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Highlights Lay summary

� VSIG4 expression is high on human resting, large

peritoneal macrophages (PMs) that co-express
CD206, CD163, and MERTK.

� PM activation by TLR agonists or infection results in
the loss of surface VSIG4 and release of soluble
VSIG4 (sVSIG4).

� Ascites sVSIG4 correlates with organ dysfunction
and inflammation during SBP.

� Higher ascitic fluid sVSIG4 concentrations indicated
increased risk of 90-day mortality in 120 patients
with SBP.

� Addition of an antibody binding to the extracellular
domain of VSIG4 enhanced phagocytosis of bacteria
in vitro.
https://doi.org/10.1016/j.jhepr.2021.100391
Patients with liver cirrhosis who develop ascites have
an increased risk of infection and mortality. Our study
shows that in patients with infected ascites, the
complement receptor VSIG4 is released by resident
macrophages into the abdominal fluid where it can be
measured. Patients with elevated levels of this protein
in ascites are at high risk of dying within 90 days.
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Background & Aims: V-set Ig-domain-containing 4 (VSIG4) is an immunomodulatory macrophage complement receptor
modulating innate and adaptive immunity and affecting the resolution of bacterial infections. Given its expression on peri-
toneal macrophages (PMs), we hypothesised a prognostic role of peritoneal VSIG4 concentrations in patients with sponta-
neous bacterial peritonitis (SBP).
Methods: We isolated PMs from patients with cirrhosis and analysed VSIG4 expression and release by flow cytometry,
quantitative real-time PCR, ELISA, and confocal microscopy. We measured soluble VSIG4 concentrations in ascites from 120
patients with SBP and 40 patients without SBP and investigated the association of soluble VSIG4 in ascites with 90-day
survival after SBP using Kaplan–Meier statistics, Cox regression, and competing-risks regression analysis.
Results: VSIG4 expression was high on resting, large PMs, which co-expressed CD206, CD163, and tyrosine-protein kinase
Mer (MERTK). VSIG4 gene expression in PMs decreased in patients with SBP and normalised after resolution. During SBP,
VSIG4hi PMs were depleted (25% vs. 57%; p <0.001) and soluble VSIG4 in ascites were higher in patients with SBP than in
patients without (0.73 vs. 0.35 lg/ml; p <0.0001). PM activation by Toll-like receptor (TLR) agonists or infection with live
bacteria in vitro resulted in a loss of surface VSIG4 and the release of soluble VSIG4. Mechanistically, shedding of VSIG4 from
PMs was protease-dependent and susceptible to microtubule transport inhibition. Soluble VSIG4 in ascites exceeded serum
concentrations and correlated with serum creatinine, model for end-stage liver disease score and C-reactive protein during
SBP. Concentrations of 1.0206 lg/ml or higher indicated increased 90-day mortality (hazard ratio 1.70; 95% CI 1.01–2.86; p =
0.046).
Conclusions: VSIG4 is released from activated PMs into ascites during SBP. Higher peritoneal VSIG4 levels indicate patients
with organ failure and poor prognosis.
Lay summary: Patients with liver cirrhosis who develop ascites have an increased risk of infection and mortality. Our study
shows that in patients with infected ascites, the complement receptor VSIG4 is released by resident macrophages into the
abdominal fluid where it can be measured. Patients with elevated levels of this protein in ascites are at high risk of dying
within 90 days.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Spontaneous bacterial peritonitis (SBP) is a frequent precipitator
of acute decompensation and acute-on-chronic liver failure in
patients with cirrhosis.1–3 Mortality after SBP ranges from 17 to
36% in the short term and reaches 60% after 1 year.1,4,5 Factors
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that determine the individual mortality risk of SBP comprise
organ failures and systemic inflammation at presentation, on the
one hand,2,5–9 and the adequate selection and timely adminis-
tration of empirical antibiotic treatment, on the other
hand.1,5,10,11 Although there is some evidence that excessive
peritoneal inflammation during SBP drives complicated disease
courses, the peritoneal inflammatory state has rarely been
incorporated into prognostic models of SBP. A few studies have
identified elevated concentrations of inflammatory cyto-
kines,12–14 neutrophil markers,15 and markers of macrophage
activation9,16 in ascitic fluid (AF) to be indicators of complications
of SBP and poor prognosis.

