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Neutrophil swarming delays the growth of clusters
of pathogenic fungi
Hopke Alex 1,2,3, Allison Scherer 2,4, Samantha Kreuzburg 5, Michael S. Abers5, Christa S. Zerbe5,

Mary C. Dinauer6, Michael K. Mansour 2,4 & Daniel Irimia 1,2,3✉

Neutrophils employ several mechanisms to restrict fungi, including the action of enzymes

such as myeloperoxidase (MPO) or NADPH oxidase, and the release of neutrophil extra-

cellular traps (NETs). Moreover, they cooperate, forming “swarms” to attack fungi that are

larger than individual neutrophils. Here, we designed an assay for studying how these

mechanisms work together and contribute to neutrophil's ability to contain clusters of live

Candida. We find that neutrophil swarming over Candida clusters delays germination through

the action of MPO and NADPH oxidase, and restricts fungal growth through NET release

within the swarm. In comparison with neutrophils from healthy subjects, those from patients

with chronic granulomatous disease produce larger swarms against Candida, but their release

of NETs is delayed, resulting in impaired control of fungal growth. We also show that

granulocyte colony-stimulating factors (GCSF and GM-CSF) enhance swarming and neu-

trophil ability to restrict fungal growth, even during treatment with chemical inhibitors that

disrupt neutrophil function.
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Neutrophils represent a key effector in the innate immune
system and are critical for defense against microbes,
especially invasive fungal infections1,2. However, neu-

trophils are also highly destructive and are involved in the
pathology of numerous inflammatory conditions3–5. Manipulation
of neutrophil function, therefore, represents an attractive avenue
that could benefit patients during infections or during inflam-
mation. Unfortunately, significant gaps in our understanding of
neutrophil behavior represent a major obstacle which blocks our
ability to design therapies that could selectively enhance or
dampen neutrophil function in different contexts, as appropriate.
As an example of this knowledge gap, neutrophil swarming, a
novel aspect of neutrophil behavior by which human neutrophils
coordinate their recruitment against large clusters of microbes, has
only recently been uncovered6,7. During swarming, neutrophils
cooperate and enhance their antimicrobial activities beyond the
simple sum of a similar number of independent neutrophils.
Swarming is also a selective behavior, triggered by targets larger
than a threshold size, and distinct from phagocytosis8. While it is
thought that swarming represents an important mechanism in the
response to infections, the molecular mechanisms contributing to
microbe control are poorly defined. The cooperation between
human neutrophils is mediated by a constellation of mediators
that direct the neutrophils toward the target and enhance their
antimicrobial activities in a chain-reaction manner. In vitro stu-
dies have identified that neutrophils can produce their own stop
signal that disrupts the chain reaction and brings the swarm to a
dynamic equilibrium, though more signals likely play a role in
coordinating this process in vivo8. The role of swarming is context
dependent, as it plays supporting roles in host defense against
some pathogens9–13, but is detrimental against others14–18. Thus a
more detailed understanding of the interactions between neu-
trophil swarms and microbes will complement the current para-
digm of one neutrophil–one microbe interaction, when microbes
are phagocytosed and destroyed inside individual neutrophils.
That said, significant methodological challenges must be overcome
to examine the mechanism of swarming, because it is currently
slow and difficult to rigorously test swarming with in vivo models.
Current in vitro models for studying phagocytosis cannot be
directly extrapolated to swarming.

Here we design and validate microscale technologies to analyze
human neutrophil swarming behavior against live fungi. We
demonstrate that human neutrophils swarm against clusters of live
fungal pathogens such as Candida albicans. We show that
swarming contributes to the containment of C. albicans and the
process involves the action of LTB4, myeloperoxidase (MPO),
reactive oxygen species (ROS), and neutrophil extracellular traps
(NETs). While many of these molecules are also involved in tra-
ditional one-to-one host–pathogen interactions, their roles in the
context of swarming against live microbe clusters are not under-
stood. We show that ROS, for example, can function as both an
antimicrobial factor as well as a determinant of swarming dynamics.
Importantly, we show that neutrophil swarming function can be
enhanced by the addition of granulocyte macrophage colony-
stimulating factor (GM-CSF) or GCSF. This enhancement can also
be used to rescue antifungal activity during conditions where
swarming would otherwise be defective. Taken together, these
results demonstrate that this assay will be an effective tool for the
molecular dissection of human neutrophil swarming, a screen for
mediators that impact neutrophil function and may ultimately
contribute to improving therapeutic designs for infections.

Results
Live fungi arrays for interrogation of human neutrophil
swarming. We monitored the interactions between human

neutrophils and clusters of live microbes using a versatile plat-
form that can accommodate various fungi. The platform arranges
microbes in clusters of 100-µm diameter, grouped in 8 × 8 arrays,
separated inside individual wells, in a 16-well format. Using this
platform, we successfully patterned numerous live fungal targets,
including C. albicans, Candida glabrata, and Candida auris, as
well as Aspergillus fumigatus (Supplementary Fig. 1). All the
microbes tested grew well on the patterns, and C. albicans and A.
fumigatus were both able to form robust hyphae (Supplementary
Fig. 1, Supplementary Movie 1).

Human neutrophil swarming restricts fungal growth. Upon the
addition of human neutrophils to these arrays, we achieved
robust, synchronized swarming responses against clusters of live
fungi. We observed rapid, exponential recruitment of neutrophils
to the targets within the first 30 min followed later by a plateau
(Fig. 1a, b). This sustained swarming was a selective response to
large C. albicans clusters (Fig. 1a, b, Supplementary Fig. 2).
Smaller clusters of yeast (20–100 cells) could trigger a range of
dynamic behaviors (Fig. 1a–c, Supplementary Fig. 2). These
included “transient swarms” that had resolved on their own by
the end of the assay, “dynamic swarms” that fluctuated rapidly
but were not resolved by the end of the assay, and delayed swarms
that triggered later in the assay (Fig. 1c). Small numbers of
scattered yeast (0–20) did not trigger swarming, again demon-
strating that there is discrimination between situations where
phagocytosis or swarming is appropriate (Fig. 1a, b, Supple-
mentary Fig. 2). The exponential recruitment of neutrophils and
swarming to C. albicans clusters is similar to that described
against zymosan targets and suggestive of the positive feedback
loops mediated by neutrophils and neutrophil-released mediators
typical for swarming8. Disruption of LTB4, a key mediator for
swarming responses, by inhibition of LTB4 synthesis with MK886
or blocking the LTB4 receptor BLT1 with U75302 both resulted in
partial loss of control of C. albicans growth (Fig. 1d). These
defects were only partial though, in keeping with the redundant
nature found previously in human swarming mediators8. Finally,
the efficacy of swarming at containing microbe growth depends
on the number of neutrophils available for swarming at one
location. The dependence is represented by a sigmoid curve
rather than a line, suggesting a threshold effect for fungal control
during swarming (Fig. 1e). Taken together, these data demon-
strate that clusters of live C. albicans can trigger neutrophil
swarming, a stronger and more complex response than the simple
accumulation of neutrophils on sparse targets. The dynamics of
this response are influenced by both the microbial target and the
neutrophils themselves. We also showed that this process was
capable of restricting fungal growth. We therefore leveraged this
assay to characterize the dynamics and molecular mechanisms by
which swarming restricts C. albicans and other fungi.

