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Abstract

Recent advancements in computational power, machine learning, and artificial intelligence technology have
enabled automated evaluation of medical images to generate quantitative diagnostic and prognostic biomarkers.
Such objective biomarkers are readily available and have the potential to improve personalized treatment, precision
medicine, and patient selection for clinical trials. In this article, we explore the merits of the most recent addition to
the “-omics” concept for the broader field of head and neck cancer – “Radiomics”. This review discusses radiomics
studies focused on (molecular) characterization, classification, prognostication and treatment guidance for head and
neck squamous cell carcinomas (HNSCC). We review the underlying hypothesis, general concept and typical
workflow of radiomic analysis, and elaborate on current and future challenges to be addressed before routine
clinical application.
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Background
Structural and functional imaging provide data that are
integral for diagnosis, treatment response evaluation,
and surveillance in patients with head and neck squa-
mous cell carcinoma (HNSCC). The large amount of
volumetric bioimaging information amassed in institu-
tional archives constitutes an extensive database amen-
able to high-throughput, quantitative image analysis.
Radiomics refers to automated extraction of high-
dimensional sets of quantitative descriptors (“radiomic
features”) from medical images (e.g. CT, MRI, PET etc.)
for development of novel diagnostic and prognostic bio-
markers. Machine learning (ML) algorithms and artificial
intelligence (AI) are best suited for analysis of radiomics

high-dimensional data. Radiomics provides fast, low-cost
and non-invasive, yet comprehensive tissue and organ
characterization, as features are extracted directly from
(pre-processed) standard-of-care medical images. The
generated features offer information complementary to
traditional clinical predictors in numerous applications,
which may help advance cancer care towards personal-
ized precision medicine. Numerous recent radiomics
studies have focused on classification, characterization,
prognostication, and treatment guidance of HNSCC.
Paired with key clinical predictors, radiomic analysis

can capture a large variety of HNSCC properties [1], en-
abling the predictive models to more accurately reflect
the spatial, metabolic, and morphological heterogeneity
of primary tumor lesions and metastatic lymph nodes.
This review aims to provide an overview of recently pub-
lished HNSCC radiomics studies focusing on (molecular)
characterization, classification, prognostication and treat-
ment guidance. The general principle of radio(geno)mic
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analysis and the typical radiomics workflow are intro-
duced. We also discuss the applications of advanced ma-
chine learning for radiomics-based modelling. Finally, we
summarize future challenges, barriers and limitations of
individual radiomic applications, as well as the field of
head and neck radiomics in general.

Radiomics
Over the last decade, advancements in high-throughput
computing and machine learning algorithms have led to
emergence of the “-omics” concept – referring to the
collective characterization and quantification of pools of
biologic information, such as genomics, proteomics or
metabolomics. Radiomics refers to automated extraction
of mathematically defined, numerical descriptors
(“radiomics features”) from 2-dimensional – or more
commonly – 3-dimensional medical images and subse-
quent application of data mining and analysis tech-
niques. Over the past few years, there has been an
increasing interest in application of radiomics in patients
with HNSCC for prediction of molecular biomarkers,
prognostication, and treatment response.
Radiomics features commonly describe shape, intensity

(histogram) and texture characteristics. These features
can be extracted from different imaging modalities, such
as CT, MRI, or metabolic imaging like 18- fludeoxyglu-
cose positron emission tomography (FDG-PET). The
notion that certain characteristics of medical images –
which are not reliably assessed by human visual inspec-
tion – can provide medically meaningful information for
diagnostic and prognostic purposes as well as treatment
guidance is the underlying hypothesis in the emerging
field of radiomics [2]. Prior studies showed that radio-
mics features represent biological characteristics of the
tissue such as cellularity, heterogeneity, and necrosis [3];
and frequently exhibit correlation with diagnostic and
outcome variables [2]. Furthermore, certain features can
be reflective of molecular and genetic characteristics of
malignant tissue. The subfield of Radiogenomics focuses
on the identification and scientific exploitation of rela-
tionships between quantitative bioimaging features and
genomic characteristics of the tumor [4]. It is worth not-
ing that radiomics analysis captures information from
the whole volume of interest (VOI), and therefore may
act as a quantitative descriptor of tumor spatial hetero-
geneity, whereas the diagnostic validity of localized tools
like tissue sampling may be degraded in heterogeneous
tumors [3, 5].