https://doi.org/10.1016/j.jhepr.2021.100391
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We have recently shown that peritoneal macrophage (PM)
subsets from patients with cirrhosis are primed by pathogen-
associated molecular patterns (PAMPs) to release pro-
inflammatory cytokines.16 These tissue-resident large PMs ex-
press the mannose receptor CD206 on their surface and are
characterised by higher gene expression of macrophage-specific
scavenger receptors, Fc receptors, and alternative activation
markers including the complement receptor V-set Ig-domain-
containing 4 (VSIG4). VSIG4, also referred to as CRIg or Z39Ig, is
expressed by human and murine PMs but absent from circu-
lating immune cells and macrophages from lymphoid or-
gans.17–19 It is involved in the clearance of complement
component 3b (C3b)-opsonised bacteria20 and acts as a direct
pattern recognition receptor for lipoteichoic acids from Gram-
positive bacteria.21 In addition to its role in bacterial clearance,
VSIG4 limits excessive inflammation from classically activated
macrophages22 and suppresses cytokine production by T cells.23

Soluble VSIG4 (sVSIG4), which is released under conditions of
tissue macrophage activation,24 inhibits complement activation
through the alternative pathway.25,26

Given its restriction to tissue-resident macrophages, its role in
bacterial clearance and the modulation of inflammation, we
hypothesised that sVSIG4 is released from activated PMs during
SBP and its peritoneal concentration indicates a high risk of
short-term mortality.
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Fig. 1. Characterisation of VSIG4hi human PMs. (A) Flow cytometry gating stra
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fluorescence intensity as compared with FMO controls) *p <0.05 in the Wilcoxo
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Patients and methods
Patient inclusion and sample selection
Patients with decompensated cirrhosis who underwent diag-
nostic ascites tap or therapeutic paracentesis between November
2019 and September 2021 at the University Hospital RWTH
Aachen were eligible for PM immune phenotyping and in vitro
analyses. Exclusion criteria were evidence of secondary perito-
nitis, tuberculous peritonitis, peritoneal carcinomatosis, and HIV
coinfection. Patients were stratified for the presence of SBP by
using current diagnostic criteria.27

AF samples from 120 patients with SBP who were recruited
for previous prospective studies, were analysed to assess the
association of AF sVSIG4 with survival after SBP using biomate-
rial from patients with SBP recruited at the Jena University
Hospital between May 2014 and September 2019 (cohort 1, n =
39), at the Jena University Hospital between October 2010 and
January 2013 (cohort 2, n = 39), and at the Bonn University
hospital between April 2012 and March 2018 (cohort 3, n = 42).
Among those, 83 participants with SBP were previously re-
ported.16 AF samples from 40 patients without SBP recruited at
the Jena University Hospital served as a control.

The study was approved by the Internal Review Board of the
University Hospital RWTH Aachen (the Ethics Committee of the
Medical Faculty of the RWTH Aachen, no. EK 327-19), the In-
ternal Review Board of the Jena University Hospital (no. 2880-
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Fig. 2. Changes in VSIG4 expression and VSIG4 release in response to inflammatory stimuli. (A) Expression of VSIG4 and CCR2 mRNA in immunomagnetically
enriched CD14+ cells from 3 patients before, during, and after SBP (Day 0 = SBP). Expression levels were normalised to GUSB and ACTB as housekeeping genes. (B)
Fraction of VSIG4hi PMs in the presence and absence of SBP. Mean and SEM and individual values are shown. Value of p from the Mann–Whitney U test. (C)
Immunomagnetically enriched CD14+ PMs were stimulated with 10 ng/ml LPS, 10 ng/ml FSL-1, or live E. coli K12 at an MOI of 30 in vitro. Cell culture supernatant
was collected at the indicated time points and sVSIG4 was measured by ELISA. (D and E) Immunomagnetically enriched CD14+ PMs were cultured in the absence
or presence of LPS at 1000 ng/ml for 15–180 min. Cell culture supernatant was collected at the indicated time points and sVSIG4 was measured by ELISA and
VSIG4 surface expression was analysed by flow cytometry. Delta median fluorescence intensity as compared with FMO controls were normalised to uncultured
PMs. Means and SEMs are shown. CCR2, C-C chemokine receptor type 2; FMO, fluorescence minus one; MOI, multiplicity of infection; PM, peritoneal macro-
phage; SBP, spontaneous bacterial peritonitis; sVSIG4, soluble V-set Ig-domain-containing 4; VSIG4, V-set Ig-domain-containing 4.
08/10, 3683-02/3), and the local ethics committee of Bonn Uni-
versity Medical Centre (no. 130/18). Patients gave written
informed consent before inclusion.
Isolation of PMs
Up to 500ml AF was collected from patients. Peritoneal cells
were enriched by centrifugation and mononuclear cells were
isolated from AF using Lympholyte-H separation media (Cedar-
lane, Burlington, Ontario, Canada). CD14+ cells were enriched by
JHEP Reports 2022
magnetic cell separation using positive selection for human CD14
(Miltenyi Biotec, Bergisch Gladbach, Germany) for downstream
analysis and in vitro experiments.
Cell culture
CD14+ PMs were cultured in 96-well plates (3×105/well) using
RPMI-1640 medium (PAN-Biotech, Aidenbach, Germany) sup-
plemented with 10% pooled heat-inactivated FBS (PAN-Biotech)
and 100 IU/ml penicillin/streptomycin (PAN-Biotech) at 37�C and
3vol. 4 j 100391
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Table 1. Baseline characteristics of patients with decompensated cirrhosis and SBP stratified for outcome at 90 days.