The growth of C. albicans was restricted by neutrophil swarms
at multiple points. First, C. albicans germination from yeast to
hyphae was significantly delayed during neutrophil swarming
(Fig. 2a, b). By comparison, C. albicans patterned on arrays in
the absence of neutrophils starts germinating within 30 min
(Fig. 2a, b). Even when surviving, hyphae from germinating C.
albicans are growth restricted by neutrophil swarming for ≥10 h,
requiring on average nearly 11 h to eventually penetrate
the swarm and escape containment (Fig. 2c). At 10 h, colonie-
s attacked by swarming were approximately three times
smaller than C. albicans allowed to grow without neutrophils,
showing the significant restriction that swarming can exert on
fungal growth (Fig. 2a–d). We also found that swarming
significantly contains the growth of clusters of other fungi, like
C. glabrata, C. auris, and A. fumigatus (Fig. 2e, Supplementary
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Fig. 1 Neutrophil cooperation against clusters of C. albicans. a Living C. albicans were patterned in clusters on poly-l-lysine/zetag arrays at different
densities. Purified human neutrophils were added to the arrays to observe host-pathogen interactions. Time-lapse images show the sustained neutrophil
swarming to large clusters (100+ yeast), a mix of dynamic swarm sizes over time during the swarming responses to intermediate sized clusters of yeast
(100-20) and no swarming to scattered yeast. b The dynamics of swarming responses, measured by area of the swarm, was quantified over time. Lines
show the average of the responses for each group. c N = 24 swarms for the 100+ group, 42 for the 100-20 group and 29 for the 20-0 group across two
independent donors. Individual swarm tracks are shown for the 100-20 group, split by qualitative phenotype. d Swarming was conducted in the presence of
the LTB4 synthesis inhibitor (MK-886 1 µM) or blockers of the LTB4 receptor BLT1 (U75302). The area of C. albicans growth was quantified at 16 hours.
Results are normalized to the growth of the C. albicans alone control. The results of untreated neutrophils are shown as a baseline. N = 144 swarms across
3 donors for MK-886, 96 swarms from one representative donor for U75302 and 240 swarms across three donors for the untreated PMN. e Different
numbers of human neutrophils were incubated with arrays of C. albicans and fungal growth was quantified at 16 hours. Results were normalized to the
growth of the C. albicans alone control. N = 192 swarms across three different donors. Error bars represent mean +/− standard deviation. ****p< 0.0001
Kruskal-Wallis with Dunns post-test. Scale bar is 50 µm.
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Fig. 3). The swarms formed against C. auris and C. glabrata ended
up smaller than those seen against C. albicans, despite the initial
clusters being of identical size, demonstrating that the dynamics
and magnitude of swarming responses can be dictated by the
fungal species being engaged (Fig. 2c–e). Interestingly, C. auris

and C. glabrata do not produce hyphae, while C. albicans, which
induces larger swarms, can switch from yeast to hyphae. To
directly probe the impact of this transition to hyphae in the
swarm/fungi interaction, we tested a yeast-locked mutant of C.
albicans on the swarming array. We found that the yeast-locked
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mutant resulted in less robust swarming responses and NET
release than the wild-type C. albicans, which could make hyphae
(Fig. 2e, Supplementary Fig. 3). We also found that the yeast-
locked mutant was more effectively cleared than the wild-type C.
albicans, suggesting that hyphae play a critical role in mediating
escape from containment by neutrophil swarming (Supplemen-
tary Fig. 3b).

Neutrophils release NETs within swarms that restrict fungi.
Following the initial swarm growth and plateau, we found that the
area of the neutrophil swarms against C. albicans clusters con-
tinued to expand ~8 h after the start of the assay (Figs. 2 and 3).
This expansion was not accompanied by significant further neu-
trophil recruitment, which ended by ~4 h. Impressively, this
expansion coincided with the release of NETs by the neutrophils
engaged in the swarm (Figs. 2a, b and 3a–e). NET release was
quantified by examining the appearance of Sytox green staining
within the swarm over time (Fig. 3c, Supplementary Movie 1). The
release of NETs against clusters of live C. albicans occurred in
100% of the swarms and was synchronous. We also quantified the
number of visible, condensed neutrophil nuclei within the swarm
over time (Fig. 3d, e). Sytox green staining intensity and the loss of
visible nuclei showed inverse trends, supporting the release of
NETs within swarms (Fig. 3b–e). These NETs also stained positive
for the additional NET markers, including citrullinated histone H3
(Supplementary Fig. 4).

The release of NETs was important for the continued
restriction of C. albicans growth. The inclusion of DNase in the
assay resulted in degradation of NETs and compromised the
ability of swarms to control fungal growth (Fig. 3f). Inclusion of
DNase reduced the observed Sytox green staining to nearly
negligible levels, demonstrating it was indeed degrading the NETs
(Supplementary Fig. 5). Treatment with DNase also led to a
significant reduction in the expansion of swarms at later time
points (i.e., 8 and 10 h), further supporting that NET release helps
drive the expansion of the swarm. Interestingly, the DNase-
treated swarms did still show smaller levels of expansion at later
time points. This suggests that other factors, like the growth of
surviving C. albicans hyphae within the swarm, contribute to
swarm expansion. Indeed, the growth of surviving C. albicans
within the swarm also closely lines up with overall swarm area
expansion (Figs. 2a, d and 3, Supplementary Fig. 5). To further
dissect swarm expansion at later time points and establish
whether NET release during swarming is specific to interactions
with C. albicans, we patterned commercially available bioparticles
derived from Staphylococcus aureus and Escherichia coli (Supple-
mentary Fig. 6). These particles are fluorescently labeled and gave
excellent coverage of the printed arrays. We observed synchro-
nized NET release against every target in the S. aureus and E. coli
particle arrays. These observations show that expansion of
neutrophil swarms at later time points is not unique to just live

C. albicans and coincides with the release of NETs for all targets
tested (Fig. 3, Supplementary Fig. 6). Interestingly, the magnitude
of the swarms was different against different pathogens.
Neutrophil swarms against S. aureus particle clusters were larger
than against E. coli particle clusters of identical dimensions
(Supplementary Fig. 6c). This result, along with the comparison
of swarming to different fungal species shown above, suggests
that swarming dynamics can be influenced by the target (Figs. 2
and 3, Supplementary Figs. 3–6).

