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Abstract
The rearrangement of anaplastic lymphoma kinase (ALK) occurs in 3%- 5% of patients 
with non– small cell lung cancer (NSCLC) and confers sensitivity to ALK– tyrosine 
kinase inhibitors (TKIs). For the treatment of patients with ALK- rearranged NSCLC, 
various additional ALK- TKIs have been developed. Ceritinib is a second- generation 
ALK- TKI and has shown great efficacy in the treatment of patients with both newly 
diagnosed and crizotinib (a first- generation ALK- TKI)- refractory ALK- rearranged 
NSCLC. However, tumors can also develop ceritinib resistance. This may result from 
secondary ALK mutations, but other mechanisms responsible for this have not been 
fully elucidated. In this study, we explored the mechanisms of ceritinib resistance 
by establishing ceritinib- resistant, echinoderm microtubule- associated protein- like 
4 (EML4)- ALK– positive H3122 cells and ceritinib- resistant patient- derived cells. 
We identified a mechanism of ceritinib resistance induced by bypass signals that is 
mediated by the overexpression and activation of fibroblast growth factor receptor 3 
(FGFR3). FGFR3 knockdown by small hairpin RNA or treatment with FGFR inhibitors 
was found to resensitize the resistant cells to ceritinib in vitro and in vivo. FGFR ligands 
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1  |  INTRODUC TION

Worldwide, approximately 1.8 million people die of lung cancer 
annually. This makes it the leading cause of cancer deaths.1 As se-
quencing technologies have developed, multiple oncogenic driver 
mutations and genetic alterations in patients with lung cancer have 
been identified. Among these is anaplastic lymphoma kinase (ALK) 
rearrangement, which occurs in 3%- 5% of those with lung adenocar-
cinoma.2 ALK rearrangement is most frequently seen in the echino-
derm microtubule- associated protein- like 4 (EML4)- ALK fusion gene 
of individuals with non– small cell lung cancer (NSCLC). As this was 
first identified in 2007, numerous other ALK fusion genes with var-
ious fusion partners have been identified in patients with lung can-
cer.3,4 In cases of ALK- rearranged lung cancer, the patients tend to 
be relatively young and nonsmokers or light smokers. Their tumors 
are usually adenocarcinomas.2,5 Crizotinib is a first- generation ALK 
inhibitor that was approved for the treatment of patients with ALK- 
rearranged NSCLC in 2011 by the Food and Drug Administration 
(FDA) in the United States and in 2012 by the Pharmaceuticals and 
Medical Devices Agency (PMDA) in Japan.6– 8

Crizotinib often produced drastic regression of ALK- rearranged 
NSCLC.7 However, more than 50% of patients relapsed within a 
year due to the development of crizotinib- resistant tumors.7– 9 The 
main causes of crizotinib resistance are mutations in the ALK kinase 
domain, activation of bypass pathways such as epidermal growth 
factor receptors (EGFRs), and amplification of c- Kit tyrosine kinase 
receptors with upregulation of its stem cell factor ligand.9– 15 To 
overcome crizotinib- resistant mutations, multiple next- generation 
ALK inhibitors have been developed, including alectinib, brigatinib, 
lorlatinib, and ceritinib.16– 19 Ceritinib was approved by the FDA in 
April 2014 and by the PMDA in March 2016. In clinical trials, patients 
with ALK- rearranged NSCLC, including post- crizotinib treatment pa-
tients, responded well to ceritinib.17 The potency of ceritinib is >10- 
fold higher than that of crizotinib and has been found efficacious 
against multiple crizotinib- resistant mutations both in vitro and in 
vivo.20 However, tumors also eventually develop ceritinib resistance 
due to ceritinib- resistant mutations in the ALK kinase domain such 
as G1202R or F1174C/V.20 Unfortunately, little is known about 
the ceritinib resistance mechanisms especially bypass pathway– 
mediated resistance.

