𝜀.
𝑇𝑐 = 0.2 ∗ 𝑇max 𝜃 = 0.3 ∗ 𝑁 cp = 5 Th1 = 10 Th2 = 2
Note. “𝑇max” means the maximum iterations; “𝑁” means populations.

Table 3: Characters of the 13 benchmark functions.

Fun. 𝐷 Type 𝜌 (%) LI NI LE NE Active
g01 13 Quadratic 0.0003 9 0 0 0 6
g02 20 Nonlinear 99.9973 1 1 0 0 1
g03 10 Nonlinear 0.0000 0 0 0 1 1
g04 5 Quadratic 27.0079 0 6 0 0 2
g05 4 Nonlinear 0.0000 2 0 0 3 3
g06 2 Nonlinear 0.0057 0 2 0 0 2
g07 10 Quadratic 0.0003 3 5 0 0 6
g08 2 Nonlinear 0.8581 0 2 0 0 0
g09 7 Nonlinear 0.5199 0 4 0 0 2
g10 8 Linear 0.0020 3 3 0 0 3
g11 2 Quadratic 0.0973 0 0 0 1 1
g12 3 Quadratic 4.7679 0 93 0 0 0
g13 5 Nonlinear 0.0000 0 0 1 2 3
Note. “𝐷” is the number of variables. “𝜌” represents feasibility ratio. “LI,” “NI,” “LE,” and “NE” represent linear inequality, nonlinear inequality, linear equality,
and nonlinear equality, respectively. “Active” represents the number of active constraints at the global optimum.

0 500 1000 1500 2000 2500

X: 500
Y: 0.6033

Iteration

X: 1000
Y: 0.1227

X: 2000
Y: 0.0001194

1010

100

10−10

10−20

va

lu
e

Figure 4: Plot of 𝜀 value with iteration.

is conducted on 5 engineering constrained optimization
problems chosen from [64] (see Appendix B). These five
problems are the three-bar truss design problem (TTP),
pressure vessel design problem (PVP), tension/compression
spring design problem (TCSP), welded beam design problem
(WBP), and speed reducer design problem (SRP), respec-
tively. These engineering problems include objective func-
tions and constraints of various types and natures (quadratic,
cubic, polynomial, and nonlinear) with various number of
design variables (continuous, integer, mixed, and discrete).

The recorded experimental results include the best func-
tion value (Best), the worst function value (Worst), the mean
function value (Mean), the standard deviation (Std), the best

solution (variables of best function value), the corresponding
constraint value, and the number of function evaluations
(FEs).The number of function evaluations can be considered
as a convergence rate or a computational cost.

In order to evaluate the performance of BSAISA in terms
of convergence speed, the FEs are considered as the best FEs
corresponding to the obtained best solution in this paper.
The calculation of FEs are the product of population sizes
(𝑁) and the number of iterations (Ibest) at which the best
function value is first obtained (i.e., FEs = 𝑁 ∗ Ibest). For
example, if 2500 is themaximumnumber of iterations for one
minimization problem, 𝑓(1999) = 0.0126653, 𝑓(2000) =0.0126652, 𝑓(2500) = 𝑓(2000) = 0.0126652, the Ibest
value should be 2000.However, BSAISAneeds to evaluate the
initial historical population (oldP), so its actual FEs should be
plus𝑁 (i.e., FEs = 𝑁 ∗ Ibest + 𝑁).

4.1. Parameter Settings. For the first experiment, the main
parameters for 13 benchmark constrained functions are the
same as the following: population size (𝑁) is set as 30; the
maximum number of iterations (𝑇max) is set as 11665. There-
fore, BSAISA’s maximum number of function evaluations
(MFEs) should equal to 34,9980 (nearly 35,0000). The 13
benchmarks were executed by using 30 independent runs.

For the 5 real-world engineering design problems, we use
slightly different parameter settings since each problem has
different natures, that is, TTP (𝑁 = 20, 𝑇max = 1000), PVP
(𝑁 = 20, 𝑇max = 3000), TCSP (𝑁 = 20, 𝑇max = 3000), WBP
(𝑁 = 20, 𝑇max = 3000), SRP (𝑁 = 20, 𝑇max = 2000). The 6
engineering problems were performed using 50 independent
runs.

The user parameters of all experiments are presented
in Table 4. Termination condition may be the maximum

Computational Intelligence and Neuroscience 9

Input: ObjFun,𝑁,𝐷, max-iteration, mix-rate, low1:𝐷, up1:𝐷
Output: globalminimum, globalminimizer
//rand ∼ 𝑈(0, 1), randn ∼ 𝑁(0, 1), 𝑤 = randint(⋅), randint ∼ 𝑈(⋅) 𝑤 ∈ {1, 2, . . . , ⋅}

(1) function BSAISA(ObjFun, 𝐷,𝑁, max-iteration, low, up) // Initialization
(2) globalminimum = inf
(3) for 𝑖 from 1 to 𝑁 do
(4) for 𝑗 from 1 to 𝐷 do
(5) 𝑃𝑖,𝑗 = rand ⋅ (up𝑗 − low𝑗) + low𝑗 // Initialization of population 𝑃
(6) oldP𝑖,𝑗 = rand ⋅ (up𝑗 − low𝑗) + low𝑗 // Initialization of oldP
(7) end∗(8) fitness𝑃𝑖 = ObjFun(𝑃𝑖) fitnessoldP𝑖 = ObjFun(oldP𝑖) // Initial-fitness values of 𝑃 and oldP
(9) end
(10) for iteration from 1 to max-iteration do // Selection-I
(11) if (𝑎 < 𝑏 | 𝑎, 𝑏 ∼ 𝑈(0, 1)) then oldP fl 𝑃 end
(12) oldP fl permuting(oldP)
(13) Generation of Trail-Population∙(14) Δ𝐼𝑖 = abs(ObjFun(𝑃𝑖) −ObjFun(oldP𝑖)) //Modified F based on SA∙(15) 𝐺 = iteration //Modified F based on SA

∙(16) 𝐹𝑖 ∼ 𝑁(exp(−1/Δ𝐼𝑖1/𝐺) , 1) //Modified F based on SA
(17) 𝑀 = 𝑃 + 𝐹 ⋅ (oldP − 𝑃) // Mutation
(18) map1:𝑁,1:𝐷 = 1 // Initial-map is an𝑁-by-𝐷matrix of ones
(19) if (𝑐 < 𝑑 | 𝑐, 𝑑 ∼ 𝑈(0, 1)) then // Crossover
(20) for 𝑖 from 1 to 𝑁 do
(21) map𝑖,𝑢(1:⌈mix-rate⋅rand⋅𝐷⌉) = 0 | 𝑢 = permuting(1, 2, 3, . . . , 𝐷)
(22) end
(23) else
(24) for 𝑖 from 1 to 𝑁 do, map𝑖,randi(𝐷) = 0, end
(25) end
(26) 𝑇 fl𝑀 //Generation of Trial Population, 𝑇
(27) for 𝑖 from 1 to 𝑁 do
(28) for 𝑗 from 1 to 𝐷 do
(29) if map𝑖,𝑗 = 1 then 𝑇𝑖,𝑗 fl 𝑃𝑖,𝑗
(30) end
(31) end
(32) for 𝑖 from 1 to 𝑁 do
(33) for 𝑗 from 1 to 𝐷 do
(34) if (𝑇𝑖,𝑗 < low𝑖,𝑗) or (𝑇𝑖,𝑗 > up𝑖,𝑗) then
(35) 𝑇𝑖,𝑗 = rand ⋅ (up𝑗 − low𝑗) + low𝑗
(36) end
(37) end
(38) end
(39) end∗(40) fitness 𝑇𝑖 = ObjFun(𝑇𝑗) // Seletion-II
(41) for 𝑖 from 1 to 𝑁 do∗(42) if fitness 𝑇𝑖 < fitness 𝑃𝑖 then
(43) fitness 𝑃𝑖 = fitness 𝑇𝑖
(44) 𝑃𝑖 = 𝑇𝑖
(45) end
(46) end
∗(47) fitness 𝑃best = min(fitness 𝑃) | best ∈ {1, 2, 3, . . . , 𝑁}
∗(48) if fitness 𝑃best < globalminimum then // Export globalminimum and globalminimizer
(49) globalminimum fl fitness 𝑃best
(50) globalminimizer fl 𝑃best
(51) end
(52) end

Pseudocode 1: Pseudocode of BSAISA.

10 Computational Intelligence and Neuroscience

Table 4: User parameters used for all experiments.

Problem G01–G13 TTP PVP TCSP WBP SRP
𝑁 30 20 20 20 20 20𝑇max 11665 1000 3000 3000 3000 2000
Runs 30 50 50 50 50 50
Note. The expression “runs” denotes the number of independent runs.

number of iterations, CPU time, or an allowable tolerance
value between the last result and the best known function
value for most metaheuristics. In this paper, the maximum
number of iterations is considered as termination condition.
All experiments were conducted on a computer with a
Intel(R) Core(TM) i5-4590 CPU@ 3.30GHz and 4GB RAM.

4.2. Simulation on Constrained Benchmark Problems. In this
section, BSAISA and BSA are performed on the 13 bench-
marks simultaneously. Their statistical results obtained from
30 independent runs are listed in Tables 5 and 6, including the
best known function value (Best Known) and the obtained
Best/Mean/Worst/Std values as well as the FEs. The best
known values for all the test problems are derived from [62].
The best known values found by algorithms are highlighted in
bold. From Tables 5 and 6, it can be seen that BSAISA is able
to find the known optimal function values for G01, G04, G05,
G06, G08, G09, G011, G012, and G013; however, BSA fails to
find the best known function value on G09 and G13. For the
rest of the functions, BSAISA obtains the results very close to
the best known function values. Moreover, BSAISA requires
fewer FEs than BSA on G01, G03, G04, G05, G06, G07, G08,
G09, G011, andG012. Although the FEs of BSAISA are slightly
worse than that of BSA for G02, G10, and G13, BSAISA finds
more accurate best function values than BSA for G02, G03,
G07, G09, G10, and G13.

To further compare BSAISA and BSA, the function value
convergence curves of 13 functions that have significant
differences have been plotted, as shown in Figures 5 and 6.
The horizontal axis represents the number of iterations, while
the vertical axis represents the difference of the objective
function value and the best known value. For G02, G04,
G06, G08, G11, and G12, it is obvious that the convergence
speed of BSAISA is faster than that of BSA, and its best
function value is also better than that of BSA. For G01,
G03, G05, G07, G09, G10, and G13, it can be observed that
the objective function values of BSAISA and BSA fluctuate
in the early iterations, and they decrease as the number of
iterations increases during the middle and late stages. This
illustrates that both the algorithms are able to escape the local
optimum under different degrees, and the convergence curve
of BSAISA drops still faster than that of BSA. Therefore, the
experiment results demonstrate that the convergence speed
of the basic BSA is improved with our modified 𝐹.