Radiomics workflow
Despite not being part of the radiomics workflow in a
narrower sense, image acquisition is often considered
the first step in radiomics analysis. Radiomics feature ro-
bustness and reproducibility against variation in scan

acquisition protocols have been extensively investigated
across imaging modalities and in various settings [6], in-
cluding test-retest assessments [7–9], studies designed to
evaluate the impact of scanner types/manufacturers
using phantoms [10, 11], reconstruction algorithms
/slice thickness [12, 13], and motion artifacts [14]. Tra-
verso et al. [6] conducted a systematic review of 41 stud-
ies investigating the reproducibility and stability of
radiomics features in phantoms and different cancers –
including lung, HNSCC, and esophageal cancer – and
found that only three studies investigated radiomics re-
producibility in HNSCC. Bagher-Ebadian et al. [15] in-
vestigated the impact of smoothing and noise on CT
and cone beam CT textural features and reported gen-
eral feature robustness against low-power Gaussian noise
and low pass filtering, whereas a high-pass filter signifi-
cantly impacted textural features. Bogowicz et al. [16]
focused on feature stability regarding CT perfusion cal-
culation factors. Finally, Lu et al. [17] studied the effect
of seven different segmentation methods and 5 forms of
fixed-bin SUV-discretization on PET radiomic features,
reporting 50 and 23% of 88 tested features were robust
to FDG-PET segmentation and discretization, respect-
ively (with robustness ascertained by an intraclass correl-
ation coefficient ≥ 0.8). While there is as yet no
consensus regarding stable radiomic feature sets, it is
crucial to assess stability of radiomic features in each
study – especially for generalization of findings and fu-
ture comparison.
The next step in the radiomics workflow involves the

delineation (“segmentation”) of the target area/volume in
medical images, resulting in image sub-sections referred
to as regions of interest (ROI) and volumes of interest
(VOI) in 2- and 3-dimensional images, respectively.
Manual and (semi-) automated segmentation have both
been applied in recent radiomics studies, each with its
inherent advantages and drawbacks. Manual segmenta-
tion is affected by observer variability; several studies in-
vestigated the inter- and intra-rater reproducibility of
CT and PET radiomic features extracted from repeated
manual segmentations of lung cancer lesions [8, 18, 19].
Lu et al. [17] assessed feature stability across manual
and various automated segmentation techniques applied
to oropharyngeal cancer lesions on PET scans and
showed that 50% of features extracted from 18-FDG-
PET achieved an intraclass correlation coefficient ≥ 0.8,
which was considered sufficiently reproducible. Across
all studies, individual radiomic features were found to
exhibit varying degrees of robustness against observer
variability, suggesting stability measures may be appro-
priated for feature dimensionality reduction. A multitude
of (semi) automated segmentation methods have been
proposed or adapted for Radiomics purposes [20]. An
in-depth discussion of the various algorithmic
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approaches is beyond the scope of this review; however,
reproducibility and observer variability are certainly a
minor concern with (semi-) automated approaches. On
the other hand, fully automated segmentation can only be
“as good as” the expert-generated ground truth data used
for development and may be impaired by artifacts, pres-
ence of multiple pathologic findings and other abnormal-
ities not considered in the development process. The
resulting imprecisions in segmentations will undoubtedly
affect the quality and usefulness of extracted radiomic fea-
tures, warranting thorough human validation.
Image pre-processing is usually applied as the next step

following segmentation: Resampling voxels to uniform sizes
is often necessary due to the heterogeneity of the available
imaging data, originating from different scanners and re-
construction protocols. Additionally, resampling to iso-
tropic voxels (i.e. voxel with identical edge lengths) should
be considered as it guarantees rotational invariance of tex-
ture features [21]. While CT imaging uses a “real-valued”
grey scale (the Hounsfield unit scale is an absolute repre-
sentation of physical density), other imaging modalities re-
quire gray scale homogenization to facilitate inter-patient
comparability of radiomic features; for example, PET scan-
ners measure radioactivity concentrations [MBq/mL] which
directly depend on the amount of injected radiotracer and
patient weight [22]. To compensate for variability, the stan-
dardized uptake value (SUV) is calculated for each voxel as
a relative measure of radiotracer uptake in clinical practice
as well as radiomics studies [17, 19, 23–25]. MRI grey scales
are expressed in arbitrary units unique to the hardware and
reconstruction method used. Presence of heterogeneous
image acquisition variables in an MRI dataset always neces-
sitates image normalization before radiomic feature extrac-
tion [26–28]. Notably, in addition to the original image,
radiomic features are often extracted from transformed or
filtered images. A multitude of studies applied wavelet-
decompositions to extract texture features from different
frequency bands of the original image [7, 18, 24, 25, 29, 30].
Smoothing filters (e.g. Gaussian filters) or combined filters
(e.g. Gaussian smoothing followed by Laplacian for edge
enhancement) have also been implemented by some studies
[20, 30–32].
Radiomic feature extraction represents the last step of

common radiomics pipelines. Zwanenburg et al. pub-
lished “The image biomarker standardisation initiative”
(IBSI), which is the most recent attempt to standardize
image pre-processing and radiomics feature sets across
the field [21]. In brief, IBSI defines 11 feature families,
assessing geometric aspects of the ROI/VOI shape,
quantifying the grey scale intensity (distribution), and le-
sion texture. Feature extraction is usually performed by
dedicated software in a fully automated fashion. Recent
studies extracted their feature sets from original images
and several derivatives thereof – generated by filtering,