We established ceritinib- resistant H3122 (EML4- ALK– harboring 
cell line) cells in vitro by treating them with increasing concentra-
tions of ceritinib over 6 months. In addition to assessing the ceritinib 
resistance of these cell lines, we examined the clinical specimens 
taken from ceritinib- resistant patients. After comprehensive analy-
ses, we identified a novel ceritinib resistance mechanism mediated 
by FGFR3 activation. This finding highlights the importance of de-
termining the resistance mechanisms in the ALK- TKI resistant pa-
tients to ensure an appropriate treatment strategy.

2  |  MATERIAL AND METHODS

Detailed information is shown in Appendix S2.

2.1  |  Patients

Clinical specimens were collected from patients with ALK- rearranged 
NSCLC who acquired ceritinib resistance. The patients submitted 
written informed consent for all genetic and cell biological analyses, 
which were performed in accordance with the protocols approved 
by the institutional review board (IRB) of the Japanese Foundation 
for Cancer Research (#2013– 1093).

2.2  |  Cell lines

H3122 human NSCLC cell line (harboring EML4- ALK variant 1) 
was obtained in 2010, which was originally established from the 
lung cancer patient as previously described.21 Ba/F3, immortalized 
murine bone marrow– derived pro- B cells were obtained from the 
RIKEN BRC Cell Bank (RIKEN BioResource Center) in 2012.

2.3  |  Reagents

Ceritinib, alectinib, lorlatinib, cabozantinib, and zoligratinib 
were purchased from ActiveBiochem. Crizotinib, brigatinib, and 
infigratinib were purchased from Biochempartner. AZD4547 was 

from either human serum or fetal bovine serum were able to activate FGFR3 and 
induce ceritinib resistance. A detailed analysis of ceritinib- resistant patient- derived 
specimens confirmed that tyrosine- protein kinase Met (cMET) amplification induces 
ceritinib resistance. Amplified cMET counteractivated EGFR and/or Her3 and induced 
ceritinib resistance. These results reveal multiple ceritinib resistance mechanisms and 
suggest that ceritinib resistance might be overcome by identifying precise resistance 
mechanisms.
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purchased from Selleck, and PHA665752 was purchased from Tocris 
Bioscience.

2.4  |  Cell growth assay

Cell viability was measured using the CellTiter- Glo assay reagent 
(Promega) and Centro LB 960 microplate luminometer (Berthold 
Technologies).

2.5  |  Immunoblotting

Cell lysis and immunoblotting were performed as previously 
described.9,22

2.6  |  Sequencing and qRT- PCR

Sequencing was bidirectionally conducted using Sanger sequencing, 
and qRT- PCR was performed using FastStart Essential DNA Green 
Master (Roche) according to the manufacture's protocol.

2.7  |  Lentivirus transduction

Viruses were produced in 293FT cells as previously described.13

2.8  |  Phospho– receptor tyrosine kinase (RTK) array

The RTK array was performed using a human phospho- RTK array kit 
(R&D Systems) according to the manufacturer's protocol.

2.9  |  Mouse experiments

Female BALB/c- nu/nu (nude) mice were purchased from Charles 
River Laboratories, Yokohama, Japan. All animal procedures were 
performed in accordance with protocols approved by the JFCR 
Animal Care and Use Committee.

2.10  |  FISH analysis

FISH analyses to detect ALK, CEP2, and MET were conducted using 
formalin- fixed, paraffin- embedded tissues with in- house probes made 
from BAC clones (the exact clone names are available upon request).

2.11  |  Microarray analysis

RNA was purified using the RNeasy mini kit (Qiagen). A total of 
100 ng of extracted RNA was labeled and hybridized onto the 

GeneChip PrimeView human gene expression array (Affymetrix 
Inc.). Microarray data have been deposited in the Gene Expression 
Omnibus database (www.ncbi.nlm.nih.gov/geo) under accession 
numbers GSE77764.