ROS and MPO regulate swarm dynamics and fungal restric-
tion. As outlined above, we can leverage our assay to better
understand the molecular mechanisms of microbial containment,
and we found that NETs were critical for the containment of C.
albicans hyphae. Probing further into the molecular mechanisms,
we also found that swarming and containment of C. albicans
involved NADPH oxidase and MPO function. In the presence of
an NADPH oxidase inhibitor, Apocynin, swarming was inhibited
early, and neutrophils responded at later points in the assay, as
the C. albicans hyphae grew outwards (Fig. 4a, Supplementary
Fig. 7, Supplementary Movie 2). We designated this analysis “area
of accumulation,” as Apocynin-treated neutrophils did even-
tually recruit to the fungi, but they usually did not display the
rapid, exponential recruitment characteristic of true swarming.
Inhibition by Apocynin reduced the ability of neutrophils to
restrict C. albicans, resulting in significantly faster germination
and escape from neutrophil containment, >6 h earlier than in the
control (Supplementary Fig. 7). We did see the release of NETs in
the presence of Apocynin, though they were clearly insufficient to
restrict fungal growth in this context. To further test the role
of reactive oxygen, we also tested the effect of the presence of
antioxidant Trolox. While swarming occurred in the presence
of Trolox, there was also a defect in the ability to restrict C.
albicans growth (Supplementary Fig. 7e, f). However, this defect
appeared much later than the defect seen during Apocynin
treatment (Supplementary Fig. 7e). In the presence of dipheny-
leneiodonium (DPI), another classic NADPH oxidase inhibitor,
neutrophil swarms formed rapidly; however, they also quickly
disintegrated, which stands in contrast to the phenotype observed
during Apocynin treatment (Fig. 4a, Supplementary Fig. 7a, b).
We were unable to determine the impact of DPI on fungal con-
trol, as the DPI also directly impacted fungal growth, something
that was not observed with other inhibitors (Supplementary
Fig. 7e, f). In addition, we did not see the formation of NETs in
the transient swarms formed during DPI treatment (data not
shown).

As chemical inhibitors, Apocynin and DPI are known to have
off-target impacts, so we generated a p47 (NCF1)-deficient
neutrophil cell line using a Cas9-ER-HoxB8 mouse cell line
(Supplementary Figs. 8 and 9). This line was confirmed to be
deficient in NCF1 by western blot and to be severely deficient in

Fig. 2 Neutrophil swarming delays germination and restricts the growth of C. albicans and other fungi. a Time-lapse images show the progression of
neutrophil swarming to C. albicans patterns. Brightfield, DAPI (Hoechst staining), FITC (Sytox green) and Cy5 (C .albicans) channels are presented.
b Representative panels of C. albicans growing alone is shown as a comparison (a, fifth row). C. albicans germination is delayed by swarming. N =
40 swarms across 3 donors. c C. albicans escape from a defined area (equivalent to the area of the swarm) is significantly delayed by neutrophils. N =
40 swarms across 3 donors. d The area of C. albicans pattern remains smaller in the presence of neutrophils, showing that human neutrophil swarming
restricts fungal growth. N = 104 swarms across three different donors for all timepoints except 6 and 8 hours, where N = 72 swarms across three different
donors. e Different fungal species were incubated with and without human neutrophils and fungal growth was quantified at 16 hours. Results were
normalized to the growth of the respective fungi alone control. N = 182 swarms for the C. albicans group, N = 192 swarms for the C. albicans yeast-
lockedgroup, N = 73 swarms for the C. auris group and N = 199 for the C. glabrata group, all across three independent donors. For A. fumigatus, N =
48 swarms with one donor. Quantification of the area of fungal growth during incubation of the C. glabrata or C. auris with or without neutrophils over time,
showing that human neutrophil swarming restricts the growth of these fungi in (d-e). N = 45 swarms across three different donors for C. glabrata in (d).
N≥16 swarms across two different donors for C. auris in (e). ****p <0.0001 Students T-test (unpaired, two-tailed). Error bars represent mean +/−
standard deviation. Scale bar is 100 µm.
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ROS production during interactions with fungi (Supplementary
Fig. 8). These neutrophils displayed a very different phenotype
from the chemical inhibitors, with enhanced swarming responses,
especially increased recruitment, compared to the control
(Supplementary Fig. 8a, b). Despite this increased recruitment,
restriction of C. albicans growth was still significantly compro-
mised, confirming an antimicrobial role of ROS in this system
(Supplementary Fig. 9c). Importantly, the control cells showed a
similar phenotype to human neutrophils when treated with
Apocynin, suggesting that the delayed swarming phenotype is not
unique to human cells and is due to off-target effects. To confirm
this observation, the NCF1-deficient cells were treated with
Apocynin. Interestingly, we found that the knockout (KO) cells
treated with Apocynin showed no significant changes; however, it
is thought that, as Apocynin is activated by a process involving

oxidation and without any ROS production, the NCF1-deficient
cells are unable to activate the drug, thereby avoiding off-target
impacts from manifesting (Supplementary Fig. 9f)19. To fully
resolve this conflict of phenotypes, we obtained neutrophils from
humans with chronic granulomatous disease (CGD), which have
specific mutations that render their NADPH oxidase deficient in
ROS production. The results from these CGD neutrophils aligned
with the results from mouse NCF1-deficient cells, with human
CGD neutrophils showing significantly larger neutrophil swarms
for up to the first 5 h of swarming against live C. albicans (Fig. 4e,
Supplementary Fig. 10). Human CGD cells also showed a
relatively small but significant defect in C. albicans restriction
(Fig. 4f). In keeping with the literature, CGD neutrophils also
displayed reduced NET release compared to the healthy control
(Fig. 4g, h, Supplementary Fig. 10d).
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We also inhibited MPO function using the chemical
inhibitor ABAH and found that neutrophils were significantly
inhibited in their ability to restrict fungal growth, with C.
albicans again germinating faster and escaping swarming-

mediated confinement >6 h earlier than in the controls
(Fig. 5a–d). Interestingly, we noticed that NET release was
not significantly different than the vehicle controls during
MPO inhibition, suggesting that NET formation is not

c

0

50,000

100,000

150,000

15 30 60 90 120 240 360 480 600 720

DPI treatment Apocynin treatment
Time (min)