resampling and transformation. This approach com-
monly yields feature vectors in the magnitude of hun-
dreds to several thousand data points per segmented
ROI/VOI.
Both open source- and in house-developed feature li-

braries and radiomics extraction software have been uti-
lized in recent radiomics studies. Two commonly used
open-source solutions for radiomics feature extraction
are the “Imaging Biomarker Explorer (IBEX)” [33], and
“PyRadiomics” [34]. They represent adaptable, configur-
able platforms for image preprocessing and feature ex-
traction and were applied in recent HNSCC radiomics
studies (for example IBEX in refs [31, 35], .PyRadiomics
in refs [36, 37].). The considerable methodological vari-
ability in HNSCC-related radiomics studies heralds the
need for devising evidence-based consensus radiomics
pipelines to improve reproducibility and generalizability.
Fig. 1 summarizes the essential steps in common radio-
mics pipelines.

Machine learning analysis of radiomics features
Radiomics pipelines extract high-dimensional, quantita-
tive feature sets from medical images [2]. This bioimage-
based information is most helpful when combined with
clinical variables, serum markers, and other conventional
prognostic biomarkers, creating the need for efficient
analysis and development of predictive models based on
high-dimensional data. Machine learning (ML) methods
have proven to be statistically powerful tools for taking
on such challenges [2, 38].
ML refers to a series of statistical algorithms driving

their functionality from labelled or unlabeled training data,
rather than applying predefined sets of rules and functions
[38]. This property is ideal in the setting of radiomics re-
search, where extensive numbers of bioimaging features
are extracted, to predict molecular biomarkers, histo-
pathological characteristics, clinical outcome, or treatment
response [2].
To limit overfitting and augment generalizability, ML

studies are ideally based on training, validation, and in-
dependent/external testing in separate datasets [38]. The
training and validation datasets are used to iteratively fit
the ML model (training data), assess its performance
(validation data) and optimize model parameters (“tun-
ing of hyperparameters”) [38]. Alternatively, cross valid-
ation may be applied to fit/assess/tune the model based
on random subdivision and iterative rounds of training
and validation [20]. The independent/external test co-
hort will be kept fully isolated from the model develop-
ment process and is used to test the final ML model and
confirm its performance and generalizability [20, 38].
Typically, in radiomics studies, a data dimensionality

reduction strategy is combined with a ML classification
or regression algorithm [20]. Dimensionality reduction
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usually aims to exclude redundant and unstable features
and rank-orders the remaining features according to their
predictive association with the target outcome. Then, ML
algorithms combine the most predictive features into a
meaningful, predictive model [20]. The model is next ap-
plied to the validation set, where its performance is
assessed [38]. The process is iteratively repeated and
hyperparameters are adjusted throughout [38].
In a study exploring the importance of feature selec-

tion in radiomics analysis, Parmar et al. [29] compared
different combinations of 13 feature selection methods
and 11 ML classifiers to predict overall survival based on
a set of 440 radiomic features extracted from 231
HNSCC primary tumor lesions in contrast-enhanced CT
images. Using multifactor analysis of variance (ANOVA)
on the receiver operating characteristics (ROC) area
under the curve (AUC), they assessed the effect of three
ML framework variables (feature selection methods,
classification methods, number of selected features).
They found that while ML classification methods
accounted for 29.02% of the total variance in classifica-
tion accuracy, the feature selection methods explained
14.02%, and the interaction of classifier and feature se-
lection explained 16.59%. These findings highlight the
importance of selecting the appropriate combination of
feature selection and ML models, for example by testing
various combinations of algorithms with high perform-
ance in prior studies.
In the field of head and neck cancer radiomics, classifi-

cation and (survival) regression models are frequently

applied for prediction of molecular markers, identifica-
tion of genomic signatures, diagnostic differentiation of
suspected tissue, survival prognostication, and prediction
of treatment response. Increasing numbers of publicly
available mega-data and open-source machine-learning
algorithms have paved the road for development of
novel multivariate diagnostic and prognostic biomarkers
integrating quantitative radiomics features and clinical
variables for risk stratification, outcome prediction, and
precision treatment planning in HNSCC.