2.12  |  Statistical analysis

All data are presented as mean ± standard deviation. Statistical 
analysis was performed using the two- tailed Student's t test or 
Mann- Whitney U test (for mice experiments). Significant p values 
are defined as *p < 0.05.

3  |  RESULTS

3.1  |  Establishment of ceritinib- resistant H3122 
cells

H3122 cells from the patient with NSCLC harbored EML4- ALK fu-
sion genes and were highly sensitive to ALK inhibitors (Figure 1A). 
Ceritinib has shown remarkable clinical effects as a first, second, 
and later line of treatment.17,23,24 However, the tumors eventually 
develop ceritinib resistance mediated by mutations, such as ALK- 
G1202R, ALK- F1174C/V, or P- glycoprotein upregulation.20,25 To 
identify the ceritinib resistance mechanisms, we first treated H3122 
cells with increasing concentrations of ceritinib for 6- 12 months and 
established four ceritinib- resistant H3122 LR cell lines (Figure 1B). 
The IC50 of ceritinib for the H3122 cells after 3 days of treatment 
was approximately 8 nM. However, the H3122 LR1 and LR5 cells 
survived after continuous exposure to 100 nM ceritinib, and the 
H3122 LR2 and LR3 cells even grew after exposure to ceritinib con-
centrations of 1 μM. The H3122 LR1 and LR5 cells showed moder-
ate resistance to ceritinib, crizotinib, and alectinib (Figure 1C,D). 
Neither exhibited ALK tyrosine kinase mutations. We performed 
an immunoblotting analysis and found EML4- ALK overexpression 
and phospho- ALK upregulation in the H3122 LR1 and LR5 cells 
(Figure 1E). We quantified the number of ALK copies using qRT- PCR 
with genomic DNA and identified ALK gene amplification in both the 
H3122 LR1 and LR5 cells (Figure 1F). In contrast, ALK amplification 
was not observed in the H3122 LR2 and LR3 cells. FISH analysis 
clearly showed that ALK gene amplification was caused by gene am-
plification of the EML4- ALK locus within chromosome 2 in H3122 
LR1 and H3122 LR5 cells because we detected more ALK 3' split 
signals to CEP2 signals in H3122 LR1 and H3122 LR5 cells than in 
H3122 and H3122 LR3 cells (Figure S1). These results suggest that 
ALK gene amplification induced moderate resistance to ceritinib.

3.2  |  Identification of L1198F in the H3122 
LR2 cells

The H3122 LR2 cells demonstrated much higher ceritinib resist-
ance than the H3122 cells (Figure S2A), and the phospho- ALK 

http://www.ncbi.nlm.nih.gov/geo
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F I G U R E  1  Anaplastic lymphoma kinase (ALK) amplification in the H3122 LR1 and LR5 and ALK L1198F mutation in the H3122 LR2 
conferred intermediate and high resistance to ceritinib, respectively. A, C, G, The H3122 and H3122 LR cells were treated with the indicated 
concentrations of ALK inhibitors for 72 h. Calculated IC50 values are shown in (D). B, The ceritinib (LDK378)- resistant H3122 cells were 
established by treating the parental H3122 (H3122 pt) cells with increasing concentrations of ceritinib over 6 months. E, The H3122 and 
H3122 LR1 and LR5 cells were treated with the indicated concentrations of ceritinib or crizotinib for 6 h. After incubation, the cells were 
lysed and analyzed by immunoblotting. F, Genomic DNA was extracted from five cell lines, and each relative ALK gene copy number was 
analyzed by qRT- PCR. H, The Ba/F3 expressing EML4- ALK- WT or - L1198F cells were treated with the indicated concentrations of ceritinib 
for 4 h. After incubation, the cells were lysed and analyzed by immunoblotting.

