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Clinical responses to ERK inhibition in BRAFV600E-mutant
colorectal cancer predicted using a computational model
Daniel C. Kirouac1, Gabriele Schaefer1, Jocelyn Chan1, Mark Merchant1, Christine Orr1, Shih-Min A. Huang1, John Moffat1, Lichuan Liu1,
Kapil Gadkar1 and Saroja Ramanujan1

Approximately 10% of colorectal cancers harbor BRAFV600E mutations, which constitutively activate the MAPK signaling pathway.
We sought to determine whether ERK inhibitor (GDC-0994)-containing regimens may be of clinical benefit to these patients based
on data from in vitro (cell line) and in vivo (cell- and patient-derived xenograft) studies of cetuximab (EGFR), vemurafenib (BRAF),
cobimetinib (MEK), and GDC-0994 (ERK) combinations. Preclinical data was used to develop a mechanism-based computational
model linking cell surface receptor (EGFR) activation, the MAPK signaling pathway, and tumor growth. Clinical predictions of anti-
tumor activity were enabled by the use of tumor response data from three Phase 1 clinical trials testing combinations of EGFR,
BRAF, and MEK inhibitors. Simulated responses to GDC-0994 monotherapy (overall response rate = 17%) accurately predicted
results from a Phase 1 clinical trial regarding the number of responding patients (2/18) and the distribution of tumor size changes
(“waterfall plot”). Prospective simulations were then used to evaluate potential drug combinations and predictive biomarkers for
increasing responsiveness to MEK/ERK inhibitors in these patients.
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INTRODUCTION
Approximately 50% of melanomas and 10% of colorectal cancers
(CRC) harbor V600E/K point mutations in the cytosolic kinase BRAF.
While receptor-mediated activation of RAS-GTP normally regulates
activity of the enzyme by catalyzing the formation of BRAF dimers,
V600 mutations result in constitutive signaling by the BRAF
monomer, and subsequent MEK and ERK phosphorylation.1 The
effector kinase ERK phosphorylates over 100 cytosolic and nuclear
substrates, which regulate enzymatic activity and gene expression,
promoting cell proliferation and survival.2

Vemurafenib (Zelboraf®) and dabrafenib (Tafinlar®) are ATP-
competitive BRAF inhibitors (BRAFi) highly selective for the V600E-
mutant, both approved for the treatment of metastatic mela-
noma.3–5 While approximately half of melanoma patients harbor-
ing this mutation respond to single agent therapy, the duration of
response is typically less than a year. Initial responses correlate with
the degree of phospho-ERK (pERK) suppression6 and resistance is
often associated with reactivation of MAPK/ERK signaling via a
multitude of genetic and epigenetic mechanisms.7–10 Combination
with the MEK inhibitors (MEKi) cobimetinib (Cotellic®) or trametinib
(Mekinst®) achieves more robust pERK suppression, increasing
overall response rates (ORR) to greater than 70%, and extending
both progression free survival and overall survival.11–13

Following impressive responses in melanoma, BRAFi, and MEKi
therapies have been tested in BRAFV600E mutant cancers of other
origins such as colorectal.14 The clinical activity observed in small
initial trials has, however, been quite modest in comparison to
melanoma patients, with response rates of 5% for vemurafenib
monotherapy,15 and 12% for BRAFi + MEKi (dabrafenib and
trametenib) combinations.16 Given the high expression and
activity of epidermal growth factor receptor (EGFR) in CRC, “by-
pass” signaling through EGFR/RAS/CRAF was postulated to

mediate BRAFi resistance in pre-clinical models.17, 18 The addition
of an EGFR blocking antibodies (EGFRi) such as cetuximab or
panitumumab to BRAFi and MEKi regimens has yielded modest
additional clinical benefit (ORR = 26% to the triple combination),19

but still far less than achievable in melanoma. As such, there
remains an unmet medical need to find more effective therapies
for the treatment of BRAFV600E-CRC.
If such cancers are dependent upon MAPK signaling, we

reasoned that ERK inhibitors (ERKi) either alone or as part of multi-
drug regimens could be of clinical benefit in BRAFV600E-CRC, given
the pre-clinical activity observed in melanoma and CRC models
resistant to BRAF and MEK inhibitors.20–23 A number of ERK
inhibitors, including BVD-523, SCH772984, and GDC-0994 (ref. 24)
are currently in pre-clinical and early clinical development, but it
remains unclear if these agents will show more favorable clinical
activity compared to MEK inhibitors.
For the predictive evaluation of such novel anticancer agents,

patient-derived xenografts (PDX) are emerging as valuable tool.25

However, systematic testing of alternate dosing regimens and
combinations in panels of genetically diverse, clinically represen-
tative tumor models via “PDX clinical trials”26 is tedious and
impractical as a drug development platform. As an alternative, we
developed a predictive computational model of the MAPK
pathway and its regulation of tumor growth in BRAFV600E-CRC,
using a quantitative systems pharmacology-based approach,27

which:

I. Quantitatively reproduces in vitro (cell line) signaling
responses and genetic mechanisms of resistance to targeted
(MAPK pathway) inhibitors

II. Predicts in vivo (cell line and patient-derived xenograft) tumor
growth responses to drug treatments based on these
underlying biochemical and cellular mechanisms
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III. Reproduces available clinical data on tumor size changes in
response to EGFRi, BRAFi, and MEKi treatments

IV. Predicts clinical responses to a novel ERKi (GDC-0994)28

monotherapy and combination regimens

RESULTS
A mathematical model of the MAPK pathway including multiple
signaling feedbacks and redundanceis
Based on current scientific understanding and public literature, we
constructed a mathematical model representing the MAPK/ERK
signaling pathway (Fig. 1a). The model is focused around the
canonical cascade connecting EGFR, RAS, RAF (BRAF and CRAF),
MEK, and ERK. Alternate receptors such as MET, FGFR, and PDGFR
are also known to activate the MAPK cascade, and these were
lumped together as RTK2. Three negative feedback circuits
initiated by kinase active ERK were included. DUSP phosphatases
which inhibit ERK directly, Sprouty (SPRY) which blocks RAS
activation,7 and transcriptional circuits mediated by MYC, which
inhibit the expression and activity of EGFR and other RTKs.29 Many
additional feedback mechanisms have been described in the
literature, such as inhibitory phosphorylation of MEK, CRAF, and
EGF by ERK.7 However, the functional effects of such additional
mechanisms would not be discernable from the three already
considered given the data, and were thus omitted.
The PI3K/AKT cascade functionally compensates for MAPK/ERK

signaling in certain contexts,30, 31 and thus was also represented in
the model. Various receptors are known to signal through PI3K,
such as ERBB-family members and IGF1R. Receptors that can drive
PI3K activation but only weakly influence MAPK are represented as
RTK3. PI3K signaling can also be activated by the same receptors
that drive MAPK activation (EGFR and RTK2), either directly or
through RAS.1 Since the exact mechanism of PI3K activation
cannot be differentiated from the data used, RAS-mediated
activation is used to represent the net effect of these two
mechanisms. The two cascade outputs, ERK and AKT, are then
integrated by the cell’s translational and transcriptional machin-
ery. Other oncogenic pathways such as Wnt/β-catenin, JNK/c-Jun,
or Notch signaling may also functionally compensate for MAPK/
ERK-driven tumor growth. As such, the PI3K/AKT branch repre-
sented in the model serves as a surrogate for alternate (non-
MAPK) oncogenic pathways. Similarly, while signal integration is
represented in the model diagram by a single protein S6, this
serves as a surrogate for a multi-faceted process including but not
limited to metabolic regulation via mTOR, protein translation
through 4E-BP, and transcriptional regulation via AP-1 (ref. 1). An
empirical time delay term connects cytosolic signaling flux,
through dynamic changes in gene expression and protein activity,
to cell growth. The final model structure comprises 38 species and
103 parameters, implemented as a system of differential-algebraic
equations (Tables S1, S2, and Methods). Our model development
workflow is summarized in Fig. 1b, successively incorporating
in vitro cell signaling and cell viability, in vivo xenograft tumor
growth kinetics, and finally tumor size changes from Phase 1b
clinical trials, toward predicting the clinical activity of novel drug
combination treatments including the ERKi GDC-0994.