Radiomics signatures of HNSCC molecular markers
Multiple recent radiomics studies reported the associa-
tions of bioimaging features with various molecular
HNSCC traits, such as human papillomavirus (HPV) sta-
tus, somatic mutations, methylation and gene expression
subtypes and PD-L1 expression levels. Among all inves-
tigated HNSCC molecular traits, HPV has been evalu-
ated the most:

Human papillomavirus status
The incidence of HPV-associated oropharyngeal SCC
(OPSCC) has been rising in recent decades [39, 40]. The
prevalence of HPV-associated forms among OPSCC in
North America has increased from 50.7% before 2000, to
69.7% in the period from 2005 through 2010 [41]. HPV-
positivity is a strong, independent prognostic factor for
favorable outcome and overall survival (OS) in patients
with OPSCC [42, 43]. HPV association in HNSCC is
associated with distinct tumor morphology (smaller

Fig. 1 Typical radiomics workflow pipeline
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primary tumors, marked cervical adenopathy at presen-
tation), younger patients’ age at presentation, and favor-
able response to radiation therapy [43]. Consequently,
the latest release of the American Joint Committee on
Cancer (AJCC), and Union for International Cancer Con-
trol (UICC) staging manuals have classified HPV-
mediated OPSCC as a distinct tumor entity with different
staging rules from the OPSCC-negative form [44, 45]. In
addition, recent studies suggest that HPV association may
analogously impact OS in non-oropharyngeal forms of the
HNSSC [46, 47].
Since 2015, multiple studies have demonstrated the as-

sociation of radiomic features with HPV status in HNSC
C: While Buch et al. [48] and Fujita et al. [49] examined
the association of individual texture features with HPV
status, other groups have designed machine learning
classification models for HPV prediction in HNSCC.
Table 1 summarizes prior work in this field.
Of note, some studies did not report the details of the

HPV test used for ground truth labeling [48, 49, 53, 54, 57],
and some used p16 immunohistochemical surrogate testing

to consequently predict p16 status [59]. Many studies eval-
uated their models’ generalizability in independent confirm-
ation cohorts and confirmed similar performance as
compared to the training datasets [50–52, 54, 56]. While
the majority of studies to date have applied CT-based
radiomics for HPV classification, Vallieres et al. [60] re-
ported their preliminary results based on radiomics features
from FDG-PET scans in 67 patients with HNSCC. In
addition, quantitative diffusion MRI studies have shown the
difference in apparent diffusion coefficient values between
HPV-positive and HPV-negative OPSCC [61–63]; however,
there has yet been no report of MR-based radiomics signa-
tures for prediction of HPV status.
A potential application of radiomics-based biomarkers

for HPV status would be to aid pathologists if standard p16
immunohistochemical staining is equivocal or to supple-
ment the immunohistochemical tests in subjects requiring
second-line testing. For routine clinical HPV-testing, the
2018 Guideline from the College of American Pathologists
recommends p16 immunohistochemistry as a surrogate
marker for HPV-association on samples from the primary

Table 1 Prediction of HPV status based on radiomics features of HNSCC tumors

Authors, year Sample size, cancer
type

Ground truth Imaging
modality

ML classifier Metric: maximum
performance a

Bogowicz et al. 2017
[50]

Train: 93, HNSCC
Test: 56, HNSCC

p16 Contrast CT Logistic regression Test-AUC: 0.78

Buch et al. 2015 [48] Total: 40, OPSCC Not reported Contrast CT n/a b n/a b

Fujita et al. 2016 [49] Total: 46: non-OPSCC Not reported Contrast CT n/a b n/a b

Huang et al. 2019
[51]

Train: 113, HNSCC
Test: 53, HNSCC

Train: HPV
RNA c

Test: p16

Contrast CT LASSO-regularized logistic
regression

Nested CV-AUC: 0.73
Test-AUC: 0.76

Leijenaar et al. 2018
[52]

Train: 628, OPSCC
Test:150, OPSCC

p16 Contrast CT LASSO-regularized logistic
regression

Test-AUC: 0.70–0.80 d

Mungai et al. 2019
[53]

Total: 50, OPSCC Not reported Contrast CT Logistic regression n/a e

Parmar et al. 2015
[54]

Train: 136, OPSCC and
LSCC
Test:95, OPSCC

Not reported Contrast CT Logistic regression Test-AUC: 0.60

Ranjbar et al. 2018
[55]

Total: 107, OPSCC HPV DNA-ISH Contrast CT Diagonal quadratic discriminant
analysis

LOOCV-AUC: 0.80

Yu et al.
2017 [56]

Train: 150, OPSCC
Test:165, OPSCC

p16 Contrast CT Logistic regression CV-AUC: 0.75
test-AUC 1 f: 0.87
test-AUC 2 f: 0.92

Zhu et al.
2018 [57]