F I G U R E  2  Ceritinib resistance was induced by ligand- dependent activation of FGFR3 in the H3122 LR3 cells. A, C, The H3122 and 
H3122 LR3 cells were treated with various concentrations of ceritinib with or without erlotinib (1 μM), cabozantinib (1 μM), or infigratinib 
(100 nM) for 72 h. B, The phosphorylation levels of 49 RTKs in the H3122 and H3122 LR3 cells were measured using an RTK array with cell 
lysates treated with or without 1 μM of ceritinib for 8 h. D, The H3122 LR3 cells were treated with ceritinib (1 μM) with or without infigratinib 
(100 nM) for 1– 48 h. After incubation, the cells were lysed and analyzed by immunoblotting.
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levels of the H3122 LR2 cells were maintained even at a ceritinib 
concentration of 1 μM (Figure S2B). This suggested that the H3122 
LR2 cells harbored a ceritinib resistance mutation. Thus, we se-
quenced the ALK gene from the H3122 LR2 cells and 10 clones 
isolated from ceritinib- resistant H3122 LR2 cells and found a 
c3592t (L1198F) mutation in the ALK (Figure S2C). Several stud-
ies have reported that the L1198F mutation confers resistance to 
various other ALK inhibitors, but not crizotinib.26– 28 The H3122 LR2 
cells were found to be resistant to lorlatinib and alectinib as well 
as ceritinib but sensitive to crizotinib (Figure S2D). Similarly, Ba/
F3 cells expressing EML4– ALK- L1198F showed high ceritinib resist-
ance (Figure S3A,B). The IC50 of all next- generation ALK inhibitors 
(ceritinib, alectinib, lorlatinib, and brigatinib) were higher in Ba/F3- 
EML4– ALK- L1198F than in Ba/F3- EML4– ALK- WT, but the IC50 of 
crizotinib was lower in Ba/F3- EML4– ALK- L1198F than in Ba/F3- 
EML4– ALK- WT (Figure S3C– E).

3.3  |  Induction of H3122 LR3 ceritinib resistance 
by FGFR3 activation

We next evaluated the ceritinib- resistant H3122 LR3 cells and 
found that they were also highly resistant to other ALK inhibitors 
(Figure 2A). The H3122 LR3 cells did not show ALK amplification or 
an EML4- ALK mutation. Therefore, we inferred that a different re-
sistance mechanism such as activation of another RTK had induced 
the ceritinib resistance in these cells. To identify the activation of 
other RTKs, we performed a phospho- RTK array to compare the 
H3122 cells and the H3122 LR3 cells with and without ceritinib ex-
posure. In the H3122 LR3 cells, we detected more phospho- EGFR, 
vascular endothelial growth factor receptor (VEGFR)2, and FGFR3 
than in the H3122 cells (Figure 2B). On the basis of this result, we 
treated the H3122 LR3 cells with ceritinib and several RTK inhibitors 
corresponding to specific RTK (erlotinib, EGFR inhibitor; cabozan-
tinib, VEGFR inhibitor; and infigratinib, FGFR inhibitor). Interestingly, 
only combined treatment with ceritinib and infigratinib resensitized 
the cells to ceritinib (Figure 2C). Immunoblotting analysis showed 
that the downstream signaling of ALK was maintained during ceri-
tinib treatment alone but decreased when ceritinib was combined 
with infigratinib (Figure 2D). AZD4547, another FGFR inhibitor, 
also resensitized the H3122 LR3 cells to ceritinib (Figure S4A). 
Additionally, the combination of other ALK inhibitors with infi-
gratinib was effective against the H3122 LR3 cells but did not affect 
the parental H3122 cells (Figure S4B– D). Infigratinib alone did not 

suppress the growth of either the H3122 or H3122 LR3 cells even at 
concentrations as high as 3 μM (Figure S3E). All 10 single clones of 
the H3122 LR3 cells were also resensitized to ceritinib when it was 
combined with infgratinib (Figure S4F). Additionally, the H3122 LR3 
cells grew faster with higher fetal bovine serum (FBS) concentrations 
than the H3122 cells, and the induction of ceritinib resistance was 
found to be dependent on FBS (Figure S5A,B). The dependence on 
serum was similarly observed when we used human serum instead 
of FBS (Figure S6). These results suggested that ligand- dependent 
overactivation of FGFR was a significant factor in the ALK inhibitor 
resistance of the H3122 LR3 cells.