Model simulations recapitulate in vitro signaling dynamics, cell
growth responses, and genetic mechanisms of resistance to drug
treatments
We first assessed whether the model could be calibrated to
recapitulate published data on cell signaling and growth
responses to MAPK inhibitors in BRAF-mutant cell lines. Two key
results were considered. First, in BRAF-mutant melanoma cell lines
BRAFi treatment results in robust suppression of pERK, whereas in
BRAF-mutant CRC cell lines, BRAFi treatment leads to transient

pERK suppression for upto 24 h, followed by a rebound in its
activity to approximately 40% of the baseline by 48 h (ref. 18). The
pERK “rebound” has been attributed, via gene knockout and
inhibitor studies, to the activation of EGFR, which is expressed at
much higher levels in CRC than in melanoma.17

We used a particle swarm optimization (PSO) algorithm to
search for a set of 28 system parameters that produce pERK
rebound in CRC but not melanoma cell lines. We simulated 3-day
cell cultures, setting the maximal EGFR signaling as tenfold higher
in CRC vs. melanoma cells (EGFRT = 1 vs. 0.1), based on EGFRmRNA
expression from TCGA RNASeq data. For the simulations, a
prototypic BRAFi was implemented, which maintains 95% target
suppression. Given the stochastic nature of PSO and large number
of free parameters, we ran the algorithm multiple times and
selected the 10 best solutions (lowest Mean Square Error) for
further analysis. The model quantitatively reproduced the pERK
rebound observed in response to BRAFi treatment in CRC but not
in melanoma cells, as dependent upon EGFR/RAS/CRAF signal-
ing18 (Fig. 2a, b). To explore which of the three feedback circuits
underlie this phenomenon, we simulated the model with each
circuit turned on individually, or together (Fig. 2c). All three
mechanisms were capable of producing some degree of signal
rebound, but the effect was more pronounced when all three
were active.
The second set of results we wished to reproduce concern the

effect of mutations in core components of the MAPK cascade on
the sensitivity to EGFR/MAPK inhibitors. As noted above,
heightened EGFR activation mediates resistance to BRAFi treat-
ment, as do BRAF amplifications.32 KRAS amplifications, and single-
nucleotide substitutions, which constitutively activate KRAS (such
as G12V) or MEK1 (such as F53L) also mediate resistance to
combinations of BRAF, MEK, and EGFR inhibitors, though
sensitivity to ERK inhibition is reportedly not affected by such
mutations.23

Based on these findings, we ran the PSO algorithm 20 times to
further calibrate the model to reproduce published mutation-
treatment response profiles23 and predict untested mutation-
treatment response pairings in BRAF-mutant cells. Cell growth in
3-day cultures was simulated, again assuming 95% target
suppression by prototypic inhibitors (EGFRi, BRAFi, MEKi, ERKi.
The results are represented as a hierarchically clustered heatmap
with drug treatments on the x-axis, and mutational status (in
addition to the BRAFV600 mutations) on the y-axis (Fig. 2d). Drug
treatments are ordered by relative activity, and similarly, muta-
tions ordered by relative potency in mediating drug resistance.
BRAFi treatment was effective only in cells with low expression of
EGFR (and thus minimal RAS/CRAF signaling). MEKi treatment was
effective in EGFR-high cells, but abrogated by BRAF-amplification.
The BRAFi + MEKi combination was potent in all but the MEK-
mutant cells, while ERKi treatment was effective at suppressing
cell growth regardless of genetic background, consistent with
published data.21–23

ERK is highly sensitive to pMEK-mediated catalytic activation
We next explored why the inhibition of ERK was less sensitive to
MAPK-reactivation than inhibition of MEK, by analyzing the
parameter values that successfully recapitulate this difference.
Focusing on the pMEK:pERK activation curve, the parameter
combinations that were sampled cover a wide range of shapes
(based on EC50 and Hill coefficients). However, the 20 parameter
solutions that best reproduce the experimental data all yield an
extremely sensitive pMEK-pERK relationship at low levels of pMEK,
with median EC50 (parameterτ4) of 0.11 (Fig. 2e). That is, at 90%
pMEK inhibition, pERK remains at 50% of maximal activity.
Achieving>90% pERK reduction predicted as necessary to achieve
tumor regression (Fig. S1a) would require 98% inhibition of pMEK.
This provides a mechanism by which targeting ERK may be
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advantageous in cases of super-physiologic MAPK (MEK) signaling.
Moreover, this highlights the difficulty in achieving clinically
robust suppression of the pathway via RAF/MEK inhibitors, due to
combined MEK-ERK signal amplification and multiple ERK-
mediated negative feedback circuits.33

To confirm this model-predicted relationship experimentally, we
quantitated published western blot measurements of pERK and
pMEK in four BRAFV600E-CRC cell lines dose-titrated with the pan-

RAFi AZ628 (Colo-201 and Colo-206F, both parental and
derivatives with in vitro-acquired resistance to BRAFi32; Table S3).
The data were remarkably consistent with model predictions,
supporting a high-sensitivity pMEK:pERK relationship in BRAFV600E-
CRC cells (Fig. 2e).
Our model employs an empirical (logic-based) description of

the signal transduction cascade, and thus does not enable deeper
interrogation of the mechanisms underlying this pMEK:pERK

Fig. 1 MAPK signaling model structure and development workflow. a Model structure. Gray nodes indicate core MAPK signal signaling
components, blue nodes represent regulatory feedback components, and white nodes surrogate alternate pathway (PI3K/Akt), alternate
receptors (RTK2, 3), and signal integration (S6) components. b Model development workflow, highlighting data inputs (gray boxes), pre-clinical
modeling tasks (blue boxes), and clinical translation modeling tasks (red boxes), and associated figures. PSO particle swarm optimization, LSE
least squares estimation
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relationship, or an exploration of how generalizable it is to other
cancer types. To do so, we extracted a sub-model of the two-step
phosphorylation of ERK by pMEK from a detailed mass action
kinetics-based model of the pathway (see Methods).34 Parameters
for the kinetic rate constants and initial conditions were taken
directly from the publication and based on data from HeLa cells, a
BRAF-wild-type cervical carcinoma line. The sub-model was
simulated at steady state, and the resultant pMEK vs. pERK
relationship overlaid on our results (Fig. 2e). While the curve could
in theory have taken on a variety of shapes depending on the
values of kinetic parameters and enzyme concentrations (Fig. S1b,
c), the results were again consistent with both the simulations
from our model, and the experimental data. Combined, this

indicates that the high-sensitivity relationship arises from the
enzymatic nature of pMEK-mediated pERK activation (a biochem-
ical amplifier),33 a conserved element of the pathway rather than
an idiosyncratic feature of BRAFV600E-CRC cells. This also provides a
biochemical underpinning to the steep exposure–response
relationship observed between the MEKi cobimetinib and pERK
in vivo.35

Signaling through multiple cell surface receptors abolishes the
activity of BRAF inhibition in vitro
It is well established pre-clinically that signaling through EGFR can
mediate resistance to BRAFi treatment, and the model successfully
captures this phenomenon (Fig. 2a–d). However, clinical trials