In order to further verify the competitiveness of BSAISA
in aspect of convergence speed, we compared BSAISA with
some classic and state-of-the-art approaches in terms of best
function value and function evaluations. The best function
value and the corresponding FEs of each algorithm on 13

benchmarks are presented in Table 7, where the optimal
results are in bold on each function. These compared algo-
rithms are listed below:

(1) Stochastic ranking (SR) [63]

(2) Filter simulated annealing (FSA) [65]

(3) Cultured differential evolution (CDE) [66]

(4) Agent based memetic algorithm (AMA) [64]

(5) Modified artificial bee colony (MABC) algorithm [67]

(6) Rough penalty genetic algorithm (RPGA) [68]

(7) BSA combined self-adaptive 𝜀 constrained method
(BSA-SA𝜀) [62].

To compare these algorithms synthetically, a simple
evaluation mechanism is used. It can be explained as the
best function value (Best) is preferred, and the function
evaluations (FEs) are secondary. More specifically, (1) if one
algorithm has a better Best than those of others on a function,
there is no need to consider FEs and the algorithm is superior
to other algorithms on this function. (2) If two or more
algorithms have found the optimal Best on a function, the
algorithm with the lowest FEs is considered as the winner
on the function. (3) Record the number of winners and the
number of the optimal function values for each algorithm
on the set of benchmarks, and then give the sort for all
algorithms.

From Table 7, it can be observed that the rank of these 8
algorithms is as follows: BSAISA, CDE, BSA-SA𝜀,MABC, SR,
RPGA, FSA, and AMA. Among the 13 benchmarks, BSAISA
wins on 6 functions and it is able to find the optimal values
of 10 functions. This is better than all other algorithms, thus
BSAISA ranks the first. The second algorithm CDE performs
better on G02, G07, G09, and G10 than BSAISA but worse
on G01, G03, G08, G11, G12, and G13. BSA-SA𝜀 obtains the
optimal function values of 10 functions but requires more
function evaluations thanBSAISA andCDE, so it should rank
the third. MABC ranks the fourth. It obtains the optimal
function values of 7 functions, which are fewer in number
than those of the former three algorithms. Both SR andRPGA
have found the same number of the optimal function values,
while the former is the winner on G04, so SR is slightly better
than RPGA. As for the last two algorithms, FSA and AMA
just perform well on three functions, while FSA is the winner
on G06, so FSA is slightly better than AMA.

Based on the above comparison, it can be concluded that
BSAISA is effective and competitive in terms of convergence
speed.

4.3. Simulation on Engineering Design Problems. In order to
assess the optimization performance of BSAISA in real-world
engineering constrained optimization problems, 5 well-
known engineering constrained design problems includ-
ing three-bar truss design, pressure vessel design, ten-
sion/compression spring design, welded beam design, and
speed reducer design are considered in the second experi-
ment.

Computational Intelligence and Neuroscience 11

Table 5: The statistical results of BSAISA for 13 constrained benchmarks.

Fun. Known optimal Best Mean Worst Std FEs
G01 −15 −15 −15 −15.000000 8.08𝐸 − 16 84,630
G02 −0.803619 −0.803599 −0.787688 −0.758565 1.14𝐸 − 02 349,500
G03 −1.000500 −1.000498 −1.000481 −1.000441 1.35𝐸 − 05 58,560
G04 −30665.538672 −30665.538672 −30665.538672 −30665.538672 1.09𝐸 − 11 121,650
G05 5126.496714 5126.496714 5126.496714 5126.496714 5.85𝐸 − 13 238,410
G06 −6961.813876 −6961.813876 −6961.813876 −6961.813876 1.85𝐸 − 12 89,550
G07 24.306209 24.307381 24.400881 24.758205 1.02𝐸 − 01 15,060
G08 −0.0958250 −0.0958250 −0.086683 −0.027263 2.37𝐸 − 02 30,930
G09 680.630057 680.630057 680.633025 680.680043 9.11𝐸 − 03 347,760
G10 7049.248021 7049.249056 7081.241789 7326.853581 6.24𝐸 + 01 346,980
G11 0.749900 0.749900 0.749900 0.749900 1.13𝐸 − 16 87,870
G12 −1 −1 −1 −1 0 5430
G13 0.0539415 0.0539415 0.1030000 0.4594033 9.80𝐸 − 02 349,800
Note. “Known optimal” denotes the best known function values in the literatures. “Bold” means the algorithm has found the best known function values. The
same as Table 6.

Table 6: The statistical results of the basic BSA on 13 constrained benchmarks.

Fun. Known optimal Best Mean Worst Std FEs
G01 −15 −15 −15 −15.000000 6.60𝐸 − 16 99,300
G02 −0.803619 −0.803255 −0.792760 −0.749326 9.10𝐸 − 03 344,580
G03 −1.000500 −1.000488 −0.998905 −0.990600 2.66𝐸 − 03 348,960
G04 −30665.538672 −30665.538672 −30665.538672 −30665.538672 1.11𝐸 − 11 272,040
G05 5126.496714 5126.496714 5144.041363 5275.384724 3.99𝐸 + 01 299,220
G06 −6961.813876 −6961.813876 −6961.813876 −6961.813876 1.85𝐸 − 12 111,450
G07 24.306209 24.307607 24.344626 24.399896 1.93𝐸 − 02 347,250
G08 −0.0958250 −0.0958250 −0.0958250 −0.0958250 2.82𝐸 − 17 73,440
G09 680.630057 680.630058 680.630352 680.632400 5.63𝐸 − 04 348,900
G10 7049.248021 7049.278543 7053.573853 7080.192700 7.28𝐸 + 00 340,020
G11 0.749900 0.749900 0.749900 0.749900 1.13𝐸 − 16 113,250
G12 −1 −1 −1 −1 0 13,590
G13 0.0539415 0.0539420 0.1816986 0.5477657 1.50𝐸 − 01 347,400

4.3.1. Three-Bar Truss Design Problem (TTP). The three-
bar truss problem is one of the engineering minimization
test problems for constrained algorithms. The best feasible
solution is obtained by BSAISA at 𝑥 = (0.788675, 0.408248)
with the objective function value 𝑓(𝑥) = 263.895843 using
8940 FEs. The comparison of the best solutions obtained
from BSAISA, BSA, differential evolution with dynamic
stochastic selection (DEDS) [69], hybrid evolutionary algo-
rithm (HEAA) [70], hybrid particle swarm optimizationwith
differential evolution (POS-DE) [71], differential evolution
with level comparison (DELC) [72], andmine blast algorithm
(MBA) [73] is presented in Table 8.Their statistical results are
listed in Table 9.

From Tables 8 and 9, BSAISA, BSA, DEDS, HEAA, PSO-
DE, and DELC all reach the best solution with the corre-
sponding function value equal to 263.895843 except MBA
with 263.895852. However, BSAISA requires the lowest FEs
(only 8940) among all algorithms. Its Std value is better than
BSA, DEDS, HEAA, PSO-DE, andMBA except DELC.These

comparative results indicate that BSAISA outperforms other
algorithms in terms of computational cost and robustness for
this problem.

Figure 7 depicts the convergence curves of BSAISA and
BSA for the three-bar truss design problem, where the value
of 𝐹(𝑥∗) on the vertical axis equals 263.895843. As shown
in Figure 7, BSA achieves the global optimum at about 700
iterations, while BSAISA only reaches the global optimum at
about 400 iterations. It can be concluded that the convergence
speed of BSAISA is faster than that of BSA for this problem.

4.3.2. Pressure Vessel Design Problem (PVP). The pressure
vessel design problemhas a nonlinear objective functionwith
three linear and one nonlinear inequality constraints and
two discrete and two continuous design variables. The values
of the two discrete variables (𝑥1, 𝑥2) should be the integer
multiples of 0.0625. The best feasible solution is obtained by
BSAISA at 𝑥 = (0.8750, 0.4375, 42.0984, 176.6366) with the
objective function value 𝑓(𝑥) = 6059.7143 using 31,960 FEs.

12 Computational Intelligence and Neuroscience

Table 7: Comparison of the best values and FEs obtained by BSAISA and other algorithms.

Alg. BSAISA SR FSA CDE AMA MABC RPGA BSA-SA𝜀
Fun. Best (FEs) Best (FEs) Best (FEs) Best (FEs) Best (FEs) Best (FEs) Best (FEs) Best (FEs)

G01 −15 −15.000 −14.993316 −15.000000 −15.000 −15.000 −15.000 −15.000000
(84,630) (148,200) (205,748) (100,100) (350,000) (350,000) (350,000) (350,000)

G02 −0.8036 −0.8035 −0.7549 −0.8036 −0.8035 −0.8036 −0.8036 −0.8036
(349,500) (217,200) (227,832) (100,100) (350,000) (350,000) (350,000) (350,000)

G03 −1.000498 −1.000 −1.0000015 −0.995413 −1.000 −1.000 −1.000 −1.000498
(58,560) (229,200) (314,938) (100,100) (350,000) (350,000) (350,000) (350,000)

G04 −30665.539 −30665.539 −30665.538 −30665.539 −30665.538 −30665.539 −30665.539 −30665.539
(121,650) (88,200) (86,154) (100,100) (350,000) (350,000) (350,000) (350,000)

G05 5126.497 5126.497 5126.4981 5126.571 5126.512 5126.487 5126.544 5126.497
(238,410) (51,600) (47,661) (100,100) (350,000) (350,000) (350,000) (350,000)

G06 −6961.814 −6961.814 −6961.814 −6961.814 −6961.807 −6961.814 −6961.814 −6961.814
(89,550) (118,000) (44,538) (100,100) (350,000) (350,000) (350,000) (350,000)

G07 24.307 24.307 24.311 24.306 24.315 24.324 24.333 24.306
(15,060) (143,000) (404,501) (100,100) (350,000) (350,000) (350,000) (350,000)

G08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
(30,930) (76,200) (56,476) (100,100) (350,000) (350,000) (350,000) (350,000)

G09 680.630057 680.630 680.63008 680.630057 680.645 680.631 680.631 680.6301
(347,760) (111,400) (324,569) (100,100) (350,000) (350,000) (350,000) (350,000)

G10 7049.249 7054.316 7059.864 7049.248 7281.957 7058.823 7049.861 7049.278
(346,980) (128,400) (243,520) (100,100) (350,000) (350,000) (350,000) (350,000)

G11 0.749900 0.750 0.749999 0.749900 0.750 0.750 0.749 0.749900
(87,870) (11,400) (23,722) (100,100) (350,000) (350,000) (350,000) (350,000)

G12 −1 −1.000000 −1.000000 −1.000000 −1.000 −1.000 NA −1.000000
(5430) (16,400) (59,355) (100,100) (350,000) (350,000) (350,000)

G13 0.0539415 0.053957 0.0539498 0.056180 0.053947 0.757 NA 0.0539415
(349,800) (69,800) (120,268) (100,100) (350,000) (350,000) (350,000)

Nu. 6 + 10 1 + 5 1 + 3 4 + 10 0 + 3 1 + 7 0 + 5 0 + 10
RK 1 5 7 2 8 4 6 3
Note. “NA” means not available. The same as Tables 8, 10, 11, 12, 13, 14, 15, and 17. “RK” represents the comprehensive ranking of each algorithm on the set of
benchmarks. “Nu.” represents the sum of the number of winners and the number of the optimal function values for each algorithm on the set of benchmarks.