N
eu

tr
op

hi
l a

cc
um

ul
at

io
n 

(µ
m

2 )
N

eu
tr

op
hi

l s
w

ar
m

 (
µm

2 )

a

Candida +
No PMN

Candida +
PMN

Candida +
PMN +

Apocynin

0

100,000

200,000

300,000

400,000

F
un

ga
l g

ro
w

th
 (

µm
2 )

Candida +
PMN +
Trolox

b

d

e f

g h

0

20,000

40,000

60,000

80,000

30 60 120 180 240 300 360 480 600 720

Control CGD

Time (min)

**

***

** **

*

****

0.0

0.5

1.0

1.5

C
. a

lb
ic

an
s 

no
rm

al
iz

ed
 a

re
a

Candida +
No PMN

Candida +
PMN

Candida +
CGD PMN

T (60) T (240) T (480) T (720)T (120)T (0) T (30)

C
G

D
C

on
tr

ol

Hoechst

Hoechst

T (60) T (240) T (480) T (720)T (120)T (0) T (30)

****
****

****

****
****

****
****

****

****

0.000

0.002

0.004

0.006

0.008

0.010
****

Control #1 #2 #3

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (hours)

M
ea

n 
flu

or
es

ce
nt

 in
te

ns
ity

sy
to

x 
gr

ee
n 

(a
.u

.)

Sample #3Sample #2Sample #1Control

S
ur

fa
ce

 d
en

si
ty

 o
f n

uc
le

i
(n

uc
le

i/µ
m

2 )

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15834-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2031 | https://doi.org/10.1038/s41467-020-15834-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


critically dependent on MPO in this context (Fig. 5e). These
results suggest that both ROS and MPO contribute to the
control of fungal growth, while ROS also seems to play a role in
swarm dynamics.

Cytokine treatment boosts swarming and rescues fungal
restriction. Fungal infections usually afflict those with compro-
mised immune systems, so we leveraged our assay to examine
whether we could enhance the ability of neutrophil swarming to
restrict fungal growth. The addition of GM-CSF or GCSF sig-
nificantly boosted the ability of human neutrophil swarms to
contain and kill C. albicans. The time to germination of C. albi-
cans was further delayed, as was the average time until hyphae

escaped the swarm (Fig. 6a–e). In fact, >70% of swarms treated
with GM-CSF and GCSF prevented escape by C. albicans for the
entire 14-h assay (Fig. 6c). Analysis of neutrophil recruitment by
Hoechst fluorescence shows that both GM-CSF and GCSF
treatment result in enhanced swarming, though the overall size of
the swarm is not significantly different from the control at the
end of the assay (Fig. 6a, Supplementary Fig. 11a, b). GM-CSF
and GCSF do not significantly alter NET release profiles. This
suggests that GM-CSF and GCSF act on early but not late stages
of swarming (Supplementary Fig. 11c, d). Both GM-CSF and
GCSF appeared to be equally effective at the chosen doses, as
there was no significant difference between the two treatments in
the ability to restrict fungal growth and escape (Fig. 6).
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Fig. 5 Myeloperoxidase function is important during swarming control of C. albicans germination and growth. C. albicans germinates faster in swarms
treated with ABAH. N = 40 swarms across 3 donors (a). Fungal hyphae escape faster in swarms during MPO inhibition. N = 40 swarms across 3 donors
(b). MPO inhibition results in more fungal growth at 16 hours. Results are normalized to the growth of the C. albicans alone control. N = 240 swarms over
3 donors (c). The MFI of C. albicans was quantified over 12 hours with and without MPO inhibition. N = 16 swarms from a representative donor (d). MPO
inhibition does not impact NET release during swarming. The MFI of Sytox Green was quantified over 12 hours. N = 16 swarms from a representative donor
(e). ****p <0.0001 Students T-test for a–b, two-tailed Mann-Whitney test for c (unpaired, two-tailed). Error bars represent mean +/− standard deviation
for (a–c) and mean +/− standard error for (d–e).