Total
(N = 120)

Survivors*
(n = 58)

Non-survivors
(n = 62)

p value

Age (years) 59 (52–67) 59 (51–65) 61 (52–77) 0.21
Male sex (%) 89 (74) 42 (72) 47 (76) 0.68
Alcohol-related cirrhosis (%) 87 (73) 44 (76) 43 (69) 0.54
Child–Pugh C (%) 80 (67) 33 (57) 47 (76) 0.034
MELD score 21 (16–28) 18 (13–23) 24 (20–31) <0.001
Bilirubin (lmol/L) 54 (23–144) 46 (20–76) 67 (31–185) 0.018
INR 1.5 (1.3–1.9) 1.4 (1.3–1.7) 1.5 (1.3–2.1) 0.038
Platelets (/nl) 112 (66–203) 119 (78–202) 100 (58–221) 0.38
Creatinine (lmol/L) 142 (90–248) 123 (82–162) 186 (113–297) 0.001
White blood cells (/nl) 10.5 (7.3–15.8) 9.4 (6.7–14.0) 12.0 (8.0–17.8) 0.08
C-reactive protein (mg/L) 77 (45–125) 71 (35–115) 80 (46–131) 0.24
Albumin (g/L) 26 (22–30) 27 (23–31) 25 (22–30) 0.44
AF protein (g/L) 14 (9–20) 14 (9–22) 13 (8–19) 0.15
AF cell count (/ll) 2,260 (1,045–5,048) 2,255 (988–4,478) 2,260 (1,093–6,065) 0.41
AF neutrophils (/ll) 1,390 (590–3,678) 1,235 (515–3,403) 1,580 (590–5,060) 0.24
Culture-positive SBP 46 (39) 20 (35) 46 (39) 0.46

Baseline characteristics are shown as frequencies or medians with IQRs. Values of p are based on the Wilcoxon–Mann–Whitney test for continuous and Fisher’s exact test for
categorical variables. *Including 10 patients receiving a liver transplant. AF, ascitic fluid; INR, international normalised ratio; MELD, model for end-stage liver disease; SBP,
spontaneous bacterial peritonitis.
5% CO2. Cells were stimulated with 1,000 ng/ml lipopolysac-
charide (LPS) for 15 min to 3 h or with 10 ng/ml LPS, 10 ng/ml
FSL-1 (InvivoGen, San Diego, CA, USA), 10 ng/ml synthetic
monophosphoryl lipid A (MPLA) (InvivoGen), or Escherichia coli
K12 at a multiplicity of infection (MOI) of 3–30. Incubation with
sVSIG4 (Fc Chimera Protein, CF R&D Systems, Minneapolis, MN,
USA), anti-VSIG4 monoclonal antibody (13100-1-2/
C217_130529) (Abmart, Shanghai, China), or mouse IgG control
(Abmart) was performed for 24 h before stimulation with LPS or
incubation with bacteria. Phagocytosis was analysed using
opsonised fluorescently labelled inactivated E. coli (Invitrogen,
Carlsbad, CA, USA) at an MOI of 5 for 2 h.