Table 8: Comparison of best solutions for the three-bar truss design problem.

Method DEDS HEAA PSO-DE DELC MBA BSA BSAISA
𝑋1 0.788675 0.788680 0.788675 0.788675 0.788675 0.788675 0.788675𝑋2 0.408248 0.408234 0.408248 0.408248 0.408560 0.408248 0.408248𝑔1(𝑋) 1.77𝐸 − 08 NA −5.29𝐸 − 11 NA −5.29𝐸 − 11 −3.23𝐸 − 12 0𝑔2(𝑋) −1.464102 NA −1.463748 NA −1.463748 −1.464102 −1.464102𝑔3(𝑋) −0.535898 NA −0.536252 NA −0.536252 −0.535898 −0.535898𝑓(𝑋) 263.895843 263.895843 263.895843 263.895843 263.895852 263.895843 263.895843

Table 9: Comparison of statistical results for the three-bar truss design problem.

Method Worst Mean Best Std FEs
DEDS 263.895849 263.895843 263.895843 9.7𝐸 − 07 15,000
HEAA 263.896099 263.895865 263.895843 4.9𝐸 − 05 15,000
PSO-DE 263.895843 263.895843 263.895843 4.5𝐸 − 10 17,600
DELC 263.895843 263.895843 263.895843 4.3𝐸 − 14 10,000
MBA 263.915983 263.897996 263.895852 3.93𝐸 − 03 13,280
BSA 263.895845 263.895843 263.895843 2.64𝐸 − 07 13,720
BSAISA 263.895843 263.895843 263.895843 5.75𝐸 − 13 8940

Computational Intelligence and Neuroscience 13

0 2000 4000 6000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

10−2

10−6

10−10

10−14

BSA
BSAISA

(a) Convergence curve on G01

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

100

10−1

10−2

10−3

10−4

10−5

BSA
BSAISA

(b) Convergence curve on G02

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

102

100

10−2

10−4

10−6

BSA
BSAISA

(c) Convergence curve on G03

0 2500 5000 7500 10000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

103

100

10−3

10−6

10−9

10−12

BSA
BSAISA

(d) Convergence curve on G04

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

103

100

10−3

10−6

10−9

10−12

BSA
BSAISA

(e) Convergence curve on G05

0 1000 2000 3000 4000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

104

101

10−2

10−5

10−8

10−11

BSA
BSAISA

(f) Convergence curve on G06

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

102

101

100

10−1

10−2

10−3

BSA
BSAISA

(g) Convergence curve on G07

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

102

10−2

10−6

10−10

10−14

10−18

BSA
BSAISA

(h) Convergence curve on G08

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)
102

100

10−2

10−4

10−6

BSA
BSAISA

(i) Convergence curve on G09

Figure 5: The convergence curves of the first 9 functions by BSAISA and BSA.

For this problem, BSAISA is compared with nine algo-
rithms: BSA, BSA-SA𝜀 [62], DELC, POS-DE, genetic algo-
rithms based on dominance tournament selection (GA-DT)
[73], modified differential evolution (MDE) [74], coevolu-
tionary particle swarm optimization (CPSO) [75], hybrid
particle swarm optimization (HPSO) [76], and artificial bee
colony algorithm (ABC) [77]. The comparison of the best
solutions obtained by BSAISA and other reported algorithms
is presented in Table 10. The statistical results of various
algorithms are listed in Table 11.

As shown Table 10, the obtained solution sets of all
algorithms satisfy the constraints for this problem. BSAISA,
BSA-SA𝜀, ABC,DELC, andHPSOfind the same considerable
good objective function value 6059.7143, which is slightly

worse than MDE’s function value 6059.7143. It is worth
mentioning that MBA’s best solution was obtained at 𝑥 =
(0.7802, 0.3856, 40.4292, 198.4964)with𝑓(𝑥)= 5889.3216 and
the corresponding constraint values equal to 𝑔𝑖(𝑥) = (0, 0,−86.3645, −41.5035) in [78]. Though MBA finds a far better
function value than that of MDE, its obtained variables (i.e.,
0.7802 and 0.3856) are not integermultiples of 0.0625. So they
are not listed in Table 10 to ensure a fair comparison. From
Table 11, except forMDEwith the function value of 6059.7016,
BSAISA offers better function value results compared to
GA-DT, CPSO, ABC, and BSA. Besides that, BSAISA is far
superior to other algorithms in terms of FEs. Unfortunately,
the obtained Std value of BSAISA is relatively poor compared
with others for this problem.

14 Computational Intelligence and Neuroscience

0 3000 6000 9000 12000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

BSA
BSAISA

103

101

10−1

10−3

(a) Convergence curve on G10

0 1000 2000 3000 4000
Number of iterations

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

BSA
BSAISA

10−12

10−16

10−8

100

10−4

(b) Convergence curve on G11

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

0 100 200 300 400 500
Number of iterations

BSA
BSAISA

10−12

10−16

10−8

10−1

10−4

(c) Convergence curve on G12

f
(x

)
−
f
(x

∗
)(
ＦＩ
Ａ
)

BSA
BSAISA

0 3000 6000 9000 12000
Number of iterations

10−8

10−4

10−2

10−6

(d) Convergence curve on G13

Figure 6: The convergence curves of the latter 4 functions by BSAISA and BSA.

Table 10: Comparison of best solutions for the pressure vessel design problem.

Method GA-DT MDE CPSO HPSO DELC ABC BSA-SA𝜀 BSA BSAISA
𝑋1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125
𝑋2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375
𝑋3 42.0974 42.0984 42.0913 42.0984 42.0984 42.0984 42.0984 42.0984 42.0984
𝑋4 176.6540 176.6360 176.7465 176.6366 176.6366 176.6366 176.6366 176.6366 176.6366
𝑔1(𝑋) −2.01𝐸 − 03 0 −1.37𝐸 − 06 NA NA 0 −9.5𝐸 − 10 −3.69𝐸 − 08 0
𝑔2(𝑋) −3.58𝐸 − 02 −0.035881 −3.59𝐸 − 04 NA NA −0.035881 −3.59𝐸 − 2 −0.035881 −0.035881
𝑔3(𝑋) −24.7593 −0.0000 −118.7687 NA NA −0.000226 −1.2𝐸 − 4 −0.095446 0
𝑔4(𝑋) −63.3460 −63.3639 −63.2535 NA NA −63.363 −63.363 −63.2842 −63.3634
𝑓(𝑋) 6059.9463 6059.7017 6061.0777 6059.7143 6059.7143 6059.7143 6059.7143 6059.7150 6059.7143

Computational Intelligence and Neuroscience 15

Table 11: Comparison of statistical results for the pressure vessel design problem.

Method Worst Mean Best Std FEs
GA-DT 6469.3220 6177.2533 6059.9463 130.9297 80,000
MDE 6059.7017 6059.7017 6059.7017 1.0𝐸 − 12 24,000
CPSO 6363.8041 6147.1332 6061.0777 86.45 30,000
HPSO 6288.6770 6099.9323 6059.7143 86.20 81,000
DELC 6059.7143 6059.7143 6059.7143 2.1𝐸 − 11 30,000
PSO-DE 6059.7143 6059.7143 6059.7143 1.0𝐸 − 10 42,100
ABC NA 6245.3081 6059.7147 2.05𝐸 + 02 30,000
BSA-SA𝜀 6116.7804 6074.3682 6059.7143 1.71𝐸 + 01 80,000
BSA 6771.5969 6221.2861 6059.7150 2.03𝐸 + 02 60,000
BSAISA 7198.0054 6418.1935 6059.7143 3.04𝐸 + 02 16,320

0 200 400 600 800 1000
Number of iterations

BSA
BSAISA

10−1

101

10−3

10−5

10−7

F
(x

)
−
F
(x

∗
)(
ＦＩ
Ａ
)

Figure 7: Convergence curves of BSAISA and BSA for the three-bar
truss design problem.

Figure 8 describes the convergence curves of BSAISA
and BSA for the pressure vessel design problem, where the
value of𝐹(𝑥∗) on the vertical axis equals 6059.7143. As shown
in Figure 8, BSAISA is able to find the global optimum at
about 800 iterations and obtains a far more accurate function
value than that of BSA. Moreover, the convergence speed of
BSAISA is much faster than that of BSA.

4.3.3. Tension Compression Spring Design Problem (TCSP).
This design optimization problem has three continuous
variables and four nonlinear inequality constraints. The best
feasible solution is obtained by BSAISA at 𝑥 = (0.051687,
0.356669, 11.291824) with 𝑓(𝑥) = 0.012665 using 9440 FEs.
This problem has been solved by other methods as follows:
GA-DT, MDE, CPSO, HPSO, DEDS, HEAA, DELC, POS-
DE, ABC, MBA, BSA-SA𝜀, and Social Spider Optimization
(SSOC) [79]. The comparison of the best solutions obtained
from various algorithms is presented in Table 12. Their
statistical results are listed in Table 13.

0 600 1200 1800 2400 3000
Number of iterations

BSA
BSAISA

106

104

102

100

10−2

10−4

F
(x

)
−
F
(x

∗
)(
ＦＩ
Ａ
)

Figure 8: Convergence curves of BSAISA and BSA for the pressure
vessel design problem.

From Tables 12 and 13, the vast majority of algorithms
can find the best function value 0.012665 for this problem,
while GA-DT and CPSO fail to find it. With regard to the
computational cost (FEs), BSAISA only requires 9440 FEs
when it reaches the global optimum, which is superior to
all other algorithms except MBA with 7650 FEs. However,
the Worst and Mean and Std values of BSAISA are better
than those of MBA. Consequently, for this problem, it can be
concluded that BSA has the obvious superiority in terms of
FEs over all other algorithms exceptMBA.Moreover, BSAISA
has a stronger robustness when compared with MBA alone.

Figure 9 depicts the convergence curves of BSAISA and
BSA for the tension compression spring design problem,
where the value of 𝐹(𝑥∗) on the vertical axis equals 0.012665.
From Figure 9 it can be observed that both BSAISA and BSA
fall into a local optimum in the early iterations but they are
able to successfully escape from the local optimum. However,
the convergence speed of BSAISA is obviously faster than that
of BSA.

16 Computational Intelligence and Neuroscience

Table 12: Comparison of best solutions for the tension compression spring design problem.