Total: 126, HNSCC Not reported Contrast CT Random forest CV-AUC: 0.71

a The reported performance pertains to pure imaging feature-based HPV classification (i.e. models with clinical features were not considered)
b A t-test was used to evaluate differences in texture parameters between HPV-positive and HPV-negative cases
c The VirusSeq-software was used to detect strain-specific HPV RNA sequences in whole-transcriptome sequencing data [51, 58]
d This study evaluated the impact of CT artifacts on the HPV classification performance. A test set AUC performance of 0.8 was achieved after exclusion of all
artifact-affected cases from both the training- and test set. The test AUC ranged between 0.70 and 0.80 for all evaluated dataset combinations, including those
with artifacts, and was not significantly different for all tested models
e The logistic regression model was trained and tested on the same dataset without feature selection or cross validation, which is prone to overfitting, and
overestimation of classification accuracy
f Study reports results of winning submission of radiomics competition, wherein 165 test cases were split into two test sets
AUC Area under the receiver operating characteristics curve, CV Cross validation (of total set or training dataset), DNA-ISH DNA in situ hybridization, HNSCC Head
and neck SCC, LOOCV Leave one out cross validation of total set, LSCC Laryngeal SCC, OPSCC Oropharyngeal SCC, Test Independent test dataset, Total Only one
dataset used, Train Training dataset
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tumor or cervical level II or III nodal metastases. However,
they recommend using HPV-specific testing – such as in
situ hybridization for HPV DNA – in certain p16-positive
cervical nodes or multisite primary tumors [59]. In such
cases, radiomics-based biomarkers may be an inexpensive
substitute confirmatory test for HPV status.
In addition, radiomics signatures for HPV classifica-

tion may serves as a prognostic biomarker in patients
with OPSCC. Leijenaar et al. [52] used contrast-
enhanced CT radiomic features from OPSCC primary
tumors (628 subjects for training and 150 for validation)
to devise a radiomic biomarker for HPV status. Using
Kaplan-Maier survival analysis, they showed that both
p16 (as a surrogate for HPV), and the radiomics-based
classifier could differentiate low- versus high-risk pa-
tients in survival curve analysis. Future studies will likely
explore the role of other imaging modalities such as
MRI or FDG-PET as well as state-of-the-art ML classi-
fiers to enhance classification performance. There is also
a potential role for application of radiomics to detect
HPV-association of metastatic nodes in carcinoma of
unknow primary that may direct search for the tumor
origin to the oropharynx.

Radiomics biomarkers of HNSCC molecular subtypes
beyond HPV status
Several recent studies have proposed novel radiomics
biomarkers for prediction of HNSCC molecular features
and subtypes, aside from HPV status.
Zwirner et al. [64] hypothesized that frequently mutated

HNSCC driver genes may correlate with radiomics fea-
tures known to quantify intra-tumor heterogeneity. The
analysis was thus focused on three radiomics features ini-
tially described by Aerts et al. [18]. A total of 20 patients
with locally advanced SCC of the oral cavity, oropharynx
or hypopharynx were recruited for a prospective study by
[64]; next-generation tumor sequencing and radiomics
analysis of corresponding non-contrast radiotherapy plan-
ning CTs was performed. The presence of mutations in
known driver genes (TP53, FAT1 and KMT2D) were cor-
related with each of the three selected radiomics features;
and showed significant association of all three tested
radiomics features with FAT1 [64]. The authors suggested
that these findings are likely related to lower heterogeneity
in FAT1-mutated HNSCC tumors.
Huang et al. [51] studied a series of molecular HNSCC

“phenotypes”: five DNA methylation subtypes, four pre-
viously identified HNSCC gene expression subtypes
(transcriptomics-based [65]) and five common somatic
gene mutations. DNA methylation aberrations were ex-
plored using the MethylMix algorithm [66], followed by
consensus clustering for subtyping. Contrary to Zwirner
et al. [64], Huang et al. used a large radiomics feature set
comprised of 540 individual features extracted from pre-

treatment contrast-enhanced CT scans of 113 patients
[51]. Feature selection and LASSO-penalized logistic re-
gression were applied in nested cross validation. Multi-
class classification was facilitated using a “one-vs-all” ap-
proach (i.e. binary classifiers were trained to predict any
given class against all others). The machine learning clas-
sifiers yielded moderate to good predictive performance in
identification of the HNSCC molecular phenotypes, even
exceeding models based on clinical variables only.
In a cohort of 126 HNSCC patients, Zhu et al. [57] ex-

amined the correlation of radiomic features extracted
from contrast-enhanced CT-images with whole-genome
multiomics data (microRNA expression, somatic muta-
tions, transcriptional activity of pathways, copy number
variations and promoter region DNA methylation
changes of pathways). They identified over 5000 signifi-
cant associations, suggesting widespread association of
genomic markers and radiomic features from various
feature families. Additionally, Zhu et al. trained random
forest classifiers in 5-fold cross validation to predict
HPV status (Table 1) and disruptive TP53 mutation sta-
tus, with the most predictive model yielding an AUC of
0.641 (averaged across 30 cross validation repetitions).
In 2016, nivolumab and pembrolizumab were FDA-