Fig. 2 The MAPK model reproduces published in vitro signaling and drug sensitivity data. pERK dynamics in response to BRAFi treatment in
EGFRlo melanoma cells a and EGFRhi CRC cells b. c Degree of pERK ‘‘rebound’’ with the three potential feedback mechanisms switched on in
isolation, and simultaneously, error bars indicating std across parameter sets. d Simulated cell growth (fold expansion) over 72 h for six variant
cell lines with six drug treatments. Asterisks indicate conditions with matching data.18, 23, 32 e Relationship between steady-state pMEK and
pERK. Gray lines are simulations of 20 alternate model parameter sets; blue line is a simulation of the Schoeberl (2002) mechanism-based
biochemical model,34 and red dots are quantitative western blot data from four BRAF-CRC cell lines treated with the pan-RAFi AZ628 (ref. 32). f
Viability of four BRAF-CRC cell lines cultured in the presence (red) or absence (blue) of TGF-α, HGF, or FGF ligands. Thick lines indicate median
responses
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testing combinations of EGFR and BRAF inhibitors in BRAF-CRC
have since proven disappointing.14, 36 One potential explanation is
signaling redundancy between EGFR and alternate receptors.
Many receptors are capable of activating RAS/CRAF signaling, and
thus could theoretically bypass combination EGFR/BRAF blockade
to activate MEK/ERK (see Fig. 1a). We tested this hypothesis by
dose titrating a panel of four BRAFV600E-CRC cell lines (HT-29,
LS411N, MDST8, and SW1417) with vemurafenib (BRAFi), in the
presence or absence of TGFα, HGF, and bFGF, ligands for the
receptors EGFR, c-MET, and FGFR, respectively, (Fig. 2f). As
expected, TGFα stimulation nullified the growth inhibitory effect
of vemurafenib in all four cell lines. The effects were completely
recapitulated with HGF or bFGF stimulation, implying functional
redundancy between EGFR, MET, and FGFR signaling. Gene
expression profiling37 of 11 BRAFV600E-CRC cell lines (including 3/
4 above) revealed that transcripts encoding MET and FGFR4 are
expressed at levels equivalent to EGFR in these cells, as are IGFR2
and ERBB3, regulators of PI3K/Akt signaling (Fig. S2). MET and
FGFR are thus capable of fulfilling the role of RTK2, and IGFR and
ERBB3 that of RTK3, all representing potential mediators of
resistance to EGFRi and BRAFi treatments.

In vitro cell growth experiments allow estimation of drug–target
inhibition IC50 values
The analysis presented thus far was based on simulating the effect
of generic inhibitors, assuming 95% target suppression in vitro. In
order to simulate the effects of specific drugs, we generated cell
viability dose–response curves to vemurafenib (BRAFi), cobimeti-
nib (MEKi), and GDC-0994 (ERKi) in a panel of 14 CRC cell lines, 12
harboring BRAFV600E mutations and 2 with KRASG12V mutations.
Representing the mean viability (essentially the area under the
curve) of each cell line × drug treatment as a hierarchically
clustered heatmap, the cells separate into two groups correspond-
ing to relatively MAPKi sensitive vs. resistant subsets (Fig. 3a).
Notably, the two KRAS-mutant cells were in the resistant cluster,
consistent with established knowledge about the relative
sensitivity of BRAF vs. KRAS-mutants to MAPK inhibition.38

To assess whether the pattern was specific to MAPK pathway
inhibitors, rather than generic differences in sensitivity to anti-
cancer drugs, we used a cell line screening database37 to examine
sensitivity (mean viability) of the same cell lines to 15 anti-cancer
drugs, including 5 MAPK inhibitors, 5 inhibitors of non-MAPK
targets (PI3K, Akt, mTOR, and Bcl-2), and 5 cytotoxic drugs.
Differential sensitivities between the MAPKi-sensitive vs. resistant
subsets defined by clustering (Fig. 3a) are represented in Fig 3b as
directed P-values (rank-sum test). There were no significant
differences in sensitivity to the 10 non-MAPK directed drugs,
while the sensitive cluster was responsive to all RAF/MEK/ERK
inhibitors tested. Differences between the cell lines are thus
specific to MAPK pathway targets.
Drug-target IC50values and Hill coefficients for target inhibition

(rather than growth inhibition) for each of the inhibitors tested
were then estimated using non-linear least squares regression,
treating the seven sensitive cell lines as biological replicates (i.e.,
drug-target IC50s were assumed constant across cell lines). As
shown in Fig. 3c, the resulting model fits capture the data well.
Median estimates for drug-target IC50s are represented in Table 1
(individual estimates in Table S4). The affinity of cobimetinib for
MEK is estimated at roughly an order of magnitude greater than
vemurafenib for BRAFV600E and GDC-0994 for ERK, relatively
consistent with biochemical Ki measurements.28, 39, 40 As none of
the cell lines responded to erlotinib, the IC50 for EGFR inhibitors
could not be estimated, and were thus taken from drug labels.

Modest differences in MAPK pathway-dependence can explain the
differential sensitivity of cell lines to RAF/MEK/ERK inhibitors
To explore what biological mechanisms could underlie the
differences in RAF/MEK/ERK sensitivity among cell lines, we
evaluated whether any individual model parameter was capable
of converting dose–response curves from the sensitive to resistant
profiles. A modest decrease in cellular dependence on MAPK
signaling (from 100 to 85%via reduction of the parameter wOR)
recapitulated the resistant cluster dose-viability profiles to BRAFi,
MEKi, and ERKi (Fig. 3c). No other single model parameter tested
was capable of doing so. This suggests that even a modest
activation of an alternate oncogenic pathway is sufficient to
explain the significantly reduced sensitivity to MAPK inhibition in
these cells.
To further explore this phenomenon, we examined sensitivity to

the same BRAF/MEK/ERK inhibitors in a panel of BRAFV600-mutant
cell lines, 9 CRC and 37 melanoma.37 Consistent with clinical
experience, the majority of melanoma cell lines were sensitive to
BRAF and MEK (as well as ERK) inhibition and a fraction highly
resistant, while the pattern is reversed in CRC cells (Fig. 3d). For
both tissue types, responsiveness to the three drugs are highly
correlated, consistent with model predictions that cellular
dependence on the MAPK pathway is a critical determinant of
response to BRAF/MEK/ERK inhibition. MAPK pathway depen-
dence thus appears to be heightened and more frequent in
melanoma compared to CRC. To identify potential pathways
mediating MAPK inhibitor resistance, we compared differences in
transcriptional profiles between the melanoma vs. CRC cell lines
using pathway enrichment analysis (see Methods). CRC cells
displayed heightened expression of genes related to extra-cellular
matrix (ECM) organization, and pathways related to cytokine,
interleukin, GPCR, Ephrin, FGF, and PI3K/Akt signaling, among
others. Comparing the MAPK-sensitive vs. resistant CRC subsets
from Fig. 3a, the resistant set was again enriched in transcripts
related to ECM organization and collagen synthesis, as well as
Rho-GTPase, Notch, Wnt, and IL-6 signaling (Table S5). While there
are many caveats in inferring signaling activity from mRNA
expression profiles, this suggests a multitude of pathways (aside
from PI3K/Akt) may play a role in reducing cellular dependence on
MAPK signaling in BRAFV600E-CRC tumors.

The MAPK signaling model captures in vivo xenograft growth
kinetics
We next assessed the ability of the model, developed using
in vitro data, to describe and predict drug activity in vivo. We
established subcutaneous xenografts of HT29 cells (a BRAFV600E-
CRC model), allowed time for palpable tumors to form, and then
began treatment with clinically relevant regimens of cetuximab
(12.5 mg/kg Q1W), vemurafenib (50 mg/kg QD), cobimetinib (5
mg/kg QD), and GDC-0994 (50 mg/kg QD), as well as seven
pairwise combinations and two triple combinations (eight animals
per treatment arm, ten animals control). Tumor size was then
measured every 3 days over 21 days of treatment.
To adapt the model from an in vitro cell culture to the in vivo

xenograft context, we assumed that all cellular signal transduction
and drug IC50 parameters were conserved between the cell culture
and in vivo contexts, but rates of maximal proliferation and cell
death (µMAX, δMAX) would vary. To account for EGFR redundancy
we also estimated the activity of alternate receptor signaling
(RTK2), as ligands for alternate receptors may be expressed in vivo.
Murine pharmacokinetic (PK) parameters for each drug (Table S6)
were used to simulate drug exposure in the tumors, assuming a
serum/tumor partition coefficient of 100%. The three in vivo
parameters (µMAX, δMAX, RTK2) were then estimated by least-
squares fitting to the mean tumor growth kinetics in the control
and monotherapy treatment groups, as well as the cetuximab +
vemurafenib combination arm (Fig. 4, parameter estimates in
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Table S7). The model fits the data well, consistent with our
assumption that the primary difference between in vitro and
in vivo experimental models are the rates of cell proliferation and
death, plus alternate RTK signaling to account for the reduced
activity of cetuximab. We assessed model predictivity by
prospectively simulating tumor kinetics on the combination
treatment arms, and overlaid the results of actual tumor data for
eight select combinations (five doublets and two triplets, depicted
as red and pink panels in Fig. 4). Predicted growth curves match

the experimental data well, as simulations lay within the
distribution of the eight replicate tumors.