Method 𝑋1 𝑋2 𝑋3 𝑔1(𝑋) 𝑔2(𝑋) 𝑔3(𝑋) 𝑔4(𝑋) 𝑓(𝑋)
GA-DT 0.051989 0.363965 10.890522 −1.3𝐸 − 05 −2.1𝐸 − 05 −4.061338 −0.722698 0.012681
MDE 0.051688 0.356692 11.290483 −0.000000 −0.000000 −4.053734 −0.727747 0.012665
CPSO 0.051728 0.357644 11.244543 −8.45𝐸 − 04 −1.26𝐸 − 05 −4.051300 −0.727090 0.012675
HPSO 0.051706 0.357126 11.265083 NA NA NA NA 0.012665
DEDS 0.051689 0.356718 11.288965 NA NA NA NA 0.012665
HEAA 0.051690 0.356729 11.288294 NA NA NA NA 0.012665
DELC 0.051689 0.356718 11.288966 NA NA NA NA 0.012665
ABC 0.051749 0.358179 11.203763 −0.000000 −0.000000 −4.056663 −0.726713 0.012665
MBA 0.051656 0.35594 11.344665 0 0 −4.052248 −0.728268 0.012665
SSOC 0.051689 0.356718 11.288965 NA NA NA NA 0.012665
BSA-SA𝜀 0.051989 0.356727 11.288425 −7.70𝐸 − 09 −3.30𝐸 − 09 −4.054 −0.728 0.012665
BSA 0.051694 0.356845 11.281488 −1.05𝐸 − 07 −1.77 − 08 −4.054037 −0.727640 0.012665
BSAISA 0.051687 0.356669 11.291824 −6.38𝐸 − 10 −1.53𝐸 − 09 −4.053689 −0.727763 0.012665

Table 13: Comparison of statistical results for the tension compression spring design problem.

Method Worst Mean Best Std FEs
GA-DT 0.012973 0.012742 0.012681 5.90𝐸 − 05 80,000
MDE 0.012674 0.012666 0.012665 2.0𝐸 − 6 24,000
CPSO 0.012924 0.012730 0.012675 5.20𝐸 − 05 23,000
HPSO 0.012719 0.012707 0.012665 1.58𝐸 − 05 81,000
DEDS 0.012738 0.012669 0.012665 1.25𝐸 − 05 24,000
HEAA 0.012665 0.012665 0.012665 1.4𝐸 − 09 24,000
DELC 0.012666 0.012665 0.012665 1.3𝐸 − 07 20,000
PSO-DE 0.012665 0.012665 0.012665 1.2𝐸 − 08 24,950
ABC NA 0.012709 0.012665 0.012813 30,000
MBA 0.012900 0.012713 0.012665 6.30𝐸 − 05 7650
SSOC 0.012868 0.012765 0.012665 9.29𝐸 − 05 25,000
BSA-SA𝜀 0.012666 0.012665 0.012665 1.62𝐸 − 07 80,000
BSA 0.012669 0.012666 0.012665 7.24𝐸 − 07 43,220
BSAISA 0.012668 0.012666 0.012665 4.90𝐸 − 07 9440

0 600 1200 1800 2400 3000
Number of iterations

BSA
BSAISA

10−2

10−3

10−4

10−5

10−6

10−7

F
(x

)
−
F
(x

∗
)(
ＦＩ
Ａ
)

Figure 9: Convergence curves of BSAISA and BSA for the tension
compression spring design problem.

4.3.4. Welded Beam Design Problem (WBP). The welded
beam problem is a minimum cost problem with four con-
tinuous design variables and subject to two linear and five
nonlinear inequality constraints. The best feasible solution is
obtained by BSAISA at 𝑥 = (0.205730, 3.470489, 9.036624,
0.205730) with the objective function value 𝑓(𝑥) = 1.724852
using 29,000 FEs.

For this problem, BSAISA is compared with many well-
known algorithms as follows: GA-DT, MDE, CPSO, HPSO,
DELC, POS-DE, ABC, MBA, BSA, BSA-SA𝜀, and SSOC.The
best solutions obtained from BSAISA and other well-known
algorithms are listed in Table 14. The comparison of their
statistical results is presented in Table 15.

From Tables 14 and 15, except that the constraint value
of PSO is not available, the obtained solution sets of all
algorithms satisfy the constraints for the problem. Most of
algorithms including BSAISA, BSA, BSA-SA𝜀, MDE, HPSO,
DELC, POS-DE, ABC, and SSOC are able to find the best
function value 1.724852, while GA-DT and CPSO and MBA
fail to find it. It should be admitted that DELC is superior

Computational Intelligence and Neuroscience 17

Table 14: Comparison of best solutions for the welded beam design problem.

Method GA-DT MDE CPSO HPSO ABC MBA BSA-SA𝜀 BSA BSAISA
𝑋1(ℎ) 0.205986 0.205730 0.202369 0.205730 0.205730 0.205729 0.205730 0.205730 0.205730𝑋2(𝑙) 3.471328 3.470489 3.544214 3.470489 3.470489 3.470493 3.470489 3.470489 3.470489𝑋3(𝑡) 9.020224 9.036624 9.04821 9.036624 9.036624 9.036626 9.036624 9.036624 9.036624𝑋4(𝑏) 0.206480 0.205730 0.205723 0.205730 0.205730 0.205729 0.205730 0.205730 0.205730𝑔1(𝑋) −0.074092 −0.000335 −12.839796 NA 0.000000 −0.001614 −1.55𝐸 − 10 −5.32𝐸 − 07 0𝑔2(𝑋) −0.266227 −0.000753 −1.247467 NA −0.000002 −0.016911 −4.30𝐸 − 09 −9.02𝐸 − 06 0𝑔3(𝑋) −4.95𝐸 − 04 −0.000000 −1.49𝐸 − 03 NA 0.000000 −2.40𝐸 − 07 −1.55𝐸 − 15 −7.86𝐸 − 12 −5.55𝐸 − 17𝑔4(𝑋) −3.430044 −3.432984 −3.429347 NA −3.432984 −3.432982 −3.4330 −3.432984 −3.432984𝑔5(𝑋) −0.080986 −0.080730 −0.079381 NA −0.080730 −0.080729 −8.07𝐸 − 02 −0.080730 −0.080730𝑔6(𝑋) −0.235514 −0.235540 −0.235536 NA −0.235540 −0.235540 −0.2355 −0.235540 −0.235540𝑔7(𝑋) −58.666440 −0.000882 −11.681355 NA 0.000000 −0.001464 −1.85𝐸 − 10 −1.13𝐸 − 07 −5.46𝐸 − 12𝑓(𝑋) 1.728226 1.724852 1.728024 1.724852 1.724852 1.724853 1.724852 1.724852 1.724852

Table 15: Comparison of statistical results for the welded beam design problem.

Method Worst Mean Best Std FEs
GA-DT 1.993408 1.792654 1.728226 7.47𝐸 − 02 80,000
MDE 1.724854 1.724853 1.724852 NA 24,000
CPSO 1.782143 1.748831 1.728024 1.29𝐸 − 02 24,000
HPSO 1.814295 1.749040 1.724852 4.00𝐸 − 02 81,000
DELC 1.724852 1.724852 1.724852 4.1𝐸 − 13 20,000
PSO-DE 1.724852 1.724852 1.724852 6.7𝐸 − 16 66,600
ABC NA 1.741913 1.724852 3.1𝐸 − 02 30,000
MBA 1.724853 1.724853 1.724853 6.94𝐸 − 19 47,340
SSOC 1.799332 1.746462 1.724852 2.57𝐸 − 2 25,000
BSA-SA𝜀 1.724852 1.724852 1.724852 8.11𝐸 − 10 80,000
BSA 1.724854 1.724852 1.724852 2.35𝐸 − 07 45,480
BSAISA 1.724854 1.724852 1.724852 2.96𝐸 − 07 29,000

to all other algorithms in terms of FEs and robustness for
this problem. On the other hand, except for DELC, MDE,
and SSOC with FEs of 2000, 2400, and 2500, respectively,
BSAISA requires fewer FEs than the remaining algorithms
(excluding algorithms that do not reach the best solution).
When considering the comparison of the Std values for this
problem, MBA exhibits its powerful robustness and BSAISA
performs better than most algorithms except MBA, DELC,
PSO-DE, BSA, and BSA-SA𝜀.

It is worth mentioning that from [74] the Worst, Mean,
Best, and Std value of MDE are given as 1.724854, 1.724853,
1.724852, and 1.0𝐸 − 15, respectively. However, the corre-
sponding values of DELC equal 1.724852, 1.724852, 1.724852,
and 4.1𝐸 − 13, respectively, where its Worst and Mean values
are smaller than those of MDE while its Std is bigger than
those ofMDE. Sowe consider that the Std ofMDE is probably
an error data for this problem, and we replace it with NA in
Table 15.

Figure 10 depicts the convergence curves of BSAISA and
BSA for the welded beam design problem, where the value
of 𝐹(𝑥∗) on the vertical axis equals 1.724852. Figure 10 shows
the convergence speed of BSAISA is faster than that of BSA
remarkably.

4.3.5. Speed Reducer Design Problem (SRP). This speed
reducer design problemhas eleven constraints and six contin-
uous design variables (𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7) and one integer
variable (𝑥3). The best solution obtained from BSAISA is𝑥 = (3.500000, 0.7000000, 17, 7.300000, 7.715320, 3.350215,
5.286654) with 𝑓(𝑥) = 2994.471066 using 15,860 FEs.
The comparison of the best solutions obtained by BSAISA
and other well-known algorithms is given in Table 16. The
statistical results of BSAISA, BSA, MDE, DEDS, HEAA,
DELC, POS-DE, ABC,MBA, and SSOC are listed in Table 17.

As shown in Tables 16 and 17, the obtained solution
sets of all algorithms satisfy the constraints for this prob-
lem. BSAISA, BSA, DEDS, and DELC are able to find the
best function value 2994.471066 while the others do not.
Among the four algorithms, DEDS, DELC, and BSA require
30000, 30000, and 25640 FEs, respectively. However, BSAISA
requires only 15,860 FEs when it reaches the same best
function value. MBA fails to find the best known function
value; thus BSAISA is better than MBA in this problem,
even though MBA has lower FEs. As for the comparison
of the Std, among the four algorithms that achieve the best
known function value, BSAISA is worse than the others.
However, one thing that should bementioned is that themain

18 Computational Intelligence and Neuroscience

Table 16: Comparison of best solutions for the speed reducer design problem.

Method MDE DEDS DELC HEAA POS-DE MBA BSA BSAISA
𝑋1 3.500010 3.500000 3.500000 3.500023 3.500000 3.500000 3.500000 3.500000𝑋2 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000𝑋3 17 17 17 17.000013 17.000000 17.000000 17 17𝑋4 7.300156 7.300000 7.300000 7.300428 7.300000 7.300033 7.300000 7.300000𝑋5 7.800027 7.715320 7.715320 7.715377 7.800000 7.715772 7.715320 7.715320𝑋6 3.350221 3.350215 3.350215 3.350231 3.350215 3.350218 3.350215 3.350215𝑋7 5.286685 5.286654 5.286654 5.286664 5.286683 5.286654 5.286654 5.286654𝑓(𝑋) 2996.356689 2994.471066 2994.471066 2994.499107 2996.348167 2994.482453 2994.471066 2994.471066

Table 17: Comparison of statistical results for the speed reducer design problem.