approved for treatment of recurrent or metastatic squa-
mous cell carcinoma of the head and neck with disease
progression on or after a platinum-based therapy [67]. Ex-
pression of programmed cell death protein 1 ligand (PD-
L1) is the single factor that is most strongly correlated
with response to PD-1 blockers like nivolumab or pem-
brolizumab [68]. Since overall response rates to these
agents are low, ranging from 13 to 18% [69, 70], quantifi-
cation of PD-L1 expression by immunohistochemical
staining has been applied to identify patients who are
more likely to respond [71, 72]. Extracting textural fea-
tures from the PET-portions of staging FDG-PET/CT
scans, Chen et al. [73] reported significant association of
several radiomics features with PD-L1 expression in 53
patients with oropharyngeal and hypopharyngeal SCC.
Multivariate logistic regression analysis revealed one
FDG-PET radiomics feature as an independent predictor
for PD-L1 expression (PD-L1 staining cutoff of 5%) [73].
Thus far, exploratory studies show associations of CT-

and FDG-PET-derived radiomic imaging features with
genomic, transcriptomic and proteomic characteristics
of HNSCC, suggesting that future “multiomic” investiga-
tions of HNSCC should incorporate radiomics-based
biomarkers. Additional imaging modalities as well as
molecular targets are the focus of future investigations.

Prediction of recurrence, treatment response, and survival
in HNSCC
Despite major efforts in treatment and drug develop-
ment, prognosis of HNSCC is generally poor, with five-
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year survival rates in Europe ranging from 25% in hypo-
pharyngeal cancer to 59% for cancers of the larynx [74–76].
Additionally, the majority of patients with HNSCC presents
with advanced-stage disease [76, 77].
More accurate risk stratification, treatment response

prediction and prognostication may help clinicians to se-
lectively plan treatment options, guide treatment inten-
sity and ultimately tailor personalized cancer care for
their patients. This notion triggered interest among
scientists, making outcome prediction by means of
bioimaging-features the most popular field within head
and neck radiomics.
Table 2 summarizes recent studies focusing on prediction

of survival, locoregional recurrence, distant metastasis, pro-
gression or treatment failure as well as several composite
outcome endpoints. One study used radiomics for predic-
tion of early response to induction chemotherapy [27]; an-
other predicted response to chemoradiotherapy [28] – both
in nasopharyngeal carcinoma. Oropharyngeal SCC, laryn-
geal SCC, hypopharyngeal SCC, nasopharyngeal cancer and
combined HNSCC cohorts were investigated from 2013
through 2019, with a marked range in terms of cohort size:
While exploratory studies used as few as 30 cases [92],
others gathered expansive datasets. For example: 240 and
204 contrast CTs were used for model training and testing,
respectively, by Zhai et al. study [93], reporting significantly
better prognostic performance of a combined model (radio-
mics + clinical predictors) as compared to a clinical-
variables-only model for disease-free survival in HNSCC.
Using 542 oropharyngeal SCC cases from Canada, Leije-
naar et al. [87] externally validated a radiomics signature
previously devised by Aerts et al. [18] on 422 non-small cell
lung cancer contrast-enhanced CTs, which showed signifi-
cant prognostic differentiation in Kaplan-Meier overall sur-
vival analysis in all sub-cohorts. A similarly large dataset of
pre-treatment contrast-enhanced CT scans (465 oropha-
ryngeal SCC cases) was analyzed by the Head and Neck
Quantitative Imaging Working Group of M.D. Anderson
Cancer Center [31]; whose proposed 2-feature-signature
could robustly discriminate between the high- versus low-
recurrence probability groups. Individual radiomics fea-
tures, radiomic signatures/scores (e.g. (linear) combinations
of several features [18, 27, 31, 94]) as well as ML-generated
models [29, 30, 95] showed significant predictive value in a
multitude of HNSCC settings, including various HNSCC
sub-entities, and outcomes (Table 2).
The complimentary value of radiomics analysis in

addition to conventional “clinical” predictors has been
emphasized by several groups [18, 93, 96]. However,
using multi-institutional and multi-national dataset of
726 pre-treatment contrast CT scans and 686 FDG-PET
scans, Ger et al. [35] were unable to improve HNSCC
overall survival prediction using multivariate Cox pro-
portional hazard models incorporating only two and one

radiomic features in separate CT-based and FDG-PET-
based analysis, respectively. These findings suggest more
complex analysis strategies may help improve predictive
performance. Leger et al. [30] applied 11 ML algorithms
combined with 12 feature selection methods in a proof-
of-technology study and identified several promising
combinations which may be applied in future time-to-
event modelling. Combining large HNSCC cohorts with
advanced ML analysis may eventually enable radiomics
to more consistently improve prognostic models.
Contrast-enhanced and non-contrast CT, (contrast-en-

hanced) T1 and T2 MRI sequences and FDG-PET imaging
were all applied for radiomics based outcome prediction
(Table 2) as well as some less common imaging techniques
including diffusion-weighted MRI [28], 18F-fluorothymidine-
PET [92], and perfusion CT [80]. Studies listed in Table 2 ap-
plied different analytical strategies, such as using single fea-
ture, feature combinations (“signatures”, “scores”) or more
complex combined models; such analytical heterogeneity
limits direct comparison of studies [97], and cannot be fully
reflected in Table 2. The majority of studies, however, ap-
plied multivariate Cox proportional hazard models, the re-
sults of which are summarized in the table. The performance
of radiomics, clinical or combined models with regards to
the respective outcome(s) prediction is expressed in the Cox-
model hazard ratio, and the concordance index typically re-
flects the overall accuracy of models in survival prediction.