Fig. 4 NADPH oxidase function plays a critical role in swarm dynamics. Human neutrophils were incubated with different inhibitors to interrogate the
mechanisms necessary to restrict the growth of C. albicans during swarming. The inclusion of 300 µMApocynin disrupted the ability of neutrophils to swarm
to C. albicans, while the inclusion of 10 µM DPI resulted in rapid formation and then dissolution of swarms, as shown in quantification of the neutrophil
accumulation area. N = 36 swarms across 3 donors for DPI, N = 48 across 3 donors for Apocynin (a). The area of fungal growth after swarming with ROS
inhibitors at 16 hours shown (b). N = 288 swarms for PMN, 96 swarms for Trolox, 286 swarms for Apocynin and 219 spots for the no PMN group, across 3
independent donors. CGD neutrophils exhibit exaggerated swarming at early points in the assay as shown in a panel of representative images and in the
quantification of neurophil swarming area (c–e). N = 16 swarms for one donor for control and N = 46 swarms across three donors for CGD. The area of
fungal growth after swarming with control or CGD neutrophils after 16 hours is shown (f). Results are normalized to growth of the C. albicans alone control.
N = 96 swarms for one donor for control and N = 288 swarms across three donors for CGD. CGD samples exhibit reduced NETs. The MFI of Sytox Green
staining was quantified for swarms from a healthy donor and from CGD neutrophils (g). Average of 16 swarms for control and 16 swarms for each individual
CGD sample is shown. The number of nuclei/µm2 was quantified and is shown (h). N = 16 swarms for one donor for control and N = 16 swarms for each
individual CGD sample.*p ≤ 0.05 (p = 0.0489 in e), **p ≤ 0.01 (p = 0.0068 for control 60 vs CGD 60, p = 0.0011 for control 180 vs CGD 180, p = 0.0030
for control 240 vs CGD 240 in e), ***p ≤ 0.001 (p=0.0001 for control 120 vs CGD 120 in e), ****p <0.0001 (a, b, f, h). Kuskal-Wallis with Dunn’s post-test
for a-b, e, h; Mann-Whitney for f (unpaired, two-tailed). Error bars represent mean +/− standard deviation. Scale bar is 100 µm.
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To further examine the interplay of molecular mechanisms by
which swarming contains fungi and by which GM-CSF and GCSF
enhance neutrophil swarming functions, we combined GM-CSF
and GCSF treatment with the MPO inhibitor ABAH or the ROS
inhibitor Apocynin. We found that both GM-CSF and GCSF
treatment were able to enhance neutrophil swarming function
during both ROS inhibition by Apocynin or MPO inhibition by
ABAH, significantly rescuing the ability of swarming to delay C.
albicans germination, block hyphal escape, and reduce overall
fungal growth (Fig. 7a–h). In line with our findings above
(Supplementary Fig. 6), GM-CSF and GCSF treatment enhanced
neutrophil recruitment profiles during Apocynin or ABAH
treatment but had minimal impact on NET profiles (Supplemen-
tary Fig. 11e–l). GM-CSF- or GCSF-mediated enhancement is
more limited during ROS inhibition than the rescue seen for
MPO, however, resulting in more fungal growth and faster hyphal
escape despite GM-CSF and GCSF (Fig. 7). This observation
remained consistent in Cas9-ER-HoxB8 control neutrophils
treated with Apocynin as well (Supplementary Fig. 9d). Impor-
tantly, the ability of GM-CSF or GCSF to rescue function was also
seen in the NCF1 KO cells, directly demonstrating that they can
rescue some antifungal function in the absence of a functional
NADPH oxidase (Supplementary Fig. 9). Together, these results
identify GM-CSF and GCSF as cytokines that can directly boost
the antifungal function of neutrophils (Fig. 8). This enhancement
can proceed without MPO function and during Apocynin-
mediated inhibition. Overall, we have optimized a device that

allows for detailed and high-throughput examination of human
neutrophil swarming against live fungi. We have leveraged this
device to elucidate the molecular mechanisms required for
swarming to restrict fungal growth, identifying NETs, MPO,
and ROS as important players. We have also identified the
cytokines GM-CSF and GCSF as mediators that can directly
impact swarming to boost antifungal function, even when critical
antifungal mechanisms are absent.

Discussion
We designed and optimized an in vitro assay to facilitate the sys-
tematic analysis of human neutrophil interactions with clusters of
growing C. albicans. The assay expands on the traditional paradigm
of phagocytosis, when neutrophils act as independent agents against
individual, planktonic microbes to reveal the several mechanisms
through which human neutrophils work together to restrict the
growth of clusters of pathogenic C. albicans. Consequently, this
assay represents a significant advance from current in vitro assays of
host–pathogen interactions conducted in Petri dishes, multi-well
plates, test tubes, and flow cytometry20. Importantly, we show that
the applications of the assay could be extended to the study of
neutrophil activity against other live pathogenic fungi clusters,
including C. auris, C. glabrata, and A. fumigatus.

The process of neutrophil cooperation against large targets is
also known as neutrophil swarming and has been observed using
in vitro and in vivo models7,21. Recently, several of the mediators
of these neutrophil–neutrophil interactions have been identified
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using inert microbe-like targets6,8. The findings of this study
complement previous studies of neutrophil swarming and reveal
several mechanisms that are important for microbe containment
by neutrophil swarms. Moreover, through the use of inhibitors,
animal models, and neutrophils from patients, new insight has

emerged regarding the hierarchical order of importance for dif-
ferent antimicrobial mechanisms during fungal restriction.

The control of C. albicans during the early interactions between
neutrophils and fungi appear to depend in part on MPO. Defects
in MPO function result in control defects starting very
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early, during germination of hyphae. This antimicrobial role
of MPO matches known functions in traditional studies in vitro
and in animal models, including specific defects in control of
C. albicans22,23. Interestingly, it has been suggested that
MPO function becomes more important at higher microbial
burdens, situations where neutrophil swarming could be more
relevant22–24.

NADPH oxidase influences swarming dynamics and indirectly
the containment of C. albicans. Interestingly, without ROS pro-
duction, swarming was enhanced for neutrophils from CGD
patients and for a mouse neutrophil line genetically deficient in
NCF1. This role is consistent with known function for ROS in cell
signaling, communication, and recruitment25–30. The anti-
inflammatory role of ROS is also in line with data seen in CGD
patients who can develop pathological, excessive inflammatory
responses31–33. The increased swarming size is consistent with
previous reports that CGD neutrophils release increased amounts
of pro-inflammatory cytokine, interleukin (IL)-8, in response to
fungi, including C. albicans, and increase accumulation of
LTB434,35. Both IL-8 and LTB4 are known key signals for human
neutrophil swarming, as shown in recent studies using inert

targets for swarming6,8. Despite these exaggerated swarming
responses, NCF1 KO and CGD neutrophils were still deficient in
C. albicans killing and restriction. These results suggest that a
careful balance exists for ROS production where it is both
destructive and antimicrobial while also influencing swarming
dynamics to not become excessive. Interestingly, DPI and
Apocynin, both frequently used as inhibitors of NADPH oxidase,
induced swarming phenotypes different from the NCF1 KO and
human CGD neutrophil. The differences may be explained by the
off-target effects of DPI and Apocynin36. Apocynin has been
published to also inhibit Rho kinases, and Rho kinases are also
known to be involved in neutrophil chemotaxis36–39.