Proliferation rate, MAPK-dependence, and alternate receptor
(RTK2) signaling explain the variation between in vivo tumor
models
All of the combinations assessed are reasonably active in the HT29
xenografts, resulting in either tumor stasis or regression. The HT29
model is thus very sensitive to MAPK-inhibition, which does not

Fig. 3 MAPKi sensitivity profiles of CRC cell lines. a Sensitivity (mean viability) of 14 CRC cell lines to EGFR, BRAF, MEK, and ERK inhibition. b
Median differences in sensitivity (mean viability) between the seven sensitive (S) vs. seven resistant (R) cell lines to 15 drugs, including five
MAPK pathway inhibitors, five inhibitors of other signaling pathways, and five cytotoxic chemotherapies. c Cell viability dose–responses of 14
cell lines to vemurafenib, cobimetinib, and GDC-0994. Cell lines are annotated as relatively MAPKi sensitive (blue) vs. resistant (red), overlying
individual cell line data (light lines) and model simulations (thick lines). c Normalized sensitivity (z-scored mean viability) of nine CRC and 37
melanoma cell lines to GDC-0994 cobimetinib and vemurafenib
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accurately reflect clinical experience. To explore more clinically
relevant models, we performed the same in vivo experiment using
two patient-derived xenografts (PDX models CR14172 and CRC15),
which are expected to more closely mirror clinical responses than
do cell line-derived xenografts (CDX).25 Focusing on the 21-day
tumor size changes (Fig. 5a), the untreated CR1472 tumors grow
slightly faster than the HT29 xenografts, with approximately 4.5 vs.
4-fold increases in volume over the three-week period. The
CR1472 tumors were also considerably less responsive to all
therapies (all 12 treatments lay above the CR1472 vs. HT29
diagonal), and even the triple combinations failed to achieve
tumor stasis. In contrast, the CRC15 PDX tumors grew more slowly
than the HT29 (2.7-fold), but both models responded similarly to
drug treatments (Fig. 5b). In fact, while the magnitude of
treatment responses varied significantly between tumor models,
the rank order of treatment effects were very consistent, with
Spearman’s correlation coefficients of 0.86 between the HT29 vs.
CR1472 and 0.94 between the HT29 vs. CRC15 (P < 10−4 for both
comparisons).
We used the computational model to explore which biological

parameters were necessary and sufficient to convert an HT29-like
tumor to the two alternate PDX tumors. After performing a Local
Parameter Sensitivity Analysis (Table S8) and assessing the effect
of multiple mutations, protein expression changes, and cellular
and pharmacological properties on simulated HT29 tumor growth
(Fig. S3), we found the refractory CR1472 response profile could be
matched by adjusting just three model parameters. First, by
increasing the RTK2 activity (i.e., non-EGFR receptor signaling)
from a median value of 3.9% to 39% that of EGFR, thereby
reducing the sensitivity to cetuximab combinations. Second, by
modestly increasing the proliferation rate (µMAX) from 0.23 to 0.28
per day, thus increasing tumor growth. Third, by either decreasing
the dependence of growth on MAPK(wOR) from 100% to 78%, or
by decreasing the drug tumor partition coefficient from 100% to
6%. That is, the response profile of a tumor with modestly reduced
dependence on the MAPK pathway is very similar to that with a
drastically reduced tumor drug concentration. Because the model
fits were better with the reduced MAPK hypothesis (r2 = 0.95 vs.
0.85; Fig. S3c), and it seems physiologically unlikely that drug
penetration into the CR1472 tumors would be systematically
reduced to this extent compared to the HT29 xenografts (20-fold),
dependence on alternate (non-MAPK) pathways seems a more
plausible explanation for the reduced responsiveness.
The CRC15 tumor growth kinetics and drug response profile

could be matched precisely by tuning just a single parameter from
the HT29 model, reducing the proliferation rate (µMAX) from 0.23
to 0.17 per day. When we attempt to estimate the MAPK-
dependence parameter (wOR) for this model, an optimal value of
96% is found, close enough to 100% to conclude that these

tumors are solely dependent on MAPK signaling, as are the HT29
cell line-based xenografts.
We thus have two PDX tumor models with very different drug

response patterns, one of which is completely refractory to all
combination treatments (CR1472), and one which achieves either
tumor stasis or regression on the various combination regimens
(CRC15) (Fig. 5c). However, it is unclear to what extent either of these
PDX models reflects human CRC tumors. The experiments could be
repeated in a panel of PDX models representing the breadth of
genetic diversity of BRAFV600E-CRC tumors to estimate population-
level response rates to the combinations. While such experiments
have been conducted26, 41 the approach seems impractical to
implement as a platform tool in drug development. As an alternative
approach, we used available clinical data to translate the computa-
tional model from xenografts to patients, and represent the diversity
of BRAFV600-CRC tumors in silico.

Clinical translation and prediction of novel drug combination
efficacy
Two changes enabled the translation of the model from murine
xenografts to the clinical context. First, mouse PK parameters were
replaced with human counterparts, including population-level
variability. Population PK models for cetuximab and vemurafenib
were taken from Pharmacology Review sections of BLA/NDA
fillings (www.accessdata.fda.gov), cobimetinib from published
literature,42 and GDC-0994 developed from data collected as part
of a Phase 1clinical trial43 (summary PK parameters in Table 1, and
covariance matrices in Table S9). These models were used to
simulate concentration time-courses of each drug at clinical
dosing regimens across a population (Fig. 6a).
The second, and more challenging step was to alter the model

to reflect the cell biology of a clinically relevant patient population
rather than a xenograft. Quantitative information on the molecular
and cellular differences between these settings is lacking.
However, published patient-level tumor responses in BRAFV600E-
mutant CRC are available from Phase 1b clinical trials testing
combinations of vemurafenib + cetuximab,14 the alternate BRAF
and MEK inhibitors dabrafenib + trametinib,16 and dabrafenib +
trametinib + panitumumab (an EGFRi).19 Under the assumption
that the alternate BRAF, MEK, and EGFR inhibitors are clinically
equivalent,44, 45 we used the data from these three studies to
constrain our simualtions, and predict clinical responses to GDC-
0994-containing regimens.
To do so, we first selected 16 model parameters representing

variable or uncertain quantitative biology for randomization.
These correspond to expression levels and basal enzymatic
activity of key protein species, feedback circuits, and degree of
MAPK-pathway dependency. A virtual cohort of 1000 tumors was

Table 1. Pharmacological properties of drugs included in the model

Parameters Cetuximab AVG
(%CV) [m/h]

Vemurafenib AVG
(%CV) [m/h]

Cobimetinib AVG
(%CV) [m/h]

GDC-0994 AVG
(%CV) [m/h]

Ka (1/d) – 4.5 (101) [5.3] 33 (167) [0.7] 35 (173) [0.19]

Vc/F (L) 4.5 114 (68) [0.61] 487 (51) [5.8] 171 (39) [0.07]

CL/F (L/d) 0.67 32 (33) [48] 327 (59) [15.9] 161 (43) [13.1]

V2/F (L) – 335 (75) [1] –

Q/F (L/d) – 252 (72) [1] –

IC50 (mg/L) 0.03 0.027 (170) 0.0032 (150) 0.13 (39)

MM (g/mol) 152 000 489 531 441

MTD (mg) 450 Q1W 960 BID 60 Q1D 400 Q1D

muMTD (mg/kg) 12.5 Q1W 50 Q1D 5 Q1D 50 Q1D

*[m/h] indicates murine/human scaling factor for PK parameters, based on a 70 kg patient
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Fig. 4 HT29 xenograft tumor growth kinetics over 21 days. Individual tumors (thin lines) and model simulations (thick lines) overlaid, with plots
color-coded as: untreated control (black), treatment data used for model training (blue), and model predictions, i.e., data not used for training
(red and pink, corresponding to double and triple drug combinations)
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created by Monte Carlo sampling across log-normal distributed
parameter values (Table 2), and tumor kinetics simulated in
response to treatment with all 16 possible combinations of the
four drugs (cetuximab, vemurafenib, cobimetinib, and GDC-0994)
at single-agent maximum tolerated dose (MTD) regimens (Table 1).
For cobimetinib and GDC-0994 this consisted of daily dosing with
21/7-day on/off cycles, while cetuximab and vemurafenib were
dosed continuously (weekly and twice daily). Change in tumor size
at 8 weeks of therapy, as per RECIST criteria46 was then used to
classify simulated treatment responses.
Patient-level response data (waterfall plots) from the three

clinical trials were digitized and binned into RECIST categories
(Table 3), and quadratic optimization used to match the response
distributions between the simulations and clinical data by
assigning a prevalence weight (PW), or statistical probability, to
each virtual tumor in the population.47 Monte Carlo resampling
from the prevalence weighted virtual cohort (Table S10) was then
performed to generate a virtual population, and simulate clinical
responses to the 16 treatments arms. Simulated tumor size
changes closely matched the clinical data (Fig. 6b), and provided
predictions for the remaining twelve treatment arms which have
not been tested clinically.