3.4  |  Resensitization of the H3122 LR3 
cells to ceritinib by FGFR3 small hairpin RNA 
(shRNA) knockdown

The FGFR family comprises five variants, and all of these but 
FGFR5 have tyrosine kinase domains.29,30 We quantified the 
mRNA expression of FGFR1- 4 in the parental H3122 and H3122 
LR3 cells using quantitative PCR and found overexpression of 
FGFR3 in the H3122 LR3 cells (Figure 3A), whereas FGFR3 gene 
amplification was not observed (Figure S7). The mRNA expres-
sion of FGFR3 ligands (FGF1, FGF2, FGF4, FGF9, and FGF18) was 
also similar between the parental H3122 and H3122 LR3 cells 
(Figure S8). Additionally, we performed gene expression analysis 
using cDNA microarray to confirm whether other molecules or 
pathways were related to the ceritinib resistance of the H3122 
LR3 cells (Figure S9A– C). In the microarray analysis, FGFR3 was 
the gene with the greatest increase in expression. Next, to exam-
ine whether the overexpressed FGFR3 was responsible for the ce-
ritinib resistance in the H3122 LR3 cells, we performed an shRNA 
knockdown of FGFR3 in the H3122 LR3 cells (Figure 3B). The 
FGFR3 expression level was much lower in the H3122 LR3- sh374 
and H3122 LR3- sh199837 and slightly lower in the H3122 
LR3- sh413000 than in the H3122 LR3 and the H3122 LR3- sh- 
control cells. We found that the FGFR3 knockdown resensitized 
the cells to ceritinib according to the decrease in FGFR3 expres-
sion levels of the shFGFR3 (Figure 3C). Immunoblotting analysis 
showed the downstream signaling in the FGFR3 knockdown cells 
treated with 1 μM of ceritinib to be reduced more than those of 
the H3122 LR3 and the sh- control cells (Figure 3D). Also, ceritinib 
resistance was not induced in the H3122 LR3- sh374 even in the 
medium containing 10% human serum (Figure 3E). Therefore, we 

F I G U R E  3  FGFR3 knockdown in H3122 LR3 cells restored sensitivity to ceritinib. A, Quantitative real- time PCR was used to measure 
FGFR (FGFR1- 4) mRNA expression levels in the H3122 and H3122 LR3 cells. The H3122 LR3 mRNA expression levels (FGFRs/GAPDH) 
relative to those in the H3122 parental cells are shown in the bar graph. B, FGFR3 protein expression in the indicated shRNA- infected 
H3122 LR3 cells was analyzed by immunoblotting. C, H3122 LR3 and shFGFR3 H3122 LR3 cells were treated with the indicated 
concentrations of ceritinib for 72 h. D, The H3122 LR3 and shFGFR3 H3122 LR3 cells were treated with 1 μM ceritinib for the indicated 
amount of time (0– 2 h). After incubation, the cells were lysed and analyzed by immunoblotting. E, H3122 LR3 control cells and H3122 LR3- 
sh374 cells were plated in RPMI- 1640 containing the indicated concentrations of human AB serum (Mediatech). Beginning the next day, they 
were cultured with 300 nM ceritinib for 0– 96 h.
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concluded that FGFR3 overexpression induces serum- derived 
FGFR ligand– dependent ceritinib resistance.