NET release plays a key role in the late phases of swarming
interactions, restricting C. albicans that were not eliminated early
on by the action of MPO, ROS, and other antimicrobial
mechanisms. This role is consistent with recent in vivo studies
showing that NETs localized around microbe clusters and bio-
films restrict the ability of Pseudomonas aeruginosa in those
biofilms to disseminate to the brain40. Interestingly, NET release
occurred around every microbe cluster tested, in contrast with
NET release against individual microbes that occurs only in a

Germination Escape

Swarming NETs Escape

0 14
1 2 3 5 6 7 8 9 10 12 134

Treatment Time to germination Time to hyphal escape

GCSF Increased from 2.1 to 2.35 hours; Increased by ~12% Increased from 10.7 to 13.4 hours; Increased by ~21%

GM-CSF Increased from 2.1 to 2.4 hours; Increased by ~16% Increased from 10.7 to 13.6 hours; Increased by ~23%

ABAH Decreased from 2.1 to 1.4 hours; Decreased by ~31% Decreased from 10.7 to 3.6 hours; Decreased by ~66%

ABAH + GCSForGM-CSF Increased from 1.4 to 1.9 hours; Rescued by ~77% Increased from 3.6 to 6.8 hours; Rescued by ~45%

Apocynin Decreased from 2.1 to 1.4 hours; Decreased by ~32% Decreased from 10.7 to 3.9 hours; Decreased by ~63%

Apocynin + GCSForGM-CSF Increased from 1.4 to 1.85 hours; Rescued by ~72% Increased from 3.9 to 5.8 hours; Rescued by ~27%

Fig. 8 Summary of neutrophil swarming inhibition and enhancement. A timeline of the four major events in a 14-hour neutrophil swarming assay against
C. albicans: neutrophil swarming, fungal germination, neutrophil NETs release, and hyphal escape. The average time of these events during swarming with
healthy neutrophils is indicated with small “Xs” and cartoon depictions. The table summarizes the changes which occur to these events during treatment
with different inhibitors (Apocynin and ABAH) and enhancers (GM-CSF and GCSF). Changes under the effect of inhibitors could be partially restored by
the enhancers.

Fig. 7 GM-CSF and GCSF treatment enhance swarming during ROS or MPO inhibition. GM-CSF or GCSF treatment can partially rescue swarming
mediated fungal restriction. Apocynin treatment allows earlier C. albicans germination, while GM-CSF or GSF treatment restores some delay. N =
40 swarms across 3 donors (a). GM-CSF or GCSF treatment partially rescues swarming restriction of hyphal escape. N = 40 swarms across 3 donors (b).
GM-CSF or GCSF treatment results in a small reduction in fungal growth at 16 hours. N = 256 swarms for the PMN group, N = 226 swarms for the
Apocynin group, N = 210 swarms for the Apocynin+GCSF group, N = 208 swarms for the Apocynin+GM-CSF group, all across 3 independent donors (c).
The MFI of C. albicans in swarms treated with Apocynin or both Apocyin and GM-CSF or GCSF was quantified over 14 hours. N = 16 swarms from a
representative donor (d). ABAH treatment allows earlier C. albicans germination, while GM-CSF or GSF treatment restores some delay. N = 40 swarms
across 3 donors (e). GM-CSF or GCSF treatment partially rescues swarming restriction of hyphal escape. N = 40 swarms across 3 donors (f). GM-CSF or
GCSF treatment results in a reduction in fungal growth at 16 hours. N = 341 swarms in the PMN group, N = 355 swarms in the ABAH group, N =
342 swarms in the ABAH+GCSF group and N = 349 swarms in the ABAH+GM-CSF group, all across 3 donors (g). The MFI of C. albicans in swarms
treated with ABAH or both ABAH and GM-CSF or GCSF was quantified over 14 hours. N = 16 swarms from a representative donor (h). n.s. is non-
significant, **p = 0.0010 (c) and ****p <0.0001 (a, b, c, e, f, g). Kruskal-Wallis with Dunns post-test. Error bars represent mean +/− standard deviation
for (a–c, e–g) and mean +/− standard error for (d, h).
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small subset of the interactions41. The level of NET release was
larger against C. albicans germinating into hyphae compared to a
yeast-locked strain. This is consistent with previous observations
that NET production is influenced by microbial size41. Moreover,
swarming and NET release were also larger against wild-type C.
albicans than other Candida species that do not make hyphae,
even when all were presented at the start as identically sized
clusters, again suggesting a role for hyphae in inducing robust
NET responses.

We found that the efficacy of neutrophil swarming against C.
albicans can be enhanced by priming neutrophils with GM-CSF or
GCSF. These factors appear to have significant impact early in the
hierarchy of events during swarming, boosting neutrophil recruit-
ment and direct fungal killing, and significantly extending the
length of time it takes before surviving hyphae can escape the
swarm. The contribution of GM-CSF or GCSF to enhancing the
efficiency of neutrophil swarming against clusters of live microbes
complements the known roles of these factors in stimulating neu-
trophil granulopoiesis42–46 and in boosting neutrophil antimicrobial
actions, e.g., migration toward chemoattractants, production of
ROS, phagocytosis, and the killing of bacteria and fungi45,47,48.

Consistent with these previous reports, we uncovered that GM-
CSF or GCSF treatment can also enhance neutrophil function
during MPO inhibition, significantly boosting neutrophil
swarming recruitment. The fact that MPO deficiency can be easily
overcome is in line with clinical data, as patients with partial or
total MPO deficiency are not usually seen to be hypersusceptible
to infections except those with underlying comorbidities, such as
diabetes mellitus. It is likely that these patients could benefit from
such cytokine treatments capable of boosting neutrophil and
swarming functions22,49,50.

The potential of GM-CSF and GCSF to partially rescue neutrophil
function during ROS deficiency or chemical inhibition is an exciting
finding, as CGD patients are susceptible to frequent, life-threatening
infections28,51. Intriguingly, GCSF and GM-CSF have been used as
augmenting treatments in the care of CGD patients during infectious
complications52–54. It is known that GM-CSF and GCSF do not
restore the oxidative burst in CGD patient neutrophils, providing
evidence that the impact seen in swarming is through a ROS-
independent pathway55. Moving forward, systematic dissection of the
mechanisms used by neutrophils to kill microbes and regulate their
own function will be especially critical in CGD, where therapies to
enhance microbial killing must be carefully balanced to not simul-
taneously exacerbate the inflammatory complications found in these
patients31–33. A better understanding of swarming and its role(s)
during infection and inflammation will ultimately expand the ther-
apeutic options for patients at risk of infection or afflicted with
inflammatory pathologies.