From the proportion of virtual tumors which regressed by 30%
or more, we calculated the ORR for each treatment arm.
Simulations predict more-than additive activity for many of the
combinations (Table S11), in particular the vemurafenib + cobi-
metinib-containing regimens due to co-targeting of signaling
redundancies (BRAF plus EGFR/CRAF). There is, however, a
discrepancy between the results of ORRs calculated from the
maximal change in tumor size at 8 weeks, and the “confirmed”
ORRs, shown in Fig. 6b and noted in Table 3. This discrepancy
presumably represents tumors that initially shrank by greater than
30% over the first 8-week cycle, but then subsequently began to
regrow over the second cycle of therapy such that they would be
classified as “unconfirmed” (i.e., transient) responses. Notably, this
discrepancy appears for both EGFRi treatment arms, but not
BRAFi + MEKi, suggesting that activation of alternate RTK signaling
is mediating resistance to EGFR inhibition, and consistent with our
cell line data demonstrating functional redundancy between
EGFR, MET, and FGFR signaling (Fig. 2e). We, therefore, examined
how increasing RTK2 (non-EGFR) signaling affects simulated
response rates. With RTK2 activity increased to 15% that of
pretreatment EGFR activity, the simulated ORRs for all four
treatment arms closely matched the confirmed ORRs reported in
the publications (Fig. 6c).

Fig. 5 Tumor growth and treatment responses in HT29 cell-line derived xenografts vs. two PDX models, CR1472 and CRC15. a HT29 vs.
CR1472 and b HT29 vs. CRC15 tumor growth over 21-days on 13 alternate treatments. c Model simulations and experimental observations of
changes in tumor size over 21-days for the 13 treatments
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GDC-0994+/- cobimetinib are predicted to be the most efficacious
single and double agent treatments
GDC-0994 treatment was predicted to yield the highest mono-
therapy response, at approximately 17% ORR (independent of the
degree ofRTK2 signaling), compared to 8% for cobimteinib, 3% for
vemurafenib, and 0% for cetuximab. We simulated 8-week tumor
size changes (waterfall plots) on GDC-0994 monotherapy for 100

replicate trials, estimating 90% confidence intervals based on the
underlying biological and pharmacological variability. Subse-
quently, as part of a Phase I study of GDC-0994 monotherapy
(NCT01875705), 18 BRAFV600E-mutant CRC patients were treated,
of which 13 had evaluable tumors.43 The measured changes in
tumor size match model predictions remarkably well for the
prevalence-weighted virtual tumors (Fig. 7a), with statistically

Fig. 6 Simulated pharmacokinetics and tumor responses on 16 drug treatment regimens. a Simulated serum drug concentrations for
cetuximab, vemurafenib, cobimetinib, and GDC-0994 dosed at clinical regimens. Median, 5 and 95-percentiles are shown in black lines. b
Relative changes in tumor size following two cycles of treatment (8 weeks) on all 16 possible combinations of the four drugs, for prevalence
weighted model simulations (gray) and clinical data (red). c Simulated ORRs for baseline tumors (RTK2lo), and those with RTK2 set at 15% that
of EGFR (RTK2med)
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indistinguishable predicted vs. measured distributions (P = 0.71;
rank-sum test). In contrast, the simulated distribution of the virtual
cohort from which the virtual population was sampled (i.e., without
clinical data-based prevalence weighting), was significantly different
than the clinical result (P= 0.039; Fig. S4a). Incorporation of clinical
data via prevalence weighting was thus necessary to generate
accurate predictions.
Given a predicted ORR of 17% across the virtual population, we

would expect 2.8 responses of the 18 patients entering treatment.
Two confirmed partial responses were observed, consistent with
model predictions (P = 0.25; binomial test comparing 2/18% vs.
17%, Fig. 7b). The simulated response rate in the 1000 tumor
virtual cohort without prevalence weighting (51% ORR) was again
significantly different than the clinical result (P = 2.5 × 10−5),
further confirming that inclusion of clinical data into the model
via the prevalence weighting approach was necessary in making
accurate predictions. Predictive accuracy of the model was found
to increase progressively with each clinical data set included in the
weighting, the greatest value emanating from the triple combina-
tion study (Fig. S4c, d). While the three clinical data sets were

found to add differing degrees of predictive power, no pattern
was discernable from the small number available. In summary,
inclusion of the clinical data from EGFRi, BRAFi, and MEKi
treatments into a pre-clinically constructed model was necessary
and sufficient to accurately predict clinical tumor responses to
GDC-0994 monotherapy.
The combination of cobimetinib + GDC-0994 is predicted to be

the most active doublet combination, with a predicted ORR of
32% at the single-agent MTDs of both. As this regimen may not be
tolerated, we simulated responses to the combination of
cobimetinib + GDC-0994 over a range of doses (10–80mg and
100–500mg Q1D, respectively,; Fig. 7c). Predictions indicate
synergistic (more than additive) activity of the drugs, particularly
at lower doses. However, even at the highest combination dose
schedule, predicted response rates of 33% are far lower than the
68% ORR observed with the vemurafeninb + cobimetinib combi-
nation in BRAFV600E-melanoma.48 We thus used the model to
explore the molecular or cellular features limiting clinical tumor
responses, and prospectively assess how these could be
overcome.

Clinical responses to MEK/ERK inhibitors could be increased via
predictive biomarker-based patient stratification or alternate
combination therapies
To examine the molecular and cellular features (biomarkers)
associated with drug response/resistance, we built a multivariate
linear regression model linking 27 model variables (16 specified in
Table 2 plus 11 PK parameters specified in Table S9) to simulated
tumor growth responses to the 16 treatments, as described.49

Examination of the normalized regression coefficients revealed
the most dominant predictors of response across treatments are
MAPK pathway dependence (wOR) and the maximal rate of cell
death (δMAX) (Fig. S5). That is, virtual tumors that respond
well to treatment are highly dependent on MAPK signaling for
growth rather than other pathways (such as PI3K/Akt), and
have increased apoptotic sensitivity. This suggests that response
rates could be improved using a predictive biomarker to
prospectively select patients with heightened MAPK signaling
dependence for treatment, or by combining MEK/ERK inhibitors
with anti-cancer agents targeting alternate mechanisms of
cell survival (i.e., alternate oncogenic pathway inhibitors,

Table 2. Model parameters selected for variation across the virtual population

Parameter Description Mean Log10(variance)

BRAFt maximal BRAF activity (i.e., gene amplification) 1 1

CRAFt maximal CRAF activity (i.e., gene amplification) 1 1

dmax Cellular death rate 0.04 per day 0.1

G13 Feedback Gain: ERK-EGFR feedback 0.5 1

Gdusp Feedback Gain: ERK-DUSP feedback 0.5 1

Gspry Feedback Gain: ERK-SPRY feedback 0.5 1

MEKb Minimal MEK activity (i.e., activating mutation) 0.01 2

MEKt Maximal MEK activity (i.e., gene amplification) 1 1

PI3Kb Minimal PI3K activity (i.e., activating mutation) 0.05 2

PI3Kt Maximal PI3K activity (i.e., gene amplification) 1 1

RASb Minimal RAS activity (i.e., activating mutation) 0.05 1

RASt Maximal RAS activity (i.e. gene amplification) 1.5 1

RTK1t Maximal EGFR activity 0.25 2

RTK2t Maximal RTK2 activity 0.1 2

wOR MAPK pathway dependence (quantitative OR gate) 1 0.1

wRAS RAS-PI3K activation strength (quantitative OR gate) 0.9 0.1

Table 3. Distribution of patient-level tumor response data from
published clinical studies in BRAFV600E-CRC