Method Worst Mean Best Std FEs
MDE 2996.390137 2996.367220 2996.356689 8.2𝐸 − 03 24,000
DEDS 2994.471066 2994.471066 2994.471066 3.58𝐸 − 12 30,000
HEAA 2994.752311 2994.613368 2994.499107 7.0𝐸 − 02 40,000
DELC 2994.471066 2994.471066 2994.471066 1.9𝐸 − 12 30,000
PSO-DE 2996.348204 2996.348174 2996.348167 6.4𝐸 − 06 54,350
ABC NA 2997.058412 2997.058412 0 30,000
MBA 2999.652444 2996.769019 2994.482453 1.56 6300
SSOC 2996.113298 2996.113298 2996.113298 1.34𝐸 − 12 25,000
BSA 2994.471066 2994.471066 2994.471066 9.87𝐸 − 11 25,640
BSAISA 2994.471095 2994.471067 2994.471066 5.40𝐸 − 06 15,860

0 600 1200 1800 2400 3000
Number of iterations

BSA
BSAISA

101

10−1

10−3

10−5

10−7

F
(x

)
−
F
(x

∗
)(
ＦＩ
Ａ
)

Figure 10: Convergence curves of BSAISA and BSA for the welded
beam design problem.

purpose of the experiment is to compare the convergence
speed between BSAISA and other algorithms. From this
point of view, it can be concluded that BSAISA has a better
performance than other algorithms in terms of convergence
speed.

Figure 11 depicts the convergence curves of BSAISA and
BSA for the speed reducer design problem, where the value of

0 400 800 1200 1600 2000
Number of iterations

BSA
BSAISA

104

101

10−2

10−5

10−8

F
(x

)
−
F
(x

∗
)(
ＦＩ
Ａ
)

Figure 11: Convergence curves of BSAISA and BSA for the speed
reducer design problem.

𝐹(𝑥∗) on the vertical axis equals 2994.471066. Figure 11 shows
that the convergence speed of BSAISA is faster than that of
BSA.

4.4. Comparisons Using Sign Test. Sign Test [80] is one of the
most popular statistical methods used to determine whether
two algorithms are significantly different. Recently, Miao et

Computational Intelligence and Neuroscience 19

Table 18: Comparisons between BSAISA and other algorithms in Sign Tests.

BSAISA-methods + ≈ − Total 𝑝 value
SR 11 1 1 13 0.006
FSA 12 0 1 13 0.003
CDE 8 0 5 13 0.581
AMA 13 0 0 13 0.000
MABC 10 2 1 13 0.012
RPGA 11 0 0 11 0.001
BSA-SA𝜀 8 4 1 13 0.039
Note. The columns of “+,” “≈,” and “−” indicate the number of functions where BSAISA performs significantly better than, almost the same as, or significantly
worse than the compared algorithm, respectively. “𝑝 value” denotes the probability value supporting the null hypothesis.

al. [81] utilized Sign Test method to analyze the performances
between their proposed modified algorithm and the original
one. In this paper, the two-tailed Sign Test with a significance
level 0.05 is adopted to test the significant differences between
the results obtained by different algorithms, and the test
results are given inTable 18.The values of Best andFEs are two
most important criterions for the evaluations of algorithms in
our paper; they therefore should be chosen as the objectives
of the Sign Test. The signs “+,” “≈,” and “−” represent,
respectively, the fact that our BSAISA performs significantly
better than, almost the same as, or significantly worse than
the algorithm it is compared to. The null hypothesis herein is
that the performances between BSAISA and one of the others
are not significantly differential.

As shown in Table 18, the 𝑝 values of supporting the null
hypothesis of Sign Test for six pairs of algorithms (BSAISA-
SR, BSAISA-FSA, BSAISA-AMA, BSAISA-MABC, BSAISA-
RPGA, and BSAISA-BSA-SA𝜀) are 0.006, 0.003, 0.000, 0.012,
0.001, and 0.039, respectively, and thereby we can reject
the null hypothesis. This illustrates that the optimization
performance of the proposed BSAISA is significantly better
than those of the six algorithms. The 𝑝 value of BSAISA-
CDE is equal to 0.581, which shows that we cannot reject the
null hypothesis. However, according to the related sign values
(“+,” “≈,” and “−”) from Table 18, BSAISA is slightly worse
than CDE on 5 problems but wins on another 8 problems,
which illustrates that the proposed BSAISA has a relatively
excellent competitiveness comparedwith theCDE.Generally,
the statistical 𝑝 values and sign values validate that BSAISA
has the superiority compared to the other well-known algo-
rithms on the constrained optimization problems.

On the one hand, all experimental results suggest that
the proposed method improves the convergence speed of
BSA. On the other hand, the overall comparative results of
BSAISA and other well-known algorithms demonstrate that
BSAISA ismore effective and competitive for constrained and
engineering optimization problems in terms of convergence
speed.

5. Conclusions and Future Work

In this paper, we proposed a modified version of BSA
inspired by the Metropolis criterion in SA (BSAISA). The
Metropolis criterion may probabilistically accept a higher

energy state and the acceptance probability can decrease as
the temperature decreases, which motivated us to redesign
the amplitude control factor 𝐹 so it can adaptively decrease
as the number of iterations increases. The design principle
and numerical analysis of the redesigned 𝐹 indicate that
the change in 𝐹 could accelerate the convergence speed of
the algorithm by improving the local exploitation capability.
Furthermore, the redesigned 𝐹 does not introduce extra
parameters. We successfully implemented BSAISA to solve
some constrained optimization and engineering design prob-
lems. The experimental results demonstrated that BSAISA
has a faster convergence speed than BSA and it can effi-
ciently balance the capacity for global exploration and local
exploitation. The comparisons of the results obtained by
BSAISA and other well-known algorithms demonstrated that
BSAISA ismore effective and competitive for constrained and
engineering optimization problems in terms of convergence
speed.

This paper suggests that the proposed BSAISA has a
superiority in terms of convergence speed or computational
cost. The downside of the proposed algorithm is, of course,
that its robustness does not show enough superiority. So
our future work is to further research into the robustness of
BSAISA on the basis of current research. Niche technique
is able to effectively maintain population diversity of evolu-
tionary algorithms [82, 83]. How to combine BSAISA with
niche technology to improve robustness of the algorithmmay
deserve to be studied in the future.

Appendix

A. Constrained Benchmark Problems

A.1. Constrained Problem 01

min 𝑓 (𝑥) = 5 4∑
𝑖=1

𝑥𝑖 − 5 4∑
𝑖=1

𝑥2𝑖 − 13∑
𝑖=5

𝑥𝑖
subject to: 𝑔1 (𝑥) = 2𝑥1 + 2𝑥2 + 𝑥10 + 𝑥11 − 10

≤ 0
𝑔2 (𝑥) = 2𝑥1 + 2𝑥3 + 𝑥10 + 𝑥12 − 10
≤ 0

20 Computational Intelligence and Neuroscience

𝑔3 (𝑥) = 2𝑥2 + 2𝑥3 + 𝑥11 + 𝑥12 − 10
≤ 0
𝑔4 (𝑥) = −8𝑥1 + 𝑥10 ≤ 0
𝑔5 (𝑥) = −8𝑥2 + 𝑥11 ≤ 0
𝑔6 (𝑥) = −8𝑥3 + 𝑥13 ≤ 0
𝑔7 (𝑥) = −2𝑥4 − 𝑥5 + 𝑥10 ≤ 0
𝑔8 (𝑥) = −2𝑥6 − 𝑥7 + 𝑥11 ≤ 0
𝑔9 (𝑥) = −2𝑥8 − 𝑥9 + 𝑥12 ≤ 0
0 ≤ 𝑥𝑖 ≤ 1 (𝑖 = 1, . . . , 9)
0 ≤ 𝑥𝑖 ≤ 100 (𝑖 = 10, 11, 12)
0 ≤ 𝑥13 ≤ 1.

(A.1)

A.2. Constrained Problem 02

max 𝑓 (𝑥)

=

∑𝑛𝑖=1 cos4 (𝑥𝑖) − 2∏𝑛𝑖=1cos2 (𝑥𝑖)

√∑𝑛𝑖=1 𝑖𝑥2𝑖

subject to: 𝑔1 (𝑥) = 0.75 − 𝑛∏
𝑖=1

𝑥𝑖 ≤ 0

𝑔2 (𝑥) = 𝑛∑
𝑖=1

𝑥𝑖 − 7.5𝑛 ≤ 0
𝑛 = 20, 0 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, . . . , 𝑛.

(A.2)

A.3. Constrained Problem 03

max 𝑓 (𝑥) = (√𝑛)𝑛 ⋅ 𝑛∏
𝑖=1

𝑥𝑖
subject to: ℎ (𝑥) = 𝑛∑

𝑖=1

𝑥2𝑖 = 0
𝑛 = 10, 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛.

(A.3)

A.4. Constrained Problem 04

min 𝑓 (𝑥)
= 5.3578547𝑥23 + 0.8356891𝑥1𝑥5
+ 37.293239𝑥1 − 40792.141

subject to: 𝑔1 (𝑥)
= 85.334407 + 0.0056858𝑥2𝑥5
+ 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5
− 92 ≤ 0

𝑔2 (𝑥)
= −85.334407 − 0.0056858𝑥2𝑥5
− 0.0006262𝑥1𝑥4 + 0.0022053𝑥3𝑥5

≤ 0
𝑔3 (𝑥)
= 80.51249 + 0.0071317𝑥2𝑥5
+ 0.0029955𝑥1𝑥2 + 0.0021813𝑥23
− 110 ≤ 0

𝑔4 (𝑥)
= −80.51249 − 0.0071317𝑥2𝑥5
− 0.0029955𝑥1𝑥2 − 0.0021813𝑥23
+ 90 ≤ 0

𝑔5 (𝑥)
= 9.300961 + 0.0047026𝑥3𝑥5
+ 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4
− 25 ≤ 0

𝑔6 (𝑥)
= −9.300961 − 0.0047026𝑥3𝑥5
− 0.0012547𝑥1𝑥3 − 0.0019085𝑥3𝑥4
+ 20 ≤ 0

78 ≤ 𝑥1 ≤ 102,
33 ≤ 𝑥2 ≤ 45
27 ≤ 𝑥𝑖 ≤ 45, 𝑖 = 3, 4, 5.