Methods
Study design. The objective of this study was to optimize an assay in which human
neutrophil swarming against live microbes could be interrogated robustly and in
molecular detail and to validate the assay using C. albicans as an example organism.
To do this, we created poly-l-lysine/ZETAG microarrays that could hold clusters of
live fungi and challenged them with human neutrophils. We monitored the pro-
gression of swarming and the growth (or restriction) of fungi by time-lapse
microscopy. The accumulation of neutrophils (Hoechst staining), release of NETs
(appearance of Sytox staining), and C. albicans viability were also monitored by
fluorescence during time-lapse microscopy. Interrogation of individual molecular
mechanisms was accomplished by using the appropriate inhibitor and matched
vehicle controls in experiments. Isolated human neutrophils (same donor) were
pooled and distributed randomly between conditions in each experiment, but
otherwise no formal randomization or blinding was used. Sample size consisted of
N= 3+ donors for all experiments unless noted otherwise. Sample size was N= <3
for experiments solely meant to confirm previously observed and published results
(e.g., the role of LTB4 with inhibitors MK-886 and U75302) or those experiments
not central to claims of the paper (e.g., swarming to A. fumigatus). For manual
image analysis, a set of strict analysis rules were established prior to any processing
to ensure equivalent and fair quantification in all conditions and experiments. The

number of independent replicates for each experiment is outlined in the figure
legends and summarized in Supplementary Table 1.

Array printing. Utilizing a microarray printing platform (Picospotter, PolyPico,
Galway, Ireland), we printed a solution of 0.1% poly-l-lysine (Sigma-Aldrich) and
ZETAG targets with 100 µm diameter. For experiments, we printed 8 × 8 arrays in
a 16-well format on ultra-clean glass slides (Fisher Scientific). Slides were screened
for accuracy and then dried at 40 °C for 2 h on a heated block. After 2 h, slides were
removed from the heat block and left at room temperature until required.

Neutrophil isolation. Fresh samples of peripheral blood from healthy volunteers
was collected in 10 mL heparin or EDTA tubes (Research Blood Components LLC,
Allston, MA). Protocols were approved by the institutional review board at Mas-
sachusetts General Hospital (MGH). Blood was utilized within 6 h after the blood
draw, except for experiments with CGD samples that had both CGD and control
blood shipped overnight from the National Institutes of Health (NIH). Neutrophils
were isolated using the EasySep Direct Human Neutrophil Isolation Kit per the
manufacturer’s protocol (STEMCELL Technologies). Isolated neutrophils were
stained with Hoechst (ThermoFisher Scientific) and re-suspended in Iscove’s
Modified Dulbecco’s Media with 20% fetal bovine serum (ThermoFisher Scientific).

CGD patients. Blood samples were obtained by phlebotomy from CGD patients,
where the diagnosis was confirmed by molecular and/or functional testing. The col-
lection of samples from consented patients was approved by the internal review board
at the NIH under protocol # 93-I-0119 (NCT00001355) and institutional review board
at the MGH. For matched controls, healthy volunteer blood was also collected at the
same time and shipped under same conditions under the same approved protocols.
Samples were all de-identified and shipped at room temperature in isothermal boxes
from the NIH to the MGH. The patient and control blood samples were received and
processed immediately upon receipt the following morning.

Microorganism culture. C. albicans, yeast-locked C. albicans, C. auris, and C.
glabrata were inoculated into fresh yeast extract peptone dextrose liquid media and
grown shaking at 30 °C overnight. The far red fluorescent and yeast-locked C.
albicans was a kind gift from Robert Wheeler (University of Maine)56,57. Wild-type
C. glabrata (ATCC2001) was purchased from the American Type Culture Col-
lection (ATCC, Manassas, VA). A clinical isolate of C. auris was obtained from the
MGH microbiology laboratory (Boston, MA). A. fumigatus conidia of strain 293
expressing cytosolic red fluorescent protein was a kind gift from Jatin Vyas (MGH),
prepared by Nida Khan using standard methods. Upon receipt, conidia were fil-
tered using spin columns with 5-μm pores (Thermo Scientific) to isolate un-
germinated spores and stored in dH2O at 4 °C until required.

Target patterning. Sixteen-well ProPlate wells (Grace Bio-labs) were attached to
glass slides with printed arrays. Fifty µL of a suspension of the desired target, either
live microorganisms grown as outlined above or fluorescent microbe-derived
bioparticles (ThermoFisher Scientific), was added to each well and incubated with
rocking for 5–10 min. Following incubation, wells were thoroughly washed out
with phosphate-buffered saline (PBS) to remove unbound targets from the glass
surface. Wells were screened to ensure appropriate patterning of targets onto the
spots with minimal non-specific binding before use.

Swarming experiments. All imaging experiments were conducted using a fully
automated Nikon TiE microscope. Time-lapse imaging was conducted using a ×10
Plan Fluor Ph1 DLL (NA= 0.3) lens and endpoint images were taken with a ×2
Plan Apo (NA= 0.10) lens. Confocal imaging was conducted using a ×40 Plan
Fluor (NA= 0.75) lens. Swarming targets to be observed during time lapse were
selected and saved using the multipoint function in NIS elements prior to loading
of neutrophils. Five hundred thousand neutrophils were added to each well unless
otherwise noted. All selected points were optimized using the Nikon Perfect Focus
system before launching the experiment. In experiments using chemical inhibitors,
neutrophils were pre-incubated with the chemical or appropriately matched vehicle
control for 30 min before use.

NETosis visualization and chemical inhibitors. To visualize NET formation,
Sytox green was added to the media at 500 nM (ThermoFisher Scientific). For
inhibition of MPO activity, we included ABAH in the media at a concentration of
50 µM (Cayman Chemicals). For inhibiting the phagocyte oxidase and ROS gen-
eration, we included DPI (Sigma-Aldrich) in the media at a concentration of
10 µM, Apocynin (Cayman Chemicals) at a concentration of 300 µM, or Trolox
(Cayman Chemicals) at a concentration of 500 µM. To disrupt LTB4 synthesis,
MK-886 was included at 1 µM (Cayman Chemicals). BTL1 receptor blocking was
done with U75302 at a concentration of 1.38 µM (Cayman Chemicals). All che-
mical inhibitors were accompanied and compared to the appropriate vehicle
control (dimethyl sulfoxide for ABAH, DPI, Apocynin, Trolox, and MK-886,
ethanol for U75302). GM-CSF was used at a concentration of 0.2 ng/mL, and GCSF
was used at a concentration of 300 ng/mL. To visualize citrullinated histone H3 in
NETs without fixation, we modified an existing live NET staining protocol58.
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Briefly, we set up the assay as described above and allowed swarming to proceed for
5 h. At this time, media was removed from the wells and replaced with the blocking
solution. Samples were then stained with Anti-Histone H3 citrulline R2+ R8+
R17 (abcam; 0.014 mg/mL) followed by donkey anti-rabbit IgG Cy3 (Jackson
Immunoresearch; 0.0075 mg/mL) secondary antibody. The array wells were then
removed and replaced with a coverslip before confocal imaging.