3.5  |  Resistance of H3122 LR3 cells suppressed by 
ALK inhibitor combined with FGFR inhibitor

We next performed an experiment to confirm whether combined 
treatment with ALK inhibitor and FGFR inhibitor was also effec-
tive in vivo. However, we found that treatment with ceritinib and 
infigratinib markedly decreased the body weight of mice (data not 
shown), so we adopted another combination strategy: alectinib and 
zoligratinib (an FGFR inhibitor).31 The combined treatment with 

alectinib and zoligratinib also effectively inhibited the growth of the 
H3122 LR3 cells in vitro (Figure 4A), whereas zoligratinib treatment 
alone did not affected cell growth (Figure S10). We inoculated the 
H3122 LR3 cells into nude mice and administered the combined drug 
treatment daily over 6 days (Figure 4B). An RTK array on the tumor 
cells found greater phosphorylation of FGFR3 in the H3122 LR3 tu-
mors than in the H3122 tumors (Figure S11A). As with the in vitro 
results, the combined treatment with alectinib and zoligratinib was 
also effective in vivo (Figure 4C). Similarly, an H3122 LR3- sh- control 
xenograft tumor was resistant to ceritinib, but an H3122 LR3- sh374 
xenograft was sensitive to ceritinib in vivo (Figure S11B). In conclu-
sion, combined treatment with ALK inhibitors and FGFR inhibitors 
can overcome FGFR3- mediated resistance mechanisms.

F I G U R E  4  Combined treatment with alectinib and the FGFR inhibitor, zoligratinib, effectively resensitized H3122 LR3 cells to ceritinib 
in vivo. A, The H3122 LR3 cells were treated with various concentrations of alectinib with or without 1 μM of zoligratinib for 72 h. B, 
Schematic representation of the treatment schedule. After the tumors reached sizes of approximately 150 mm3, the mice were randomized 
by tumor size, and daily treatment with 50 mg/kg of alectinib with or without 50 mg/kg of zoligratinib was initiated. The tumor volumes were 
measured as 0.5 × length × width × height. The mean tumor volumes are shown in (C). *p < 0.05.
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3.6  |  Ceritinib resistance mechanisms other than 
ALK mutations in the clinical specimens

In patients treated with crizotinib, only one- third developed resist-
ance due to ALK secondary mutations or ALK fusion gene ampli-
fication.32 We have analyzed the clinical specimens treated with 
ceritinib, and reported several ceritinib resistance mechanisms 
(Table S1). Of the tumor samples, 42% (5/12) carried ALK resist-
ance mutations such as F1174C, F1174V, and G1202R. This is 
consistent with a previous report that analyzed biopsy specimens 
from ceritinib- resistant patients.33 Of the 58% (7/12) of our sam-
ples without ALK mutations, we found P- glycoprotein overexpres-
sion in three samples and tyrosine- protein kinase Met (cMET) gene 
amplification in one sample (JFCR- 059- 2).34 In two of the remaining 
three samples, we were unable to establish cell lines, but we suc-
cessfully established a cell line in the third sample, JFCR- 093. In our 
recent study, we found that treatment with GSK3 inhibitors or Src 
inhibitors sensitizes the resistant cells established from JFCR- 093 
to ALK inhibitors.35 JFCR- 059- 2 patient had been treated with first- 
line crizotinib and had shown a marked partial response, as meas-
ured by the Response Evaluation Criteria in Solid Tumors, lasting 
14 months (Figure S12A). After relapsing on crizotinib, the patient re-
ceived chemotherapy (cisplatin, pemetrexed plus bevacizumab) for 
3 months, followed by bevacizumab for 4 months, and then with doc-
etaxel for 10 weeks. The patient was then enrolled in a phase II trial 
for ceritinib and showed a significant response (Figure S12B, left and 
middle). However, 8 months later, the disease progressed because 
of ceritinib resistance (Figure S12B, right). To identify the ceritinib 
resistance mechanism, we established the JFCR- 059- 2 using the ma-
lignant fluid cell line. Through FISH analysis, we confirmed the pres-
ence of ALK rearrangement (Figure S12C, left). However, we did not 
observe any secondary mutations in ALK in the ceritinib- resistant 
tumor sample. FISH analysis of EGFR and cMET revealed cMET am-
plification in the JFCR- 059- 2 cells (Figure S12C, right). Additionally, 
strong phospho- cMET and phospho- EGFR, and intermediate 
phospho- human HER3 signals were observed in the JFCR- 059- 2 
cells in a phospho- RTK array (Figure S12D). We found that treat-
ment with PHA665752 (cMET inhibitor) but not with erlotinib (EGFR 
inhibitor) sensitized the JFCR- 059- 2 cells to ceritinib (Figure S12E). 
Additionally, PHA665752 treatment inhibited phospho- cMET and 
phospho- EGFR, suggesting that the phosphorylation of EGFR was 
mediated by cMET (Figure S12F). Because crizotinib can inhibit 
both ALK and cMET,36 we treated the cells with crizotinib, other 
ALK- tyrosine kinase inhibitors (TKIs; ceritinib, alectinib, or lorlat-
inib), or alectinib with PHA665752 and examined the downstream 
signaling by immunoblotting. This revealed that the downstream 
phospho- AKT, - ERK, and - S6 were inhibited according to the ex-
tent of the cMET inhibition by crizotinib or PHA- 665752 and ALK 
inhibition. However, a high concentration of crizotinib was required 
to inhibit both the ALK-  and cMET- mediated downstream signaling 
(Figure S12F). Next, we subcutaneously inoculated JFCR- 059- 2 cells 
into nude mice and treated them with ALK inhibitors in combination 
with or without crizotinib. As expected, alectinib or lorlatinib single 