(A.4)

A.5. Constrained Problem 05

min 𝑓 (𝑥)
= 3𝑥1 + 0.000001𝑥31 + 2𝑥2
+ (0.0000023) 𝑥32

Computational Intelligence and Neuroscience 21

subject to: 𝑔1 (𝑥) = −𝑥4 + 𝑥3 − 0.55 ≤ 0
𝑔2 (𝑥) = −𝑥3 + 𝑥4 − 0.55 ≤ 0
ℎ3 (𝑥)
= 1000 sin (−𝑥3 − 0.25)
+ 1000 sin (−𝑥4 − 0.25) + 894.8
− 𝑥1 = 0

ℎ4 (𝑥)
= 1000 sin (𝑥3 − 0.25)
+ 1000 sin (𝑥3 − 𝑥4 − 0.25) + 894.8
− 𝑥2 = 0

ℎ5 (𝑥)
= 1000 sin (𝑥4 − 0.25)
+ 1000 sin (𝑥4 − 𝑥3 − 0.25)
+ 1294.8 = 0

0 ≤ 𝑥1, 𝑥2 ≤ 1200,
− 0.55 ≤ 𝑥3, 𝑥4 ≤ 0.55.

(A.5)

A.6. Constrained Problem 06

min 𝑓 (𝑥) = (𝑥1 − 10)3 + (𝑥2 − 20)3
subject to: 𝑔1 (𝑥) = − (𝑥1 − 5)2 − (𝑥2 − 5)2 + 100

≤ 0
𝑔2 (𝑥) = (𝑥1 − 6)2 + (𝑥2 − 5)2 − 82.81
≤ 0
13 ≤ 𝑥1 ≤ 100,
0 ≤ 𝑥2 ≤ 100.

(A.6)

A.7. Constrained Problem 07

min 𝑓 (𝑥)
= 𝑥21 + 𝑥22 + 𝑥1𝑥2 − 14𝑥1 − 16𝑥2
+ (𝑥3 − 10)2 + 4 (𝑥4 − 5)2
+ (𝑥5 − 3)2 + 2 (𝑥6 − 1)2 + 5𝑥27
+ 7 (𝑥8 − 11)2 + 2 (𝑥9 − 10)2
+ (𝑥10 − 7)2 + 45

subject to: 𝑔1 (𝑥)
= −105 + 4𝑥1 + 5𝑥2 − 3𝑥7 + 9𝑥8 ≤ 0
𝑔2 (𝑥) = 10𝑥1 − 8𝑥2 − 17𝑥7 + 2𝑥8 ≤ 0
𝑔3 (𝑥) = −8𝑥1 + 2𝑥2 + 5𝑥9 − 2𝑥10 − 12
≤ 0
𝑔4 (𝑥)
= 3 (𝑥1 − 2)2 + 4 (𝑥2 − 3)2 + 2𝑥23
− 7𝑥4 − 120 ≤ 0

𝑔5 (𝑥)
= 5𝑥21 + 8𝑥2 + (𝑥3 − 6)2 − 2𝑥4 − 40
≤ 0
𝑔6 (𝑥)
= 𝑥21 + 2 (𝑥2 − 2)2 − 2𝑥1𝑥2 + 14𝑥5
− 6𝑥6 ≤ 0

𝑔7 (𝑥)
= 0.5 (𝑥1 − 8)2 + 2 (𝑥2 − 4)2 + 3𝑥25
− 𝑥6 − 30 ≤ 0

𝑔8 (𝑥)
= −3𝑥1 + 6𝑥2 + 12 (𝑥9 − 8)2 − 7𝑥10
≤ 0
− 10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, . . . , 10.

(A.7)

A.8. Constrained Problem 08

min 𝑓 (𝑥) = − sin3 (2𝜋𝑥1) sin (2𝜋𝑥2)𝑥31 (𝑥1 + 𝑥2)
subject to: 𝑔1 (𝑥) = 𝑥21 − 𝑥2 + 1 ≤ 0

𝑔2 (𝑥) = 1 − 𝑥1 + (𝑥2 − 4)2 ≤ 0
0 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2.

(A.8)

A.9. Constrained Problem 09

min 𝑓 (𝑥)
= (𝑥1 − 10)2 + 5 (𝑥2 − 12)2 + 𝑥43
+ 3 (𝑥4 − 11)2 + 10𝑥65 + 7𝑥26 + 𝑥47
− 4𝑥6𝑥7 − 10𝑥6 − 8𝑥7

22 Computational Intelligence and Neuroscience

subject to: 𝑔1 (𝑥)
= 2𝑥21 + 3𝑥42 + 𝑥3 + 4𝑥24 + 5𝑥5 − 127
≤ 0
𝑔2 (𝑥)
= 7𝑥1 + 3𝑥2 + 10𝑥23 + 𝑥4 − 𝑥5 − 282
≤ 0
𝑔3 (𝑥) = 23𝑥1 + 𝑥22 + 6𝑥26 − 8𝑥7 − 196
≤ 0
𝑔4 (𝑥)
= 4𝑥21 + 𝑥22 − 3𝑥1𝑥2 + 2𝑥23 + 5𝑥6
− 11𝑥7 ≤ 0

− 10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2, 3, 4, 5, 6, 7.
(A.9)

A.10. Constrained Problem 10

min 𝑓 (𝑥) = 𝑥1 + 𝑥2 + 𝑥3
subject to: 𝑔1 (𝑥) = −1 + 0.0025 (𝑥4 + 𝑥6) ≤ 0

𝑔2 (𝑥) = −1 + 0.0025 (𝑥5 + 𝑥7 − 𝑥4)
≤ 0
𝑔3 (𝑥) = −1 + 0.01 (𝑥8 − 𝑥5) ≤ 0
𝑔4 (𝑥)
= −𝑥1𝑥6 + 833.33252𝑥4 + 100𝑥1
− 83333.333 ≤ 0

𝑔5 (𝑥)
= −𝑥2𝑥7 + 1250𝑥5 + 𝑥2𝑥4 − 1250𝑥4
≤ 0
𝑔6 (𝑥)
= −𝑥3𝑥8 + 1250000 + 𝑥3𝑥5 − 2500𝑥5
≤ 0
100 ≤ 𝑥1 ≤ 10000
1000 ≤ 𝑥𝑖 ≤ 10000, 𝑖 = 2, 3
10 ≤ 𝑥𝑖 ≤ 1000, 𝑖 = 4, 5, 6, 7, 8.

(A.10)

A.11. Constrained Problem 11

min 𝑓 (𝑥) = 𝑥21 + (𝑥2 − 1)2
subject to: ℎ (𝑥) = 𝑥2 − 𝑥21 = 0

− 1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2.
(A.11)

A.12. Constrained Problem 12

max 𝑓 (𝑥)
= (100 − (𝑥1 − 5)

2 − (𝑥2 − 5)2 − (𝑥3 − 5)2)2100
subject to: 𝑔 (𝑥)

= (𝑥1 − 𝑝)2 + (𝑥2 − 𝑞)2 + (𝑥3 − 𝑟)2 − 0.0625
≤ 0
𝑝, 𝑞, 𝑟 = 1, . . . , 9,
0 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2, 3.

(A.12)

A.13. Constrained Problem 13

min 𝑓 (𝑥) = 𝑒𝑥1𝑥2𝑥3𝑥4𝑥5
subject to: ℎ1 (𝑥) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 − 10

= 0
ℎ2 (𝑥) = 𝑥2𝑥3 − 5𝑥4𝑥5 = 0
ℎ3 (𝑥) = 𝑥31 + 𝑥32 + 1 = 0
− 2.3 ≤ 𝑥𝑖 ≤ 2.3, 𝑖 = 1, 2
− 3.2 ≤ 𝑥𝑖 ≤ 3.2, 𝑖 = 3, 4, 5.

(A.13)

B. Engineering Design Problems

B.1. Three-Bar Truss Design Problem

min 𝑓 (𝑥) = (2√2𝑥1 + 𝑥2) × 𝑙
subject to: 𝑔1 (𝑥) = √2𝑥1 + 𝑥2√2𝑥21 + 2𝑥1𝑥2 P − 𝜎 ≤ 0

𝑔2 (𝑥) = 𝑥2√2𝑥21 + 2𝑥1𝑥2 P − 𝜎 ≤ 0
𝑔3 (𝑥) = 1√2𝑥2 + 𝑥1 P − 𝜎 ≤ 0
0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2
𝑙 = 100 cm,
P = 2 kN/cm2,
𝜎 = 2 kN/cm2.

(B.1)

Computational Intelligence and Neuroscience 23

B.2. Pressure Vessel Design Problem

min 𝑓 (𝑥)
= 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥23
+ 3.1661𝑥21𝑥4 + 19.84𝑥21𝑥3

subject to: 𝑔1 (𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0
𝑔2 (𝑥) = −𝑥2 + 0.00954𝑥3 ≤ 0
𝑔3 (𝑥)
= −𝜋𝑥23𝑥4 − (43)𝜋𝑥33 + 1296000 ≤ 0
𝑔4 (𝑥) = 𝑥4 − 240 ≤ 0
0 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 1, 2
10 ≤ 𝑥𝑖 ≤ 200, 𝑖 = 3, 4.

(B.2)

B.3. Tension/Compression Spring Design Problem

min 𝑓 (𝑥) = (𝑥3 + 2) 𝑥2𝑥21
subject to: 𝑔1 (𝑥) = −𝑥32𝑥3(71785𝑥41) + 1 ≤ 0

𝑔2 (𝑥)
= (4𝑥22 − 𝑥1𝑥2)(12566 (𝑥2𝑥31 − 𝑥41)) +

1(5108𝑥21)
− 1 ≤ 0

𝑔3 (𝑥) = −140.45𝑥1(𝑥22𝑥3) + 1 ≤ 0
𝑔4 (𝑥) = (𝑥1 + 𝑥2)1.5 − 1 ≤ 0
0.05 ≤ 𝑥1 ≤ 2.00
0.25 ≤ 𝑥2 ≤ 1.30
2.00 ≤ 𝑥3 ≤ 15.00.

(B.3)

B.4. Welded Beam Design Problem

min 𝑓 (𝑥)
= 1.10471𝑥21𝑥2
+ 0.04811𝑥3𝑥4 (14 + 𝑥2)

subject to: 𝑔1 (𝑥) = 𝜏 (𝑥) − 𝜏max ≤ 0
𝑔2 (𝑥) = 𝜎 (𝑥) − 𝜎max ≤ 0

𝑔3 (𝑥) = 𝑥1 − 𝑥4 ≤ 0
𝑔4 (𝑥)
= 0.10471𝑥21 + 0.04811𝑥3𝑥4 (14 + 𝑥2)
− 5 ≤ 0

𝑔5 (𝑥) = 0.125 − 𝑥1 ≤ 0
𝑔6 (𝑥) = 𝛿 (𝑥) − 𝛿max ≤ 0
𝑔7 (𝑥) = 𝑃 − 𝑃𝑐 (𝑥) ≤ 0
0.1 ≤ 𝑥𝑖 ≤ 2, 𝑖 = 1, 4
0.1 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 2, 3,

(B.4)

where

𝜏 (𝑥) = √(𝜏)2 + 2𝜏𝜏 𝑥22𝑅 + (𝜏)2,
𝜏 = 𝑃√2𝑥1𝑥2 , 𝜏

 = 𝑀𝑅𝐽
𝑀 = 𝑃(𝐿 + 𝑥22) ,

𝑅 = √𝑥224 + (𝑥1 + 𝑥32)2,

𝐽 = 2{√2𝑥1𝑥2 [𝑥2212 + (𝑥1 + 𝑥32)2]}
𝜎 (𝑥) = 6𝑃𝐿𝑥4𝑥23 ,

𝛿 (𝑥) = 4𝑃𝐿3𝐸𝑥33𝑥4 ,

𝑃𝑐 (𝑥) = 4.013𝐸√(𝑥
2
3𝑥64/36)𝐿2 × (1 − 𝑥32𝐿√ 𝐸4𝐺)

𝑃 = 6000 lb,
𝐿 = 14 in,
𝐸 = 30 × 106 psi,
𝐺 = 12 × 106 psi

𝜏max = 13600 psi,
𝜎max = 30000 psi,
𝛿max = 0.25 in.