The mechanism of VSIG4 release from PMs was investigated
using different blocking agents. Proteases were inhibited using 2
mg/ml tumour necrosis factor (TNF) protease inhibitor 2 (TAPI-2)
(Santa Cruz Biotechnology, Dallas, TX, USA), and intracellular
transport was studied disrupting microtubules with nocodazole
(50 ng/ml) or inhibiting actin polymerisation with latrunculin B
(1 lg/ml, Merck, Darmstadt, Germany). Furthermore, the influ-
ence of serum proteases was investigated using serum-free
medium containing 0.1% bovine serum albumin (BSA) (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA). Cells and super-
natant were collected at the indicated time points.

Immunoassays
VSIG4 was quantified by immunoassay (RayBiotech, Norcross,
GA, USA) according to the manufacturer’s manual using appro-
priate dilutions of 1:100 for serum, 1:3,000 for AF, and 1:20 for
cell culture supernatant. Given the high dilution, means of at
least 3 independent measurements in AF were used for analysis.
AF levels of C3b and C3a were measured by immunoassays
(LifeSpan BioScience, Seattle, WA, USA, and Hycult Biotech,
Wayne, PA, USA) in dilutions of 1:10,000 and 1:2,000,
centrifugation and CD14+ cells were enriched by MACS, transferred to glass slides
for VSIG4 in combination with the macrophage marker CD68 (top left), the stru
associated protein EEA1 (bottom left), and the LAMP2 (bottom right). Nuclei w
shown. AF, ascitic fluid; BSA, bovine serum albumin; EEA1, early endosome antig
MACS, magnet-activated cell sorting; PFA, paraformaldehyde; PM, peritoneal mac
protease inhibitor 2; VSIG4, V-set Ig-domain-containing 4.

JHEP Reports 2022
respectively, according to the manufacturers’ recommendations.
TNF was quantified in cell culture supernatant by immunoassay
(Invitrogen) according to the manufacturer’s recommendations
using 1:20 dilutions.

Confocal microscopy
For immunostaining, CD14+ PMs were immunomagnetically
enriched and transferred on a slide (800×g for 5 min) using the
Cytospin 4 centrifuge (Thermo Fisher Scientific). Cells were fixed
for 10 min with 4% paraformaldehyde (PFA) (Merck) and per-
meabilised for 30 min in PBS containing 0.3% Triton X-100
(Merck). Unspecific binding was blocked with PBS containing 5%
BSA (Merck) for 30 min. Primary antibodies against VSIG4
(EPR22576-70) in combination with b-tubulin (1E1-E8-H4),
lysosome-associated membrane protein 2 (LAMP2) (H4B4) or
early endosome antigen 1 (EEA1) (ab206860) or CD68 (KP1)
(Abcam, Cambridge, UK) were applied 1:100 in PBS + 0.05%
Tween 20 (Merck) over night at 4�C. Appropriate fluorescent
conjugate secondary antibodies (AF488 or AF546, Invitrogen)
were applied at a 1:1,000 dilution for 2.5 h at room temperature.
Slides were sealed using mounting medium containing DAPI
(Vectrashield, Burlingame, USA). The LMS 710 confocal laser
scanning microscope (Zeiss, Jena, Germany), Nikon A1 Ti2 N
STORM (Nikon, Tokyo, Japan), and ZEN2 Blue edition (Carl Zeiss
Microscopy, Jena, Germany) were used for imaging.

Flow cytometry
For the analysis of surface marker expression, PMs were incu-
bated with fluorochrome-conjugated primary antibodies at
optimal dilutions at 4�C for 30 min in PBS containing 0.5% foetal
calf serum and 2 mmol/L EDTA. Single-colour staining, isotype-
matched controls (IMCs), and fluorescence minus one (FMO)
controls were performed. The following antibodies were used:
, and fixed with PFA. Cells were permeabilised with Triton X-100 and co-stained
ctural component of microtubules b-tubulin (top right), the early endosome-
ere stained with DAPI. Representative images with scale bars and inserts are
en 1; FCS, foetal calf serum; LAMP2, lysosome-associated membrane protein 2;
rophage; SBP, spontaneous bacterial peritonitis; TAPI-2, tumour necrosis factor
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Data were right-censored at loss to follow-up or liver transplantation. Value of p is from the log–rank test and patients at risk are indicated. AF, ascitic fluid; SBP,
spontaneous bacterial peritonitis; sVSIG4, soluble V-set Ig-domain-containing 4; VSIG4, V-set Ig-domain-containing 4.
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CD14 (clone HCD14), C-C chemokine receptor type 2 (CCR2)
(K036C2), and tyrosine-protein kinase Mer (MERTK)
(590H11G1E3) from BioLegend (San Diego, CA, USA); VSIG4
(JAV4) from eBioscience (San Diego, CA, USA); human leucocyte
antigen-DR (HLA-DR) (G46-6), CD40 (5C3), CD206 (19.2), CD11c
(B-ly6), CD16 (3G8), and programmed cell death 1 ligand 1 (PD-
L1) (MIH1) from BD Bioscience (Franklin Lakes, NJ, USA); and
CD163 (GHI/61.1) from Miltenyi Biotec. LIVE/DEADTM Fixable
Aqua Dead Cell Stain Kit from Thermo Fisher and IMC mouse
IgG1 j and IgG2a j isotype controls from BD Pharmingen (BD
Biosciences, Franklin Lakes, NJ, USA) were used. Analysis was
performed using a FACSCanto II flow cytometer and FlowJo (v10)
software (BD Biosciences, Franklin Lakes, NJ, USA).