treatment did not induce tumor shrinkage, but crizotinib single treat-
ment did induce tumor regression by inhibiting both ALK and cMET; 
however, the tumors were not completely diminished by the single 
treatment. On the other hand, half dose of alectinib or lorlatinib 
combined with half dose of crizotinib almost completely diminished 
the tumor (Figure S13). These results suggested that crizotinib with 
other ALK- inhibitor combination might be effective for the treat-
ment of cMET amplification– mediated ALK- TKI resistance. The anal-
ysis of clinically developed ceritinib- resistant specimens suggested 
that cell- line establishment or tumor xenograft establishment were 
deemed effective means of identifying the resistance mechanisms 
resulting from bypass pathway activation.

4  |  DISCUSSION

Anaplastic lymphoma kinase inhibitors have been successfully de-
veloped following the identification of ALK- rearranged NSCLC in 
2007.3,37 Today, five ALK inhibitors (crizotinib, ceritinib, alectinib, 
brigatinib, and lorlatinib) are available for clinical use. Ceritinib has 
shown great clinical efficacy against ALK– rearranged NSCLC, re-
gardless of treatment history of crizotinib.17 However, as with other 
ALK inhibitors, ceritinib resistance has been observed in patients 
treated with ceritinib, so it is important to identify all such mecha-
nisms and to determine how they can be overcome. In this study, 
we conducted comprehensive analyses of ceritinib resistance using 
cell line models and clinical specimens from ceritinib- refractory 
patients with advanced ALK- positive NSCLC and identified FGFR3 
activation– mediated ceritinib resistance mechanism (Figure 5).

First, we found that ALK amplification and L1198F mutation 
conferred intermediate and high ceritinib resistance, respectively 
(Figure 1). An L1198F mutation, with an additional C1156Y muta-
tion, has previously been identified in a lorlatinib- refractory patient. 
In our previous research, we have used MP- CAFEE to create com-
putational simulations that revealed the free binding of ceritinib to 
L1198F mutations is higher than that of crizotinib or gilteritinib (a 
multikinase inhibitor approved for FLT3- mutated acute myeloid leu-
kemia).28,38 Our results indicate that crizotinib can be a treatment 
option for patients with a treatment history of second-  or third- 
generation ALK inhibitors with L1198F mutation in ALK.