(B.5)

24 Computational Intelligence and Neuroscience

B.5. Speed Reducer Design Problem

min 𝑓 (𝑥)
= 0.7854𝑥1𝑥22 (3.3333𝑥23 + 14.9334𝑥3 − 43.0934)
− 1.508𝑥1 (𝑥26 + 𝑥27) + 7.4777 (𝑥36 + 𝑥37)
+ 0.7854 (𝑥4𝑥26 + 𝑥5𝑥27)

subject to: 𝑔1 (𝑥) = 27𝑥1𝑥22𝑥3 − 1 ≤ 0
𝑔2 (𝑥) = 397.5𝑥1𝑥22𝑥23 − 1 ≤ 0

𝑔3 (𝑥) = 1.93𝑥34𝑥2𝑥46𝑥3 − 1 ≤ 0

𝑔4 (𝑥) = 1.93𝑥35𝑥2𝑥47𝑥3 − 1 ≤ 0

𝑔5 (𝑥) = [(745𝑥4/ (𝑥2𝑥3))
2 + 16.9 × 106]1/2

110𝑥36 − 1
≤ 0

𝑔6 (𝑥) = [(745𝑥5/ (𝑥2𝑥3))
2 + 157.5 × 106]1/2
85𝑥37 − 1

≤ 0
𝑔7 (𝑥) = 𝑥2𝑥340 − 1 ≤ 0
𝑔8 (𝑥) = 5𝑥2𝑥1 − 1 ≤ 0
𝑔9 (𝑥) = 𝑥112𝑥2 − 1 ≤ 0
𝑔10 (𝑥) = 1.5𝑥6 + 1.9𝑥4 − 1 ≤ 0
𝑔11 (𝑥) = 1.1𝑥7 + 1.9𝑥5 − 1 ≤ 0,

(B.6)

where

2.6 ≤ 𝑥1 ≤ 3.6,
0.7 ≤ 𝑥2 ≤ 0.8,
17 ≤ 𝑥3 ≤ 28
7.3 ≤ 𝑥4, 𝑥5 ≤ 8.3,
2.9 ≤ 𝑥6 ≤ 3.9,
5.0 ≤ 𝑥7 ≤ 5.5.

(B.7)

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural Sci-
ence Foundation of China (no. 61663009), and the State Key
Laboratory of Silicate Materials for Architectures (Wuhan
University of Technology, SYSJJ2018-21).

References

[1] P. Posik, W. Huyer, and L. Pal, “A comparison of global search
algorithms for continuous black box optimization,” Evolution-
ary Computation, vol. 20, no. 4, pp. 509–541, 2012.

[2] A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski, and
P. M. Rowinski, “Swarm Intelligence and Evolutionary Algo-
rithms: Performance versus speed,” Information Sciences, vol.
384, pp. 34–85, 2017.

[3] S. Das andA. Konar, “A swarm intelligence approach to the syn-
thesis of two-dimensional IIR filters,” Engineering Applications
of Artificial Intelligence, vol. 20, no. 8, pp. 1086–1096, 2007.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, Perth, Australia, December 1995.

[5] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no.
1, pp. 29–41, 1996.

[6] X. S. Yang and S. Deb, “Cuckoo search via LΘvy flights,” in
Proceedings of the In World Congress on Nature Biologically
Inspired Computing, pp. 210–214, NaBIC, 2009.

[7] D. Karaboga, “An idea based on honey bee swarm for numer-
ical optimization,” Tech. Rep., Erciyes University, Engineering
Faculty, Computer Engineering Department, 2005.

[8] J. Q. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[9] S. M. Elsayed, R. A. Sarker, andD. L. Essam, “Adaptive Configu-
ration of evolutionary algorithms for constrained optimization,”
Applied Mathematics and Computation, vol. 222, pp. 680–711,
2013.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, University ofMichigan Press, Oxford, UK,
1975.

[11] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[12] Z. Hu, Q. Su, X. Yang, and Z. Xiong, “Not guaranteeing
convergence of differential evolution on a class of multimodal
functions,” Applied Soft Computing, vol. 41, pp. 479–487, 2016.

[13] Q. Su and Z. Hu, “Color image quantization algorithm based on
self-adaptive differential Evolution,” Computational Intelligence
and Neuroscience, vol. 2013, Article ID 231916, 8 pages, 2013.

[14] Z. Hu, Q. Su, and X. Xia, “Multiobjective image color quan-
tization algorithm based on self-adaptive hybrid differential
evolution,” Computational Intelligence and Neuroscience, vol.
2016, Article ID 2450431, 12 pages, 2016.

[15] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation
for multi-objective optimization,” Evolutionary Computation,
vol. 15, no. 1, pp. 1–28, 2007.

Computational Intelligence and Neuroscience 25

[16] P. Civicioglu, “Backtracking search optimization algorithm for
numerical optimization problems,” Applied Mathematics and
Computation, vol. 219, no. 15, pp. 8121–8144, 2013.

[17] A. El-Fergany, “Optimal allocation of multi-type distributed
generators using backtracking search optimization algorithm,”
International Journal of Electrical Power & Energy Systems, vol.
64, pp. 1197–1205, 2015.

[18] M. Modiri-Delshad and N. A. Rahim, “Multi-objective back-
tracking search algorithm for economic emission dispatch
problem,” Applied Soft Computing, vol. 40, pp. 479–494, 2016.

[19] S. D. Madasu, M. L. S. S. Kumar, and A. K. Singh, “Comparable
investigation of backtracking search algorithm in automatic
generation control for two area reheat interconnected thermal
power system,” Applied Soft Computing, vol. 55, pp. 197–210,
2017.

[20] J. A. Ali, M. A. Hannan, A. Mohamed, and M. G. M. Abdol-
rasol, “Fuzzy logic speed controller optimization approach for
induction motor drive using backtracking search algorithm,”
Measurement, vol. 78, pp. 49–62, 2016.

[21] M. A. Hannan, J. A. Ali, A. Mohamed, and M. N. Uddin, “A
Random Forest Regression Based Space Vector PWM Inverter
Controller for the Induction Motor Drive,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 4, pp. 2689–2699, 2017.

[22] K. Guney, A. Durmus, and S. Basbug, “Backtracking search
optimization algorithm for synthesis of concentric circular
antenna arrays,” International Journal of Antennas and Propa-
gation, vol. 2014, Article ID 250841, 11 pages, 2014.

[23] R. Muralidharan, V. Athinarayanan, G. K. Mahanti, and A.
Mahanti, “QPSO versus BSA for failure correction of linear
array of mutually coupled parallel dipole antennas with fixed
side lobe level and VSWR,” Advances in Electrical Engineering,
vol. 2014, Article ID 858290, 7 pages, 2014.

[24] M. Eskandari and Ö. Toygar, “Selection of optimized features
and weights on face-iris fusion using distance images,” Com-
puter Vision and Image Understanding, vol. 137, article no. 2225,
pp. 63–75, 2015.

[25] U. H. Atasevar, P. Civicioglu, E. Besdok, and C. Ozkan, “A
new unsupervised change detection approach based on DWT
image fusion and backtracking search optimization algorithm
for optical remote sensing data,” in Proceedings of the ISPRS
Technical Commission VII Mid-Term Symposium 2014, pp. 15–
18, October 2014.

[26] S. K. Agarwal, S. Shah, and R. Kumar, “Classification of mental
tasks from EEG data using backtracking search optimization
based neural classifier,” Neurocomputing, vol. 166, pp. 397–403,
2015.

[27] L. Zhang and D. Zhang, “Evolutionary cost-sensitive extreme
learning machine,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 12, pp. 3045–3060, 2016.

[28] F. Zou, D. Chen, S. Li, R. Lu, andM. Lin, “Community detection
in complex networks: Multi-objective discrete backtracking
search optimization algorithm with decomposition,” Applied
Soft Computing, vol. 53, pp. 285–295, 2017.

[29] C. Zhang, J. Zhou, C. Li, W. Fu, and T. Peng, “A compound
structure of ELM based on feature selection and parameter
optimization using hybrid backtracking search algorithm for
wind speed forecasting,” Energy Conversion and Management,
vol. 143, pp. 360–376, 2017.

[30] C. Lu, L. Gao, X. Li, and P. Chen, “Energy-efficient multi-pass
turning operation using multi-objective backtracking search
algorithm,” Journal of Cleaner Production, vol. 137, pp. 1516–1531,
2016.

[31] M. Akhtar, M. A. Hannan, R. A. Begum, H. Basri, and E.
Scavino, “Backtracking search algorithm in CVRP models for
efficient solid waste collection and route optimization,” Waste
Management, vol. 61, pp. 117–128, 2017.

[32] M. S. Ahmed, A.Mohamed, T. Khatib, H. Shareef, R. Z. Homod,
and J. A. Ali, “Real time optimal schedule controller for home
energy management system using new binary backtracking
search algorithm,” Energy and Buildings, vol. 138, pp. 215–227,
2017.

[33] S. O. Kolawole and H. Duan, “Backtracking search algorithm
for non-aligned thrust optimization for satellite formation,” in
Proceedings of the 11th IEEE International Conference on Control
and Automation (IEEE ICCA ’14), pp. 738–743, June 2014.

[34] Q. Lin, L. Gao, X. Li, and C. Zhang, “A hybrid backtracking
search algorithm for permutation flow-shop scheduling prob-
lem,” Computers & Industrial Engineering, vol. 85, pp. 437–446,
2015.

[35] J. Lin, “Oppositional backtracking search optimization algo-
rithm for parameter identification of hyperchaotic systems,”
Nonlinear Dynamics, vol. 80, no. 1-2, pp. 209–219, 2015.

[36] Q. L. Xu, N. Guo, and L. Xu, “Opposition-based backtracking
search algorithm for numerical optimization problems,” in
Proceedings of the In International Conference on Intelligent
Science and Big Data Engineering, pp. 223–234, 2015.