% Change from
baseline

CETUX + VEMU
% (N)

BRAFi +MEKi%
(N)

EGFRi + BRAFi +
MEKi% (N)

100+ 0 0 0

50:100 3.8 (1) 2.6 (1) 2.9 (1)

20:50 11.5 (3) 10.5 (4) 0

0:20 30.8 (8) 26.3 (10) 11.4 (4)

−30:0 30.8 (8) 47.4 (18) 48.6 (16)

−50:−30 7.7 (2) 10.5 (4) 20.0 (8)

−100:−30 15.4 (4) 2.6 (1) 17.1 (6)

Calculated ORR 23.1 (6/26) 13.1 (5/38) 37.1 (13/35)

Reported ORR 4 (1/27) 12 (5/43) 26 (9/35)

*EGFRi, BRAFi, and MEKi were panitumumab, dabrafenib, and trametinib.
Data from refs 14, 16, 19
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cytotoxic chemotherapy, anti-apoptotic inhibitors, or immuno-
therapies). We used the model to change these two clinical
scenarios. First, we simulated the effect of selecting virtual
patients with MAPK-dependence (wOR) in the top 50-percentile

of the population, and predicted results of the GDC-0994
monotherapy clinical trial (Fig. 8a) and GDC-0994 + cobimetinib
combination dose response surface (Fig. 8b) in this sub-
population. Second, we simulated the same clinical scenarios,

Fig. 7 Clinical trial simulations and data for GDC-0994 monotherapy, and combination with cobimetinib. a Simulated tumor size changes
(waterfall plots), and data from 13 evaluable patients treated with GDC-0994. b Simulated distribution of expected responses for an 18 patient
clinical trial, gray bar indicating clinical results (2/18). c Simulated ORR to combinations of cobimtenib and GDC-0994

Fig. 8 Enhancement of GDC-0994/cobimetinib responses via biomarker stratification or combination with additional anti-cancer agents.
Simulated tumor responses (waterfall plots), and cobimetinb x GDC-0994 combination surface responses for a, b patients selected with
greater than the 50-percentile MAPK-dependence, and c, d combination with another anti-cancer agent that increases the rate of cell death
by 10% independent of MAPK signaling
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but combined treatment with an unspecified drug that modestly
increases the rate of cell death by 10%, independently of MAPK
signaling (Fig. 8c, d). Under both scenarios, the ORR approximately
doubled for both GDC-0994 monotherapy (31% and 25%) and the
GDC-0994 + cobimetinib combination (68% and 59%). Thus, with
appropriate clinical strategies, response rates in at least sub-
populations of BRAFV600E-CRC patients could possibly approach
that achievable in BRAFV600E-melanoma.

DISCUSSION
We have described the step-wise development of a mechanism-
based model of the MAPK signaling network in BRAFV600-mutant
CRC. The model links cellular biochemistry and genetics to in vitro
cell growth, in vivo tumor kinetics in CDX and PDX models, and
ultimately clinical tumor responses. In contrast to empirical PK/PD
models, which are largely descriptive in nature,50 incorporating
mechanistic details of the molecular and cell biology enabled
accurate translational predictions. Specifically, the model predicts
and emphasizes the importance of a hypersensitive relationship
between pMEK and ERK activity. This prediction was subsequently
validated using quantitative western blot data from BRAF-CRC cell
lines32 and through simulations of a published mass action
kinetics-based model of the MAPK pathway.34 Furthermore, this
finding is consistent with theoretical and experimental work
demonstrating that the MAPK pathway demonstrates “ultrasensi-
tivity”51 and functions as a “negative feedback amplifier”.33 This
hypersensitive relationship underlies the steep exposure-response
relationship between cobimetinib and pERK suppression,35 the
ability of MAPK hyper-activating mutations to cause MEKi
resistance, and the increased in vitro responsiveness to ERKi vs.
MEKi in this context.20–23 In vivo, the model described tumor
kinetic responses to single agent treatments and predicted
combination effects. We identified minimal cellular differences
between the three in vivo xenograft models (proliferation rate,
alternate (non-EGFR) RTK expression, and MAPK-dependence) that
suffice to capture the differential tumor growth response patterns
between them. Finally, we generated a virtual patient population
using published clinical data on BRAF, MEK, and EGFR antagonists,
which accurately predicted population level-tumor responses to
single agent treatment with the ERKi GDC-0994, and projected
strategies to increase the single agent responses.
MEK inhibitors have been tested extensively in many solid

tumors, both as monotherapies and in combination with cytotoxic
drug regimens.52 Yet despite the wealth of pre-clinical data posing
MAPK as a critical oncogenic pathway, clinical activity has been
minimal outside of melanoma.53 In addition to the well-
established robustness of the MAPK network due to feedback
circuits and pathway cross-talk,54 our results provide two critical
explanations for this. First, the hypersensitive pMEK:pERK relation-
ship necessitates near-complete target suppression for antitumor
activity, and this may be difficult to achieve with tolerable doses of
MEK inhibitor monotherapies. That is, MEK lies upstream of a
signal amplification step and is embedded within multilayered
feedback control circuits, making it a particularly challenging
target. ERK inhibition, and particularly the ERK/MEK inhibitor
combination is less susceptible to pathway reactivation, and thus
easier to sustain thorough target suppression.
Secondly, cellular dependence on the MAPK cascade appears to

be highly variable across tumors. Our results suggest that the
majority of BRAFV600-mutant CRC tumors, despite constitutive
signal flux through the MAPK pathway, contain at least some
clones that are intrinsically or adaptively reliant on other
oncogenic signaling modules, and, therefore, capable of expan-
sion under the therapeutic pressure of MEK/ERK inhibition. To
expand on this concept more systematically, we analyzed the
relative sensitivity of 329 cell lines to multiple BRAF/MEK/ERK
inhibitors, classified by tissue source and RAF/RAS mutational

status (Fig. 9). Melanomas (skin) are indeed an outlier, as both
BRAF and NRAS-mutant cells are particularly sensitive to all forms
of MAPK inhibition. Increasing the activity of BRAF/MEK/ERK
inhibitors in CRC and other indications will thus necessitate the
use of predictive biomarkers for patient selection, and/or
combinations with drugs targeting orthogonal pathways.
In line with this, recent Phase 1 studies in BRAFV600E-CRC have

reported that addition of the topoisomerase inhibitor irinotecan to
BRAFi + MEKi combination increased activity55 (ORR of 35%
compared to 12%) (ref. 16), as did the PI3K inhibitor alpelisib to
BRAFi + EGFRi treatment56 (ORR of 18% compared to 4% (ref. 14)
or 17% (ref. 36) for the doublet). The main challenge in pursuing
such multi-drug combination strategies is managing toxicity.
While predictive biomarkers of MAPK inhibitor sensitivity could be
used to increase clinical activity, the development of such
diagnostics remains elusive, as intuitive measurements such as
pERK often have little predictive value.57, 58 More complex,
multivariate assays will likely be necessary to achieve clinically
meaningful patient selection.
Within BRAFV600E-CRC tumors, a few therapeutic principles can

be drawn. If tumors dependent upon MAPK signaling could be
pre-identified, ERKi (GDC-0994)-containing regimens, particularly
in combination with cobimetinib (MEKi) are predicted to be
particularly active. EGFR inhibition provides additional activity by
suppressing the activation of MAPK and other effector pathways,
both those engaged directly by EGFR and downstream of Ras,
such as PI3K/Akt.59 However, as revealed by both our analyses and
clinical experience in CRC,60 multiple cell surface receptors are