Gene expression analysis
Total RNA was isolated from immunomagnetically enriched PMs
using NucleoSpin RNA Kits (Macherey-Nagel, Düren, Germany).
RNA concentration and purity were determined by spectropho-
tometry (DS-11 FX, DeNovix, Wilmington, DE, USA). Total RNAwas
reverse-transcribed in complementary DNA using the High Ca-
pacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific)
JHEP Reports 2022
in accordance with the protocol provided by the manufacturer.
Quantitative real-time PCR (qRT-PCR) was performed using the
Maxima SYBR Green qPCR Master Mix (Thermo Fisher Scientific)
using the following primers: ACCAAGACTGAGGCACCTAC and
TCCAAGGTAGCCATCCATGT (VSIG-4), GTGGATTGAACAAGGACGCA
and ACTTCTTCACCGCTCTCGTT (CCR2), CATGTACGTTGCTATC-
CAGGC and CTCCTTAATGTCACGCACGAT (ACTB), and AAAC-
GATTGCAGGGTTTCACC and GCGTTTTTGATCCAGACCCA (GUSB).
qRT-PCR was performed using the Rotor-Gene Q (Qiagen, Hil-
den, Germany) with a 3-step cycling program, with 1 cycle of 95�C
for 10 min for initial denaturation, followed by 45 cycles of 95�C
for 10 s, 60�C for 20 s, and 72�C for 30 s. SYBR green fluorescence
was recorded during the elongation step of each cycle. The 2−DDCt

method was used to calculate the relative fold change in com-
parison with house-keeping genes ACTB and GUSB, and melting
curves were generated for quality control.

Statistical analysis
Unless otherwise indicated, 2-sided non-parametric tests were
used to avoid the assumption of a normal distribution. To
perform between-group comparisons, we used Wilcoxon–
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Fig. 5. Assessment of PM functions in the presence of recombinant VSIG4
and anti-VSIG4 antibodies. (A and B) Immunomagnetically enriched PM from
patients with cirrhosis without SBP seeded in cell culture plates and incubated
with 1 lg/ml of recombinant (rec.) VSIG4, monoclonal antibody targeting the
extracellular domain of VSIG4 (aVSIG4), or mouse IgG for 24 h. Subsequently,
either (A) cells were stimulated with 10 ng/ml LPS over 4 h and cell-free cell
culture supernatant was analysed for TNF using ELISA or (B) cells were incu-
bated with fluorescently labelled opsonised E. coli at an MOI of 5 over 2 h and
phagocytosis was analysed using flow cytometry. *p <0.05 in the Wilcoxon
matched-pairs signed rank test. (C and D) Concentrations of sVSIG4 in cell-free
AF from patients with SBP stratified for AF microbial culture results as using
bed-side inoculation of blood culture bottles as per clinical routine. AF, ascitic
fluid; MFI, median fluorescence intensity; MOI, multiplicity of infection; n.s.,
not significant; PM, peritoneal macrophage; SBP, spontaneous bacterial peri-
tonitis; sVSIG4, soluble V-set Ig-domain-containing 4; TNF, tumour necrosis
factor; VSIG4, V-set immunoglobulin-domain-containing 4.
Mann–Whitney tests for continuous data or Fisher’s exact test
for discrete data. Bivariate non-parametric correlation analysis
(Spearman) was performed to identify correlations between
continuous variables. Continuous variables were dichotomised
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according to the maximum Youden index in receiver operating
characteristics analysis. Time-to-event variables were displayed
using the Kaplan–Meier method, and groups were contrasted
using log-rank tests. Data were right-censored at loss to follow-
up, at liver transplantation, or at 90 days. Univariate and multi-
variable Cox regression analysis was performed to identify risk
factors for short-term mortality using SPSS version 27 (IBM,
Armonk, NY, USA). Competing risk analysis was performed using
Fine and Gray’s proportional sub-hazards model using Stata
version 16.1 (StataCorp, College Station, TX, USA). Data were
presented using Prism 8 (GraphPad, La Jolla, CA, USA). Owing to
the exploratory nature of the study, we applied a 2-sided sig-
nificance level of p = 0.05 for tests without correction for mul-
tiple testing. Systematic randomisation and blinding were not
performed.
Results
VSIG4hi PMs were identified by flow cytometry using co-staining
with CCR2 as this resulted in a better discrimination of distinct
cell populations (Fig. 1A) as previously reported.18 VSIG4hi CCR2lo