Detection of extra-nodal extension of metastasis
Extra-nodal extension (ENE) of metastasis in cervical
lymph nodes is a poor prognostic factor and is associ-
ated with higher risk of developing recurrent disease
[98–101]. Thus, the presence of ENE warrants addition
of chemotherapy to adjuvant irradiation [98–101], re-
quiring tri-modality treatment with increased toxicity
and patient morbidity [102, 103]. Reliable detection of
ENE prior to the therapy, could help guide treatment
choices, reduce morbidity, and avoid surgery in patients
likely requiring adjuvant chemoradiation. In clinical
practice, ENE is ascertained by pathology review after
neck dissection, whereas radiographical identification re-
mains challenging [104, 105]. Kann et al. developed
[106] and validated [107] quantitative imaging tools for
pre-operative detection of ENE: the group segmented
653 nodes in total (380 negative, 153 without ENE and
120 nodes with ENE) on contrast-enhanced CT scans
and extracted 99 radiomic features [106]. Random forest
ML classifiers were trained and yielded an AUC (95%
confidence interval) of 0.88 (0.81–0.95) for the detection
of ENE and 0.91 (0.86–0.97) for nodal metastasis detec-
tion in an independent test set of 131 lymph nodes;
whereas – being the methodological focus of the study –
a deep neural network yielded an AUC performance of
0.91 (0.85–0.97) and 0.91 (0.86–0.96) for ENE and
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metastasis detection, respectively [106]. The deep neural
network model generalized well to an external test set,
outperforming radiologists in ENE classification [107].
Of note [106, 107], there was no significant difference

in performance of deep neural networks (exploratory
radiomics) over (preset conventional) radiomic analysis
in detection of ENE. They highlight the potential quanti-
tative imaging may possess for augmenting radiologist
performance and guiding HNSCC treatment.

Predicting post chemoradiotherapy complications
Radiotherapy combined with chemotherapy (chemora-
diotherapy, CRT) is the mainstay treatment regimen for
many patients with HNSCC [101]. However, patients
not uncommonly suffer from treatment-related side ef-
fects such as xerostomia, trismus, hearing loss, mucositis
and dermatitis. Identification of those patients who are
at risk of developing specific side effects may guide on-
cologists to plan personalized treatment strategies and
adopt preventive remedies to improve therapy tolerance.
Several groups have devised radiomics biomarkers to
predict the occurrence or severity of treatment-related
toxicities based on bioimaging features of at-risk organs.

Xerostomia
Radiation-induced xerostomia is a common side effect
of radiation therapy for HNSCC and remains a challenge
in long-term patient management [108, 109]. The dose-
dependent increased risk of xerostomia after irradiation
of the salivary glands is well established [109]. Four sep-
arate groups designed radiomics-based models to predict
post-radiation xerostomia in patients with HNSCC with
or without concurrent chemotherapy (Table 3). Imaging
features were extracted from salivary glands – either the
parotid gland(s) or parotid glands and submandibular
glands. A heterogeneous set of xerostomia endpoints was
investigated: Sheikh et al. [110] predicted a binary
xerostomia-endpoint 3 month post radiotherapy; Liu et al.
[111] applied regression analysis for acute xerostomia pre-
diction; and van Dijk et al. [112–114] used three different
imaging modalities (CT, MRI, FDG-PET) for long-term
binary xerostomia outcome classification. Furthermore,
the xerostomia assessment methods varied: Liu et al. used
objective saliva amount measurements over 5min [111],
whereas other groups used patients-filled questionnaires
[112–114]. While these results appear promising, their
clinical application is limited by the lack of external
validation, heterogeneity in image processing, statistical
analysis, and treatment outcome measures.

Trismus
Trismus in HNSCC patients may result from involve-
ment of masticatory muscles in radiotherapy treatment
fields, surgery or cancerous invasion into mastication

structures or the neural innervation of masticatory mus-
cles [117, 118]. Defining trismus ≥ Grade 1 by CTCAE
v4.0 (Common Terminology Criteria for Adverse Events
Version 4.0 [115]) criteria 1 year following completion
of intensity-modulated radiotherapy (IMRT), Thor et al.
[119] compared 24 imaging features from four mastica-
tory muscles on contrast-enhanced post-treatment T1-
weighted MRI scans in 10 patients with radiation-
induced trismus, versus 10 control subjects. The best
discriminative ability among radiomics predictors was
observed for the Haralick Correlation GLCM-matrix fea-
ture of the medial pterygoid muscle VOI (logistic regres-
sion p = 0.12, AUC = 0.78). Their result was not
significant, but may be indicative of a potential of radio-
mics biomarkers for prediction of post-radiation trismus.
Studies in larger cohorts may be the focus of future re-
search, to devise radiomics signature predictive of post-
radiotherapy trismus.