Fig. 9 Relative sensitivity (z-scored mean viability) to BRAF, MEK, and
ERK inhibition by indication. Cancer cell lines were separated by
tissue type and mutational status (RAS = KRAS, HRAS or NRAS
mutant, RAF= BRAF-mutant, WT= RAS/RAF wild type), and median
values computed for each
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capable of filling the role of RTK2 and functionally substituting for
EGFR, notably MET and the FGFR-family. If signaling through a
panel of these receptors could be effectively quantified and
monitored, receptor antagonists could be rationally employed.
Alternatively, Ras or C-Raf inhibitors (many in early development)
could potentially substitute for the multitude of receptor
antagonists.
The nature and significance of alternate, non-MAPK pathways

remains both a black box in our model, and a hindrance to
treatment of this disease. Gene expression analyses suggest a
number of pathways could be involved, notably signaling through
ECM components such as Integrins, as well as Rho-GTPases, Wnt/
β-catenin, Notch, and PI3K/Akt originally represented in the model
structure. Signaling through the PI3K/Akt pathway has been
shown to mediate adaptive resistance to MAPK pathway inhibition
in BRAF-CRC xenograft models.61, 62 While the limited clinical data
reveal no relationship between PI3K pathway mutations and
MAPKi resistance,16 gene expression analyses reveal that approxi-
mately 1/3 of BRAFV600-CRC tumors show heightened PI3K/Akt/
mTOR signaling uncorrelated with PIK3CA mutations.63 Alterna-
tively, phenotype switching could account for intrinsic or adaptive
loss of MAPK-signaling dependence, as has been observed in
BRAFV600E- melanomas.64, 65 This is associated epithelial-
mesenchymal transition (EMT) in carcinomas, and notably, “ECM
organization”, one of the top pathways associated with MAPKi
resistance form our transcriptome analyses, includes TGF-β
pathway ligands (TGFB1, BMP1/4, and LTBP1), drivers of EMT.66

Ultimately, this black box represents fundamental gaps in our
understanding of cell signaling networks and their role in cancer
progression.67

Computational models can help bridge the divide between pre-
clinical data and clinical strategy. In this case, clinical data sets
were available for inhibitors of closely connected targets (EGFR,
BRAF, and MEK) in the same indication (BRAFV600E-CRC), and this
data was necessary to statistically constrain the clinical simulations
and make accurate predictions. Predicting responses to drugs in
new therapeutic indications, or for targets lacking related clinical
data would be much more challenging. However, many drug
programs have some clinical precedents for related targets or
pathways. Our results reveal that with fairly minimal and
biologically plausible parameter tuning, a single model structure,
based on state-of the-art literature review, is capable of translating
results from in vitro cell culture, to in vivo tumor xenografts, to
clinical predictions.

METHODS
Model structure
Cellular signal transduction from cell surface receptors, via the MAPK and
PI3K pathways, to the surrogate signaling output (S6), as well as feedback
circuits regulating pathway output were encoded using quantitative logic-
based algebraic equations as described.68, 69 While detailed mass action
kinetics-based models of these signaling cascades exist in the literature,33,
34, 70, 71 these have been developed to capture short term (minutes to
hours) signaling dynamics, rather clinically relevant time scales (days to
weeks). At longer time scales, signal transduction events will be at quasi-
steady state and can thus be represented algebraically. We thus developed
a system of differential-algebraic equations wherein signal transduction
events are described by algebraic Hill functions, while drug PKs, signaling
feedback, and tumor growth are described using ordinary differential
equations (ODEs), with a goal of capturing the essential biology while
limiting mathematical complexity and simulation time. Algebraic equations
are executed in tandem at each time step of the ODE solver (SUNDIALS,
IDA), as per the order listed below. In the following equations, EGFR serves

as RTK1, DUSP as FB1, SPRY as FB2, MYCas FB3, and FOXO as FB4.

RTK1 ¼ RTK1bþ RTK1t � RTK1bð Þ � 1� G13 � FB3kFB3

τFB3kFB3 þ FB3kFB3

� �
�

1� RTK1iki1

τi1ki1 þ RTK1iki1

� �

RTK2¼ RTK2bþ RTK2t � RTK2bð Þ � 1� G23 � FB3kFB3

τFB3kFB3þFB3kFB3
� �

RTK3¼ RTK3bþ RTK3t � RTK3bð Þ � 1� G33 � FB3kFB3

τFB3kFB3þFB3kFB3
� �

�

1� G34 � FB4kFB4

τFB4kFB4þFB4kFB4
� �

RAS¼ RASbþ RASt � RASbð Þ � RTK1þ RTK2ð Þk1
τ1k1 þ RTK1þ RTK2ð Þk1

 !
�

1� FB2kFB2

τFB2kFB2 þ FB2kFB2

� �

BRAF¼ BRAFbþ BRAFt � BRAFbð Þ � RASk2

τ2k2 þ RASk2

� �
�

1� BRAFiki2

τi2ki2 þ BRAFiki2

� �

MEK ¼MEKbþ MEKt �MEKbð Þ � BRAFþCRAFð Þk3
τ3k3þ BRAFþCRAFð Þk3
 !

�

1� MEKiki3

τi3ki3 þMEKiki3

� �

ERK ¼ ERKbþ ERKt � ERKbð Þ � MEKk4

τ4k4þMEKk4

� �
� 1� FB1kFB1

τFB1kFB1þFB1kFB1
� �

�

1� ERKiki4

τi4ki4þERKiki4
� �

CRAF¼ CRAFbþ CRAFt � CRAFbð Þ � RASk5

τ5k5 þ RASk5

� �

PI3K ¼ PI3Kb þ PI3Kt � PI3Kbð Þ � wRAS � RASþRTK3ð Þk7
τ7k7þ wRAS � RASþRTK3ð Þk7
 !

AKT ¼AKTbþ AKTt � AKTbð Þ � PI3Kk8

τ8k8 þ PI3Kk8

� �

S6¼ S6bþ S6t � S6bð Þ � wOR � ERKþ 1� wORð Þ � AKTð Þk6
τ6k6 þ wOR � ERKþ 1� wORð Þ � AKTð Þk6

 !

First order transit compartments were used to account for time delays in
functional activity of the three ERK and AKT-mediated feedback circuits
(FB1 through FB4) and between cytoplasmic signal transduction and cell
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growth:

dFB1
dt
¼ r1 � ERK � FB1ð Þ

dFB2
dt
¼ r2 � ERK � FB2ð Þ

dFB1
dt
¼ r3 � ERK � FB3ð Þ

dFB4
dt
¼ r4 � AKT � FB4ð Þ

dTD1

dt
¼ r5 � S6� TD1ð Þ

Cell number (tumor size) over time was described using quantitative
logic-based differential equations, wherein cell signaling output (via the
time delayed effector TD1) regulates cell proliferation, the rate of cell death
is held constant, and tumor kinetics described using the logistic growth
equation.

dCELLS
dt

¼ μMAX �
TDkg

1

τkgg þTDkg
1

 !
� δMAX

 !
� 1� CELLS

VMAX

� �
� CELLS

Drug PKs were described using standard one or two compartment ODE-
based models, with absorption from the gut for the small molecules:

dEGFRiblood
dt

¼ � ke1 � EGFRiblood

dBRAFigut
dt

¼ � ka2 � BRAFigut

dBRAFiblood
dt

¼ ka2
F2
V2

BRAFigut � ke2 � BRAFiblood

dMEKiblood
dt

¼ ka3
F3
V3

MEKigut � ke3 �MEKiblood � Q
V3

MEKibloodþ Q
V3B

MEKiC3B

dMEKiC3B
dt

¼ Q
V3

MEKiblood � Q
V3B

MEKiC3B

dERKigut
dt

¼ � ka4 � ERKigut

dERKiblood
dt

¼ ka4
F4
V4

ERKigut � ke4 � ERKiblood
Local (tumor) concentrations of the drugs were described using tumor

partitioning coefficients, set at 1 as default:

RTK1i¼ p1 � RTK1iblood

BRAFi¼ p2 � BRAFiblood

MEKi¼ p3 �MEKiblood

ERKi¼ p4 � ERKiblood
The model equations were implemented in MATLAB SimBiology, and all

simulations performed in MATLAB R2015b.
The mass action kinetics based-model of the MEK-ERK two-step

enzymatic cascade was implemented as described in:34

ERK !f1=r1 pERK !f2=r2 ppERK

d½ERK �
dt

¼ f1 � ppMEK � ERK � r1 � pAse � pERK

d½pERK�
dt

¼ f1 � ppMEK � ERK � r1 � pAse � pERK
d½ppERK�

dt ¼ f2 � ppMEK � pERK � r2 � pAse � ppERK
The fractional active ERK (ppERK/ERKT) as a function of ppMEK was solved

at steady state:

ppERK
ERKT

¼ f1 � f2 � ppMEK2

r1 � r2 � pAse2þf1 � r2 � pAse � ppMEKþf1 � f2 � ppMEK2

Parameters values were taken from the paper’s supplement: f1 = 5.3 ×
107/s, f2 = 1.9 × 107/s, r1 = 5.6 × 106/s, r2 = 3.6 × 106/s, pAse = 1 × 107 mol/
cell, MEKT = 2.2 × 107 mol/cell, ERKT = 2.1 × 107 mol/cell. Normalized to total
MEK, pAse = 0.45 and ERKT = 0.95.