PMs were larger and more granular than their VSIG4lo CCR2hi

counterparts (Fig. 1B) and had significantly higher surface levels
of HLA-DR, CD163, CD16, MERTK, PD-L1, and CD206 in the
absence of SBP (Fig. 1C).

To investigate whether VSIG4 expression in PMs was differ-
entially regulated during SBP, we analysed 3 patients with
decompensated alcoholic cirrhosis who presented without SBP
at presentation and developed SBP during follow-up (Table S1
for baseline characteristics). VSIG4 gene expression in CD14+
peritoneal immune cells decreased during SBP and normalised to
baseline levels thereafter, whereas CCR2 expression increased
during SBP (Fig. 2A). In an independent sample set (Table S2), the
median fraction of VSIG4hi cells was 57% in the absence of SBP as
compared with 25% in presence of SBP as determined by flow
cytometry (p = 0.0004, Fig. 2B).

Having shown that VSIG4 expression and VSIG4 positive PMs
are reduced during peritonitis, we went on to investigate which
bacterial products induce the release of sVSIG4 from PMs. Un-
treated PMs that were cultured in plastic cell culture dishes
showed a time-dependent release of sVSIG4 into supernatant,
which was lower than that in response to the TLR4 agonist LPS at
10 ng/ml, the TLR2/TLR6 agonist FSL-1 at 10 ng/ml, or infection
with E. coli (Fig. 2C). There were no significant differences in
release kinetics after infections with E. coli K12 at different MOIs
between 3 and 30 (Fig. S1A).

Paired analysis of surface VSIG4 and sVSIG4 revealed that the
release of VSIG4 into supernatant was accompanied by an early
downregulation of membrane-bound surface VSIG4 after expo-
sure to LPS (Fig. 2D and E). Surface shedding after LPS was similar
to the synthetic TLR4 agonist MPLA (Fig. S1B and C).

The mechanisms underlying the release of VSIG4 from hu-
man PMs were further investigated. A time-dependent reduc-
tion of VSIG4 on the surface (Fig. 3A) along with an increase of
sVSIG4 in supernatant (Fig. 3B) was observed under serum-free
conditions. Actin polymerisation inhibition with latrunculin B
did not affect VSIG4 release from PMs. In contrast, inhibiting
microtubule polymerisation with nocodazole preserved VSIG4
surface expression and decreased sVSIG4 in cell culture super-
natant (Fig. 3A and B). Involvement of microtubule in VSIG4
transport was further corroborated by immunostaining, and
confocal microscopy showed b-tubulin to CD68-positive PMs to
7vol. 4 j 100391
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colocalise with VSIG4 (Fig. 3C). Consistent with Helmy et al.,20

we detected VSIG4 colocalising with EAA1-positive early endo-
somes to some degree but not with LAMP2-positive lysosomes
(Fig. 3C). Incubation with the protease inhibitor TAPI-2 dimin-
ished sVSIG4 release under serum-free conditions (Fig. 3A and
B), suggesting proteolytic cleavage by matrix metalloproteinases
(MMPs), TNF alpha-converting enzyme (TACE), or disintegrin
and metalloproteinases as 1 main mechanism for sVSIG4
shedding.