[37] X. Yuan, B. Ji, Y. Yuan, R. M. Ikram, X. Zhang, and Y. Huang,
“An efficient chaos embedded hybrid approach for hydro-
thermal unit commitment problem,” Energy Conversion and
Management, vol. 91, pp. 225–237, 2015.

[38] X. Yuan, X.Wu, H. Tian, Y. Yuan, and R. M. Adnan, “Parameter
identification of nonlinear muskingum model with backtrack-
ing search algorithm,”Water ResourcesManagement, vol. 30, no.
8, pp. 2767–2783, 2016.

[39] S. Vitayasak and P. Pongcharoen, “Backtracking search algo-
rithm for designing a robustmachine layout,”WITTransactions
on Engineering Sciences, vol. 95, pp. 411–420, 2014.

[40] S. Vitayasak, P. Pongcharoen, and C. Hicks, “A tool for solving
stochastic dynamic facility layout problems with stochastic
demand using either a Genetic Algorithm or modified Back-
tracking Search Algorithm,” International Journal of Production
Economics, vol. 190, pp. 146–157, 2017.

[41] M. Li, H. Zhao, and X. Weng, “Backtracking search optimiza-
tion algorithmwith comprehensive learning strategy,” Journal of
Systems Engineering and Electronics, vol. 37, no. 4, pp. 958–963,
2015 (Chinese).

[42] W. Zhao, L. Wang, Y. Yin, B. Wang, and Y. Wei, “An improved
backtracking search algorithm for constrained optimization
problems,” in Proceedings of the International Conference on
Knowledge Science, Engineering and Management, pp. 222–233,
Springer International Publishing, 2014.

[43] L. Wang, Y. Zhong, Y. Yin, W. Zhao, B. Wang, and Y. Xu,
“A hybrid backtracking search optimization algorithm with
differential evolution,” Mathematical Problems in Engineering,
vol. 2015, Article ID 769245, p. 16, 2015.

[44] S. Das, D. Mandal, R. Kar, and S. P. Ghoshal, “Interference sup-
pression of linear antenna arrays with combined Backtracking
Search Algorithm and Differential Evolution,” in Proceedings of
the 3rd International Conference on Communication and Signal
Processing (ICCSP ’14), pp. 162–166, April 2014.

[45] S. Das, D. Mandal, R. Kar, and S. P. Ghoshal, “A new hybridized
backscattering search optimization algorithm with differential
evolution for sidelobe suppression of uniformly excited con-
centric circular antenna arrays,” International Journal of RF and

26 Computational Intelligence and Neuroscience

Microwave Computer-Aided Engineering, vol. 25, no. 3, pp. 262–
268, 2015.

[46] S. Mallick, R. Kar, D. Mandal, and S. P. Ghoshal, “CMOS
analogue amplifier circuits optimisation using hybrid back-
tracking search algorithm with differential evolution,” Journal
of Experimental and Theoretical Artificial Intelligence, pp. 1–31,
2015.

[47] D. Chen, F. Zou, R. Lu, and P. Wang, “Learning backtracking
search optimisation algorithm and its application,” Information
Sciences, vol. 376, pp. 71–94, 2017.

[48] A. F. Ali, “A memetic backtracking search optimization algo-
rithm for economic dispatch problem,” Egyptian Computer
Science Journal, vol. 39, no. 2, pp. 56–71, 2015.

[49] Y. Wu, Q. Tang, L. Zhang, and X. He, “Solving stochastic two-
sided assembly line balancing problem via hybrid backtracking
search optimization algorithm,” Journal of Wuhan University of
Science and Technology (Natural Science Edition), vol. 39, no. 2,
pp. 121–127, 2016 (Chinese).

[50] Z. Su, H. Wang, and P. Yao, “A hybrid backtracking search
optimization algorithm for nonlinear optimal control problems
with complex dynamic constraints,” Neurocomputing, vol. 186,
pp. 182–194, 2016.

[51] S. Wang, X. Da, M. Li, and T. Han, “Adaptive backtrack-
ing search optimization algorithm with pattern search for
numerical optimization,” Journal of Systems Engineering and
Electronics, vol. 27, no. 2, Article ID 7514428, pp. 395–406, 2016.

[52] H. Duan and Q. Luo, “Adaptive backtracking search algorithm
for induction magnetometer optimization,” IEEE Transactions
on Magnetics, vol. 50, no. 12, pp. 1–6, 2014.

[53] X. J. Wang, S. Y. Liu, and W. K. Tian, “Improved backtracking
search optimization algorithm with new effective mutation
scale factor and greedy crossover strategy,” Journal of Computer
Applications, vol. 34, no. 9, pp. 2543–2546, 2014 (Chinese).

[54] W. K. Tian, S. Y. Liu, and X. J. Wang, “Study and improvement
of backtracking search optimization algorithm based on differ-
ential evolution,”Application Research of Computers, vol. 32, no.
6, pp. 1653–1662, 2015.

[55] A. Askarzadeh and L. dos Santos Coelho, “A backtracking
search algorithm combined with Burger’s chaotic map for
parameter estimation of PEMFC electrochemical model,” Inter-
national Journal of Hydrogen Energy, vol. 39, pp. 11165–11174,
2014.

[56] X. Chen, S. Y. Liu, and Y.Wang, “Emergency resources schedul-
ing based on improved backtracking search optimization algo-
rithm,” Computer Applications and Software, vol. 32, no. 12, pp.
235–238, 2015 (Chinese).

[57] S. Nama, A. K. Saha, and S. Ghosh, “Improved backtracking
search algorithm for pseudo dynamic active earth pressure on
retaining wall supporting c-Φ backfill,”Applied Soft Computing,
vol. 52, pp. 885–897, 2017.

[58] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter
Control in Evolutionary Algorithms: Trends and Challenges,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 2,
pp. 167–187, 2015.

[59] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of state calculations by fast
computing machines,” The Journal of Chemical Physics, vol. 21,
no. 6, pp. 1087–1092, 1953.

[60] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[61] D. Karaboga and B. Akay, “A comparative study of artificial Bee
colony algorithm,” Applied Mathematics and Computation, vol.
214, no. 1, pp. 108–132, 2009.

[62] C. Zhang, Q. Lin, L. Gao, and X. Li, “Backtracking Search Algo-
rithm with three constraint handling methods for constrained
optimization problems,” Expert Systems with Applications, vol.
42, no. 21, pp. 7831–7845, 2015.

[63] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained
evolutionary optimization,” IEEE Transactions on Evolutionary
Computation, vol. 4, no. 3, pp. 284–294, 2000.

[64] A. S. B. Ullah, R. Sarker, D. Cornforth, and C. Lokan, “AMA: A
new approach for solving constrained real-valued optimization
problems,” Soft Computing, vol. 13, no. 8-9, pp. 741–762, 2009.

[65] A. R.Hedar andM. Fukushima, “Derivative-free filter simulated
annealing method for constrained continuous global optimiza-
tion,” Journal of Global Optimization, vol. 35, no. 4, pp. 521–549,
2006.

[66] R. L. Becerra and C. A. Coello, “Cultured differential evolu-
tion for constrained optimization,” Computer Methods Applied
Mechanics and Engineering, vol. 195, no. 33–36, pp. 4303–4322,
2006.

[67] D. Karaboga and B. Akay, “A modified Artificial Bee Colony
(ABC) algorithm for constrained optimization problems,”
Applied Soft Computing, vol. 11, no. 3, pp. 3021–3031, 2011.

[68] C.-H. Lin, “A rough penalty genetic algorithm for constrained
optimization,” Information Sciences, vol. 241, pp. 119–137, 2013.

[69] M. Zhang, W. Luo, and X. Wang, “Differential evolution with
dynamic stochastic selection for constrained optimization,”
Information Sciences, vol. 178, no. 15, pp. 3043–3074, 2008.

[70] Y. Wang, Z. X. Cai, Y. R. Zhou, and Z. Fan, “Constrained
optimization based on hybrid evolutionary algorithm and
adaptive constraint-handling technique,” Structural and Multi-
disciplinary Optimization, vol. 37, no. 4, pp. 395–413, 2009.

[71] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm opti-
mization with differential evolution for constrained numerical
and engineering optimization,” Applied Soft Computing, vol. 10,
no. 2, pp. 629–640, 2010.

[72] L. Wang and L.-P. Li, “An effective differential evolution with
level comparison for constrained engineering design,” Struc-
tural andMultidisciplinary Optimization, vol. 41, no. 6, pp. 947–
963, 2010.

[73] C. A. C. Coello and E. M. Montes, “Constraint-handling
in genetic algorithms through the use of dominance-based
tournament selection,” Advanced Engineering Informatics, vol.
16, no. 3, pp. 193–203, 2002.

[74] E. Mezura-Montes, C. A. C. Coello, and J. Vela’zquez-Reyes,
“Increasing successful offspring and diversity in differential
evolution for engineering design,” in Proceedings of the Seventh
International Conference on Adaptive Computing in Design and
Manufacture (ACDM ’06), pp. 131–139, 2006.

[75] Q. He and L. Wang, “An effective co-evolutionary particle
swarm optimization for constrained engineering design prob-
lems,” Engineering Applications of Artificial Intelligence, vol. 20,
no. 1, pp. 89–99, 2007.

[76] Q. He and L.Wang, “A hybrid particle swarm optimization with
a feasibility-based rule for constrained optimization,” Applied
Mathematics and Computation, vol. 186, no. 2, pp. 1407–1422,
2007.

[77] B. Akay and D. Karaboga, “Artificial bee colony algorithm
for large-scale problems and engineering design optimization,”
Journal of IntelligentManufacturing, vol. 23, no. 4, pp. 1001–1014,
2012.

Computational Intelligence and Neuroscience 27

[78] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi,
“Mine blast algorithm: a new population based algorithm
for solving constrained engineering optimization problems,”
Applied Soft Computing, vol. 13, no. 5, pp. 2592–2612, 2013.

[79] E. Cuevas and M. Cienfuegos, “A new algorithm inspired in
the behavior of the social-spider for constrained optimization,”
Expert Systems with Applications, vol. 41, no. 2, pp. 412–425,
2014.

[80] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelli-
gence algorithms,” Swarm and Evolutionary Computation, vol.
1, no. 1, pp. 3–18, 2011.

[81] Y. Miao, Q. Su, Z. Hu, and X. Xia, “Modified differential
evolution algorithm with onlooker bee operator for mixed
discrete-continuous optimization,” SpringerPlus, vol. 5, no. 1,
article no. 1914, 2016.

[82] E. L. Yu and P. N. Suganthan, “Ensemble of niching algorithms,”
Information Sciences, vol. 180, no. 15, pp. 2815–2833, 2010.

[83] M. Li, D. Lin, and J. Kou, “A hybrid niching PSO enhanced with
recombination-replacement crowding strategy for multimodal
function optimization,” Applied Soft Computing, vol. 12, no. 3,
pp. 975–987, 2012.