Second, we found that FGFR3 bypass pathway activation 
caused ceritinib resistance in the H3122 LR3 cells (Figure 2). 
Bypass pathway activation is one of the most common resistance 
mechanisms against crizotinib, in which it is mediated by EGFR 
or cKIT activation.9,10,14 However, there have been few reports 
on ceritinib resistance mediated by bypass pathway activation. 
FGFR1- 4 have tyrosine kinase domains, and many reports have 
noted that their abnormality is related to various types of can-
cer development, including breast, gastric, and colorectal can-
cers.39– 41 Additionally, other groups have used cell line models to 
demonstrate that FGFR1 contributes to resistance against EGFR- 
TKIs in EGFR- mutated lung cancer.42,43 Because FGFR abnormal-
ities have been observed in many types of cancer, multiple FGFR 
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inhibitors have been developed, and several of these are currently 
available for clinical use.44,45 In the present study, FGFR3 overex-
pression conferred ligand- dependent high resistance to ALK in-
hibitors, and FGFR3 shRNA knockdown resensitized the H3122 
LR3 cells to ceritinib (Figure 3). As ceritinib and infigratinib treat-
ment caused drastic weight loss, we chose alectinib with zoligra-
tinib. This combination treatment was tolerable for the mice and 
induced marked shrinkage of H3122 LR3 tumor (Figure 4C). In 
addition to FGFR abnormalities described above, recent studies 
revealed that FGFR fusion proteins can induce resistance to EGFR 
TKIs.46,47 Therefore, we analyzed the existence of FGFR3 fusion 
protein in H3122 LR3 cells, but no FGFR3 fusion proteins were de-
tected. However, this result does not preclude the possibility that 
FGFR3 fusion can induce resistance to ALK TKIs. Further studies 
and development of appropriate combination therapy from the 
viewpoints of both efficacy and safety will be required.

Third, we summarized 12 clinically developed ceritinib- resistant 
specimens and realized that over half had ceritinib resistance 
mechanisms other than ALK mutations or amplification (Table S1). 
One tumor sample carried MET gene amplification (Figure S12). 
cMET has been reported to induce alectinib resistance. Also, auto-
crine activation of cMET by HGF upregulation causes resistance to 
alectinib.48– 50 Additionally, MET amplification has been observed 
in a few alectinib- resistant clinical specimens.51– 53 Interestingly, 
these reports suggest that crizotinib cannot completely over-
come this resistance despite its ability to inhibit cMET activation. 
Indeed, a result of phase II trial showed limited efficacy of crizo-
tinib to patients with ALK- positive NSCLC treated with alectinib 
immediately before crizotinib monotherapy.54 In our study, cMET 

activation was observed in JFCR- 059- 2 and was found to induce 
EGFR and HER3 tyrosine phosphorylation, as previously reported 
in MET amplification– mediated EGFR- TKI gefitinib resistance.55 
However, in JFCR- 059- 2 cells, combination of alectinib or lorlati-
nib with crizotinib (as a cMET inhibitor) could induce almost com-
plete eradication of tumor in an in vivo model. Thus, at least in 
JFCR- 059- 2 cells, EGFR activation is one of the downstream of 
cMET- mediated growth signaling activation, and cMET and ALK 
inhibition can overcome the resistance. To overcome these bypass 
pathway– mediated resistances, combination therapies will be re-
quired, and further studies are needed to test the efficacy and 
toxicity of combination therapy in vivo and in clinical trials.

In the present study, we analyzed ceritinib resistance mecha-
nisms using ceritinib- resistant H3122 cells and ceritinib- resistant 
patient- derived cells and showed that over half of patients harbor 
non- ALK alteration resistance mechanisms. We also found FGFR3 
activation to be one of the bypass pathway resistance mechanisms. 
Because ceritinib has been approved for all lines of therapy, we ex-
pect increasing research attention will be paid to ceritinib resistance 
in the near future. As FGFR3 overexpression induced the resistance 
to all the current ALK inhibitors, this resistance mechanism might be 
found not only in ceritinib- refractory patients, but also other ALK- 
TKI– resistant patients. Further studies are needed to comprehen-
sively illustrate the diverse resistance mechanisms and to identify 
therapeutic strategies for overcoming this resistance.
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