We went on to analyse the concentration of sVSIG4 in AF
from 120 patients with SBP from 3 cohorts (Table 1) and
compared it with that of 40 patients without SBP (Table S3). The
median sVSIG4 concentration in AF was 0.73 lg/ml (IQR
0.36–1.05) in patients with SBP as compared with 0.35 lg/ml
(IQR 0.20–0.45) in patients without SBP (p <0.0001). This dif-
ference was significant across the 3 cohorts (Fig. 4A). During
SBP, sVSIG4 concentrations were markedly higher in AF than in
serum without significant correlation between VSIG4 concen-
trations in these 2 compartments (Fig. 4B). We did not observe
a correlation of AF sVSIG4 with AF leucocyte count but a
moderate correlation with serum creatinine (rs = 0.493; p
<0.0001) and a weak correlation with C-reactive protein (rs =
0.280; p = 0.002) (Fig. 4C–E). Higher AF sVSIG4 concentration
did not correlate with lower concentrations of complement
C3b, white blood cell count, total serum bilirubin, international
normalised ratio (INR), AF cell count, AF protein, serum albu-
min, or platelets on a statistically significant level (Fig. S2A, B,
and G).

According to Youden’s index the best cut-off to discriminate
high and low risk of 90-day mortality in cohort 1 was 1.0206 lg/
ml with a sensitivity of 48% and a specificity of 76.2% (Fig. S2C).
Applying this cut-off resulted in a successful discrimination of
patients with poor 90-day outcome in 2 of 3 cohorts of patients
with SBP (Fig. S2D–F). In the overall cohort, the cumulative es-
timate of 90-day survival was 27.7 ± 8.2% SE in patients with AF
sVSIG4 of 1.0206 lg/ml or higher as compared with 51.0 ± 5.6%
SE in patients with lower concentrations (p = 0.042 in the log-
rank test; Fig. 4F).

AF sVSIG4 of 1.0206 lg/ml or higher was associated with
higher hazard of death (hazard ratio 1.70; 95% CI 1.01–2.86; p =
0.046) in univariate Cox regression analysis.

In addition, we analysed 90-day mortality defining liver
transplantation as a competing risk. In a Fine and Gray regression
model, AF sVSIG4 concentrations of 1.0206 lg/ml or higher (sub-
distribution hazard ratio 1.73; 95% CI 1.05–2.85; p = 0.032)
remained a significant predictor of 90-day mortality. Given the
relevant correlation of VSIG4 with the model for end-stage liver
disease (MELD) score (rs = 0.350), AF sVSIG4 did not significantly
contribute to 90-day mortality prediction, when adjusted for the
MELD score in a multivariable model.

Finally, we investigated whether sVSIG4 levels could influ-
ence human PM function, suggesting a role beyond that of a
mere surrogate marker for activation of large inflammatory PMs
during SBP. Incubation with recombinant VSIG4 did not affect
LPS-induced TNF release by PMs (Fig. 5A) or phagocytosis of
opsonised E. coli in vitro (Fig. 5B). In contrast, incubation with a
monoclonal antibody binding to the extracellular domain of
VSIG4 (KTPESVTGTWKG) unexpectedly reduced LPS-induced
TNF release and improved phagocytosis (Fig. 5A). In addition to
changes in macrophage differentiation by targeting membrane-
bound VSIG4, phagocytosis may also be affected by the avail-
ability of C3b for opsonisation and the compensation by other
JHEP Reports 2022
complement receptors. However, clinical data showed no cor-
relation between high AF sVSIG4 levels and bacterial culture
results or impaired ability to eliminate certain bacterial patho-
gens (Fig. 5C and D).
Discussion
Peritoneal inflammation during SBP is a well-regulated event
involving the recruitment and activation of neutrophils, mac-
rophages, and inflammatory T-cell subsets.16,28,29 PMs comprise
a key population of resident immune cells fulfilling specialised
functions regarding the recognition and phagocytosis of mi-
crobial pathogens, the induction and resolution of inflamma-
tion, and the activation of resident and recruited immune cells.
Accumulating evidence from mouse experimental models in-
dicates a potential role for the immunomodulatory macro-
phage marker VSIG4 in protecting against bacterial infection,
chronic inflammatory diseases, and immune-mediated liver
injury (reviewed by Small et al.30). Here we show that it is
released from human PMs after activation and that the con-
centration of sVSIG4 at SBP diagnosis predicts outcome in pa-
tients with SBP.