Hearing loss
Abdollahi et al. [120] explored the potential application of
cochlear radiomics for prediction of chemoradiotherapy-
induced hearing loss. Using radiomics features extracted
from the cochlea on pre-treatment CT scans, they evalu-
ated 47 cancer patients (brain, nasopharynx, parotid, other)
treated with 3-dimensional conformal radiation therapy, 23
of whom also received cisplatin-chemotherapy. They
showed that combination of radiomic features with clinical
and dosimetric variables may predict radiotherapy-induced
sensory neural hearing loss.

Future directions, challenges and barriers
The next leap forward in radiomic analysis undoubtedly
lies in developing decision support and prognostic tools
for day-to-day clinical usage. However, several key bar-
riers and challenges in the field of quantitative imaging
should be addressed first:
While exploratory radiomics studies have achieved

promising results throughout, independent large-scale
validation is lagging [121, 122]. A recent publication by
Kim et al. [122] reported on design characteristics of 516
studies applying AI algorithms for diagnostic analysis of
medical images. Only 31 studies (6%) have validated
their proposed models in external test cohorts – i.e. co-
horts from institutions other than the one providing the
training data, as well as cohorts obtained from the same
institution but a different time period as the training
data. On the other hand, usage of homogenous, single-
institution or even single-scanner training data may limit
the generalizability of radiomics-based models [121].
These limitations highlight the importance of multi-
institutional, multi-national medical imaging archives for
development of radiomics tools for future clinical usage.
Data sharing may help mitigate the shortage of diverse
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imaging data [2]; hence, platforms like “The Cancer Im-
aging Archive” (TCIA) were created. TCIA publicly hosts
de-identified imaging collections with corresponding
clinical data and provides digital infrastructure for data
sharing [123]. As of December 2019, nine head and neck
cancer collections are available comprising CT, MRI and
FDG-PET imaging data [123].
Further challenges lie in the implementation of the

radiomics pipeline (including image acquisition) as out-
lined in this article. Forghani et al. [1] described sources
of variation impairing generalizability and reproducibility
of radiomics studies, including:

� Scan acquisition parameters
� Variability in post-contrast images – such as the de-

gree of enhancement achieved, depending on timing
of a contrast agent administration, patients’ circula-
tory dynamics, anatomical location of the VOI

� Wear and tear of scanners
� Differences in manufacturer, model, type of scanner
� Reconstruction parameters
� VOI/ROI segmentation
� Radiomics feature set / feature extraction

Preprocessing steps like resampling and filtering
(Fig. 1) may help mitigate some variation. However,
standardization of reconstruction and acquisition param-
eters across providers as well as scanner components
among manufacturers should be pursued as the field
moves towards clinical application of AI-driven image
analysis.
Inter- and intra-observer VOI/ROI delineation vari-

ability could be addressed by using semi-automated or
automated segmentation tools. In addition, there have
been efforts to standardize radiomics features – the most
recognized being the “The image biomarker standardisa-
tion initiative” (IBSI) [21]. Moreover, open-source fea-
ture libraries and radiomics extraction software packages
like “PyRadiomics” [34], or the “Imaging Biomarker Ex-
plorer” [33] allow for reproducible feature extraction as
well as easy reporting of radiomics feature definitions
and are increasingly adopted by recent publications.

Conclusions
Precision prognostication and treatment personalization
is considered the next major evolution in cancer care,
and the “-omics”-concept has been postulated as key en-
abler thereof. Numerous studies have established radio-
mics as powerful addition to the “-omics”-toolbox, and
ongoing research provides incremental upgrades. Radio-
mics has indeed revolutionized the landscape of quanti-
tative imaging research: In the future, fast, low-cost and
comprehensive tumor and tissue characterization facili-
tated by radiomic analysis may constitute a compelling

augmentation – or even alternative – for traditional
clinical testing and prognostication, if adequate perform-
ance and stability is attained. Numerous studies in the
past 6 years have reported potential applications of
radiomics analysis for molecular classification, prognos-
tic characterization, and treatment response prediction
in patients with HNSCC. While recent exploratory stud-
ies yield promising results in the field of HNSCC radio-
mics, independent large-scale validation is lagging
behind as access to multi-institutional, multi-national
imaging data is restricted. Standardization of radiomics
pipelines, image acquisition protocols, and outcome tar-
gets can pave the road towards engineering of radiomics
tools for day to day clinical usage, and ultimately super-
ior outcomes and reduced treatment-related toxicities in
the field of head and neck cancer.
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