Image analysis. Area analysis was performed manually by outlining the swarms or
areas of fungal growth in the NIS-elements (v4.00.12; Nikon Inc.) or FIJI (FIJI is
just ImageJ v2.0.0-rc-59/1.52p, NIH) software. For area of the swarm, only the
swarm itself (just the neutrophils) was measured. This was done using the 4,6-
diamidino-2-phenylindole fluorescent channel image, using Hoechst staining to
identify neutrophils. For areas of fungal growth, a combination of brightfield and
fluorescent channels were used. Fungi used in experiments were always fluorescent,
except for C. auris. We combined the appropriate fluorescent channel with the
brightfield image to be sure we included any escaped fungal elements, like lone
hyphae, that may not show up well in the fluorescent channel. For scoring of
germination, we observed the fluorescent fungi in each swarm, determining the
frame when germination becomes visible. For scoring of hyphal escape, we
observed the fluorescent fungi in each swarm via time-lapse and determined the
time when hyphae first breach the containment of the swarm (extends beyond the
area of neutrophils). For escape in the case of C. albicans with no neutrophils,
escape was instead defined as escape from an area equivalent to the area of an
average swarm. Intensity profiles were generated by defining regions of interest and
using the time measurement option in the NIS-elements or FIJI software.

Neutrophil cell lines. For construction of the NCF1-deficient cells, we used a
granulocyte-monocyte progenitor (GMP) cell line that is conditionally immorta-
lized by the expression of an estrogen receptor-homeobox B8 (ER-HoxB8) gene
fusion, which are maintained in the M.K.M. laboratory and have been described
previously59. Briefly, media contains stem cell factor and estradiol, which permits
nuclear translocation of the ER-HoxB8 fusion protein resulting in a conditional
maturation arrest at the GMP stage. Removal of estradiol allows synchronous
differentiation of the GMP into mature neutrophils60. All GMP cell lines were
cultured in complete RPMI media containing 2% stem cell factor-conditioned
media and 0.5 μM β-estradiol and grown in a humidified incubator at 37 °C in the
presence of 5% CO2 until ready for use. GMPs were removed from estrogen-
containing media and matured into functional neutrophils for 4 days prior to
experiment use. When ready, control or NCF1-deficient neutrophils derived from
these lines were treated exactly as described above for human neutrophils when
running swarming assays.

CRISPR-Cas9 system and single-guide RNA (sgRNA) design. The lentiCRISPR
vector was purchased from Genetic Perturbation Platform, Broad Institute
(Cambridge, MA)/Addgene (Cambridge, MA). To construct the lentiviral sgRNA
Cas9 vector, sgRNAs were cloned into lentiCRISPR vector in the BsmBI site60.
Lentivirus production and purification were performed as previously described61.
sgRNAs were designed using the CRISPR tool62 (http://crispr.mit.edu) to minimize
potential off-target effects. The lentiCRISPR with sgRNAs targeting NCF1 were
cloned using the following sequences: NCF1 sgRNA1: GCCCCTTGACAGTCCC
GACG (A7 G5-1) and NCF1 sgRNA2: CGTTGCCCATCAAACCACCT (A9 A5-1).
Lentiviral infection was carried out in a fibronectin (Millipore, Burlington, MA)
coated 12-well plate. In all, 5 × 105 cells were infected with NCF1 sgRNA con-
taining lentivirus by spinoculation (970 × g, 60 min, 25 °C), in the presence of 24
µg/mL polybrene (Millipore, Burlington, MA).

Western blot. Neutrophils were lysed in reducing agent (NuPAGE® Sample
Reducing Agent, ThermoFisher) and sodium dodecyl sulfate (SDS) sample buffer (4×
Laemmli Sample Buffer, BioRad). Proteins were resolved by SDS-polyacrylamide gel
electrophoresis under reduced conditions and transferred onto a polyvinylidene
difluoride membrane. Membranes were blocked in PBS–1% Tween with 5% nonfat
milk. Total NCF1 protein was detected with p47 phox (NCF1) D-10 (1:250; Santa
Cruz Biotechnology, Dallas, TX). The blots were subsequently reacted with mouse
monoclonal antibody AC-15 anti–β-actin (1:200,000; Sigma, St. Louis, MO).

ROS production. ROS production was measured as described63. Briefly, neutrophils
were plated at 5 × 105 cells per well in cRPMI, in 96-well white-wall plates (Grenier
Bio-One, Monroe, NC). Cells were placed on ice and heat-killed C. albicans hyphae
were added at a multiplicity of infection of 10. A lucigenin solution was added to each
well for a final concentration of 15 µM lucigenin in cRPMI. Luminescence was
measured at 37 °C every 5min for 4 h in a SpectraMax i3x reader (Molecular Devices,
San Jose, CA) and expressed as arbitrary fluorescence units.

Statistics and reproducibility. Data were tested for normality using a
D’Agostino–Pearson omnibus normality test. Normally distributed data were
analyzed with Student’s T test or one-way analysis of variance with Tukey’s post-
test. Non-normally distributed data were analyzed with Mann–Whitney or
Kruskal–Wallis with Dunn’s post-test where appropriate. Statistical significance

was considered for p < 0.05; exact p values are provided in the relevant figure
legends. All statistics were conducted using the GraphPad Prism 7.03 software. For
figures with micrographs (Figs. 1a; 2a; and 4c, d; Supplementary Figs. 1a; 3a; 4; 5a;
6a, b; 7a, b; 8b; 9a), these images are representative of three independent runs, with
the following exceptions: Figure 1a represents two donors. Figure 2a is repre-
sentative of healthy control neutrophils, which have been run for over 40 inde-
pendent times in this assay. Figure 4c, d is representative of one healthy control run
and three unique CGD samples. Supplementary Fig. 1a shows representative fungal
growth, which has been run >40 independent times for C. albicans and >10
independent times for C. glabrata, C. auris, and A. fumigatus. Supplementary
Fig. 5a is representative of two independent runs. Supplementary Fig. 9a is
representative of four independent runs. Full sample information for all data tested
(discrete N, number of donors, etc.) are included in Supplementary Table 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data for Figs. 1b–e; 2b–e; 3b–f; 4a, b, e–h; 5a–e; 6a–e; and 7a–h and
Supplementary Figs. 2, 3b–f; 5b, c; 6c–e; 7c–f; 8a, b; 9b–f; 10a–e; and 11a–l are provided
as a Source Data file. All other data are available from the authors upon request.
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