VSIG4hi PMs from patients with cirrhosis show higher
phagocytotic activity and bacterial killing than VSIG4lo PMs
alongside features of glucocorticoid-, IL-4/IL-13-, and lipid-
activated macrophage signatures, consistent with an alterna-
tively activated macrophage phenotype.18 Accordingly, the
expression of VSIG4 attenuates LPS-induced macrophage acti-
vation and cytokine release.22 However, surface VSIG4 expres-
sion is restricted to resting macrophages, and it is lost upon
activation.23 Consistently, the expression of VSIG4 in PMs and
the fraction of VSIG4hi PMs was strongly reduced in patients with
SBP in our study. This is in agreement with Irvine et al.,18 who
observed the lowest VSIG4 expression on PMs from 2 patients
with SBP in their study. Our long-term observations suggest that
the downregulation of VSIG4 mRNA in PMs is transient upon
inflammatory stimulation and returns to baseline after resolu-
tion of inflammation.

The disappearance of VSIG4hi macrophages during SBP may be
the result of dilution by a peritoneal influx of VSIG4lo CCR2+
circulating monocytes, a net efflux of VSIG4hi PMs to the omen-
tum,31 release of VSIG4 from the surface or membrane vesicles,20

cell death of tissue-resident macrophages, or a combination of the
above. In human large PMs, VSIG4 could be localised to the cell
membrane and the cytosol and associated to EEA1-positive early
endosomes but not LAMP2-positive lysosomes consistent with
previous reports.20 Release of sVSIG4 from PM into cell culture
supernatants was dependent on protease-mediated truncation
and microtubular transport. Further evidence that the sVSIG4 in
AF was of predominantly peritoneal origin was provided as the
serum concentrations were significantly lower and did not
correlate with peritoneal concentrations.

In addition to VSIG4, researchers have suggested dis-
tinguishing human PM subsets by employing differences in the
surface expression of CD206 or CD163.16,18,32,33 Although we
could confirm co-expression of these maturity markers on
VSIG4hi PMs, the release of surface VSIG4 into cell culture su-
pernatant followed a different kinetic than other soluble
macrophage activation markers, such as the mannose receptor
CD206, the haemoglobin scavenger receptor CD163, and the
urokinase plasminogen activator surface receptor CD87.16 In
contrast to other complement receptors, VSIG4 is localised on
8vol. 4 j 100391



constitutively recycling endosomes and is potentially involved in
the constitutive removal of C3-opsonised apoptotic cells and cell
debris, thereby preventing peritoneal inflammation.20 The
release of sVSIG4 into cell culture supernatant was largely in-
dependent of the inflammatory stimulus applied, and even un-
treated PMs that were cultured in plastic cell culture dishes
showed a lower but constitutive time-dependent release of
sVSIG4.

Besides being a marker of PM activation, sVSIG4 might also
exert direct immunosuppressive properties by inhibiting com-
plement activation via the alternative pathway25,26 and sup-
pressing CD8 and CD4 T-cell responses.23 Given the low
concentrations of classical and alternative pathway components
in AF from patients with cirrhosis who develop SBP,34 patients
with cirrhosis may be particularly vulnerable to higher perito-
neal concentrations of sVSIG4 affecting bacterial clearance. Our
data, however, provide no evidence that the peritoneal con-
centrations of complement C3b are altered in patients with
higher AF sVSIG4 concentrations during SBP. Despite the
JHEP Reports 2022
association of AF sVSIG4 with short-term mortality, we did not
observe evidence that sVSIG4 is a surrogate marker of the
severity of peritoneal inflammation. However, there was a
consistent moderate association of AF sVSIG4 with renal func-
tion, and thus the MELD score, and a weak association with C-
reactive protein.

Our observations suggest a link between peritoneal immune
activation, systemic inflammation, and organ failure during SBP
and support the use of peritoneal inflammation markers for risk
stratification in SBP. In addition to being a surrogate marker for
inflammatory macrophage activation during SBP, VSIG4
expression and release may also become a promising thera-
peutic target for patients at risk for a complicated course of SBP
given its role in modulating innate and adaptive immunity.
Future studies need to demonstrate whether the depletion of
inflammatory PM subsets identified by VSIG4 and strategies
improving bacterial phagocytosis by targeting VSIG4 may
become promising non-antibiotic strategies for patients with
cirrhosis and SBP.
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