Parameter estimation
Free model parameters (28; defined in Table S2) were estimated via PSO
with 100 particles and iteration limit of 5000, implemented using the
MATLAB Global Optimization Toolbox. The objective function was defined
as mean squared error between simulations of pERK dynamic response
data over 48 h (ref. 18) or in vitro cell growth over 72 h (ref. 23). As the
majority of model parameters were non-identifiable, the PSO algorithm
was run 20 times (Parameter estimates, distributions, and model errors are
also reported in Table S2). This took approximately 30 h to complete on a
desktop computer, resulting in parameter estimates that generally span
the entire bounded range but with similar, and reasonably good model
errors (average MSE = 4.6%, ranging between 1.3 to 9.4%). All subsequent
analyses are based on average simulations across the 20 parameter sets.
BRAFV600 mutations were simulated by fixing the minimal enzymatic

activity of BRAF (BRAFb) = 0.9 (i.e., 90% maximal activity). Melanoma cells
were defined as having a maximal EGFR expression/activity value (RTKt) =
0.1, and CRC as RTKt = 1.BRAF and KRAS-amplified cells were defined by
setting maximal BRAF and KRAS activities, BRAFt and RASt = 5, respectively,
(vs. 1 for wild-type), BRAF, KRAS, and MEK mutants by setting the minimal
value of respective enzyme activities BRAFb, KRASb, and MEKb to 0.9,
respectively, (vs. 0 for WT). For the initial fitting to in vitro data, generic
inhibitors were assumed to achieve 95% target suppression.
Drug-target IC50s were estimated using cell viability (Cell Titer Glo)

dose–response data. With all cellular parameters fixed, the IC50(taui) and
Hill (ki) coefficients for each drug were estimated by least-squares
minimization between model simulations and mean response profiles of
the seven sensitive BRAF-CRC cell lines.
In vivo HT29 xenograft cell proliferation (µMAX) and death (δMAX) rates,

and RTK2 activity were estimated using 21-day tumor growth kinetics of
the HT29 xenografts. The parameters were estimated by least-squares
minimization between model simulations and mean kinetics of eight
replicate experiments (animals). Fitting the PDX models CR1472 and CRC15
was also done using least squares minimization, implemented with the
MATLAB nlinfit function.

Sensitivity analyses
Local parameter sensitivity coefficients were calculated based around HT29
xenograft baseline parameter values (P), wherein each parameter was
changed by + 10% (ΔP; for those with baseline values of 0, these were
increased to 0.1, and for those with baseline values of 1, these were
decreased to 0.9 and sensitivities calculated as compared to 0.99), and
relative change in tumor size (ΔT/T) after 21 days simulated for all 13
treatment conditions in Figs. 4 and 5.

LPSC ¼ ΔT
T

=
ΔP
P

This was performed for all 20 parameter sets, with average values
reported in Table S8. To assess the effects of focused molecular
perturbations on in vivo tumor growth (compared to baseline HT29
xenografts; Fig. S3a) parameters were changed as following; Melanoma,
RTK1 = 0.1; RTK2-hi, RTK2 = 1; PI3K/AKT-Dependence, wOR = 0.5; BRAF-amp/
KRAS-amp/MEK-amp, BRAFt/KRASt/MEKt = 10; MEK-mut, MEKb = 1; Partiton-
LO, Pi = 0.05.

Monte Carlo simulations
For population PK simulations, PK model variables were randomized via
Monte Carlo sampling across log-normal distributions as defined by:

Pi ¼ THETAi � eETAi
Where in THETA is the population mean value of PK parameter Pi, and ETA
is a random variable, with mean 0 and variance defined from the covariate
matrices OMEGA, as per standard population PK modeling notation.72

THETA and OMEGA values for each drug were taken from FDA Clinical
Pharmacology reviews and provided in Table S9.
Similarly, randomization of cellular parameters to create the virtual

population was done via Monte Carlo sampling across log-normal
distributions as described,73 with mean and variances as defined in
Table 3, and 1000 randomized parameter sets given in Table S10.
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Prevalence weighting of virtual tumor data
Quadratic programming was used to assign PWs to the virtual tumors by
matching simulated changes in tumor size to the clinical data in Table 3,
using the approach described in:47

min
x

1
2
x � H � xT

� �
such thatAeq � x ¼ beq

Where x = prevalence weight (PW) vector, H = identity matrix, Aeq =
simulated tumor size changes, and beq = actual tumor size changes
reported in three clinical trials. For clinical trial simulations, virtual tumors
are sampled with frequencies proportional to the PW (the final column in
Table S10).

Cell viability experiments
Cell lines were obtained from the Genentech cell line repository and
maintained in RPMI 1640 medium supplemented with 10% FBS and 2mM
L-glutamine. Compounds were obtained from the Genentech compound
management as 10mM dimethyl sulfoxide stock solutions. For cell viability
assays, cells were plated in normal growth medium at 1000–2000 cells per
well in 384-well clear-bottom black plates. The following day, compounds
were serially diluted starting at indicated concentrations, then added to
cells in quadruplicates. Ninety-six hours following compound addition,
CellTiter-Glo Luminescent Cell Viability reagent (Promega) was added per
manufacturer’s protocol. For studies with growth factors, 20 nM TGF-alpha,
100 ng/mL HGF, or 10 ng/mL FGF was added during plating of cells and at
time of drug treatment.

Xenograft experiments
GDC-0994 was formulated in 40% PEG400 (polyethylene glycol 400)/60%
[10% HP-b-CD (hydroxypropyl-beta-cyclodextrin)]. Cobimetinib was pre-
pared as a suspension at various concentrations in methyl cellulose tween.
Vemurafenib was formulated in Klucel™ hydroxypropylcellulose. Cetux-
imab was diluted in PBS. GDC-0994, GDC-0973, and vehicle control dosing
solutions were prepared once a week, while Vemurafenib was formulated
every other day, stored at 4–7 °C, and mixed well by vortexing before
dosing.
All xenograft studies were performed as previously described.74 Briefly,

human cancer cells or tumor pieces were used for implantation, to
generate the HT-29 CDX or the PDX models CRC15 (Genendesign, Inc.) and
CR1742 (Crown Bioscience, Inc.). HT-29 cells were grown in normal growth
media (RPMI 1640 with L-glutamine and 10% fetal calf serum), harvested
and implanted subcutaneously into the right flank of female NCR nude
mice (6–8 weeks old) obtained from Taconic (Cambridge City, IN) weighing
an average of 24–26 g. The CRC15 and CR1742 studies were run at
Genendesign, Inc. and Crown Bioscience, Inc. in Balb/c nude mice. Only
animals that appeared to be healthy and that were free of obvious
abnormalities were used for each study. Tumor volumes were determined
using digital calipers (Fred V. Fowler Company, Inc.) using the formula (L ×
W2)/2. Mice were weighed twice a week using a standard scale.

Gene expression and pathway enrichment analysis
Gene-level RNASeq data (RPKM) available for the MAPKi-sensitive (COLO
206 F, HT-29, SW-1417, COLO-205, CL-34, COLO 201) vs. resistant (DLD-1,
RKO,SW-948, MDST8, COLO-741) CRC cell line lines, and for BRAFV600-
mutant CRC (n = 9) vs. melanoma (n = 28) cell lines were taken from (ref.
37). Differential expressed genes (rank-sum P-values < 0.05 or 0.01,
respectively, and |fold-change| > 3) were analyzed for enrichment of
Reactome pathways (www.reactome.org) via Binomial tests using
PANTHER (www.pantherdb.org).75
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