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Mining the transcriptome for rare disease therapies: a
comparison of the efficiencies of two data mining approaches
and a targeted cell-based drug screen

A. J. Mears', S. C. Schock’, J. Hadwen'?, S. Putos', D. Dyment'3, K. M. Boycott' and Alex MacKenzie'?

Most monogenic diseases can be viewed as conditions caused by dysregulated protein activity; therefore, drugs can be used to
modulate gene expression, and thus protein level, possibly conferring clinical benefit. When considering repurposing drugs for loss
of function diseases, there are three classes of genetic disease amenable to an increase of function; haploinsufficient dominant
diseases, those secondary to hypomorphic recessive alleles, and conditions with rescuing paralogs. This therapeutic model then
brings the questions: how frequently do such clinically useful drug—gene interactions occur and what is the most rapid and efficient
route by which to identify them. Here we compare three approaches: (1) mining of pre-existing system-wide transcriptomal
datasets such as Connectivity Map; (2) utilization of a proprietary causal reasoning engine knowledge base; and, (3) a targeted drug
screen using clinically accepted agents tested against normal human fibroblasts. We have determined the validation rate of these
approaches for 76 diseases (i.e., in vitro fibroblast mRNA increase); for the Connectivity Map, approximately 5% of tested putative
drug—gene interactions validated, for causal reasoning engine knowledge base the rate was 10%, and for the targeted drug screen
9%. The degree of overlap between these methodologies was low suggesting they are complementary not redundant approaches
to identify putative drug-gene interactions. Although the validation rate was low, a number of drug-gene interactions were
successfully identified and are now being investigated for protein induction and in vivo effect. This analysis establishes potentially
valuable therapeutic leads as well as useful benchmarks for the thousands of currently untreatable rare genetic conditions.
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INTRODUCTION

The estimated 7000 monogenic diseases although individually
rare are major contributors to human morbidity and mortality
collectively affecting approximately 2% of the global population.'
For example, rare diseases account for nearly twice the aggregate
number of years that lives are shortened by diabetes and almost
four times those due to infections.? Rare genetic diseases thus
represent a dramatic unmet diagnostic and therapeutic need.
Roughly half of the 7000 rare monogenic diseases have been
genetically characterized.”” * The remaining diseases are being
solved largely due to the work of national and international
consortia such as Care4Rare Canada (http://care4rare.ca/) and the
Centers for Mendelian Genomics (3) with collaborative platforms
such as the Matchmaker Exchange (http://www.
matchmakerexchange.org/.* However, the development of rare
disease treatment lags far behind the rate of rare disease
diagnosis; approximately 500 therapies have been approved for
rare diseases (Europe and USA combined®). Moreover, the rate of
drug development for rare diseases is slow, due to factors such as
extreme disease rarity and obscure disease pathogenesis.

One alternative to the costly and time-intensive drug discovery
process is to repurpose clinically approved compounds for
treatment of rare diseases.® Often, rare monogenic diseases can
be viewed as dosage problems caused by supra-physiologic or
infra-physiologic levels of functional gene-product, usually altering

protein activity. Under this model, moderating the dosage
problem by modulating mRNA and thus protein levels is a
potential strategy to repurpose drugs for rare monogenic diseases.
This may involve the upregulation of mutated recessive disease
genes encoding proteins with residual enzymatic activity (so
called hypomorphic alleles), of genes that functionally recapitulate
mutated recessive disease genes (rescuing paralog’) or of genes
that cause disease when haploinsufficient. Conversely, pathogeni-
cally increased gene dosage (e.g., gain of function dominant
mutations, gene duplication) may be countered by gene
downregulation.

The gene-dosage therapeutic model relies on the identification
of therapeutically relevant drug-gene interactions in which a
clinically approved drug modulates mRNA and protein levels.
Several approaches to identify such drug-gene interactions exist,
yet assessment of and comparison between these techniques
have not been conducted. Extensive pharmacologic transcriptome
datasets (nearly 4000 representing approximately 2 million
samples) are accessible through the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nIm.nih.gov/geo/g). One of the
largest sets of data is provided by Connectivity Map (CMAP) which
generated microarray transcriptome profiles for 3 different cancer
cell lines (leukemia (HL60), breast (MCF7), and prostate (PC3))
treated with over 1200 drugs.” '© Another bioinformatic-based
approach to identify putative drug-gene interactions is literature-
mining; Pfizer has developed a proprietary advanced algorithm for
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text-mining called the Causal Reasoning Engine (CRE),'" '? which
operates against a knowledge base integrating causal interactions
from several sources. We have employed the latter two
approaches as well as an in-house drug screen on normal human
fibroblasts using a curated publicly available library of FDA
approved compounds to establish the frequency with which such
drug-gene interactions can be first identified and then validated
(modulation of mRNA in cell culture), as well as the degree of
overlap between these three approaches.

RESULTS
Identifying potential therapeutic targets

We set out to identify a subset of rare diseases that were
potentially amenable to mRNA (and by extension protein)
modulation. We reviewed the rare disease databases OMIM 3
and Orphanet ' to identify diseases with a potential mRNA target:
(1) autosomal dominant rare diseases caused by haploinsufficiency;
(2) recessive diseases where there is evidence that hypomorphic
alleles encode proteins with residual function that localize normally
in the cell; and (3) diseases where there exists another gene that
may functionally recapitulate the disease gene's function (rescuing
paralog). Next, an expert clinical group (KMB, DD, and clinical
members of the FORGE Canada Consortium, '*) further reduced
this list by looking for: (1) the existence of a pre-symptomatic
period and/or the possibility of reversibility; (2) degree of unmet
medical need; and (3) known Canadian patients affected with the
disorder to arrive at a list of 76 diseases for study (Table 1).

Of the 76 diseases (associated with 75 different genes), 57 can
be caused by hypomorphic mutations (in 55 genes) that might be
improved by over-expressing the mutated partially functional
protein. We believe that the upregulation of mRNA/protein is a
credible treatment modality in such cases given that a modest
increase of enzyme activity in a recessive disease may have a
profound impact clinically (28). Care was taken to avoid diseases in
which the majority of associated mutations resulted in misloca-
lization or 0% activity. Fifteen of the diseases are haploinsufficient
autosomal dominantly inherited conditions caused by a mutation
in a single allele; these diseases likely represent the most
promising class for pharmacologic gene induction with the
remaining non-mutated allele serving as the drug target; we are
aware of at least two examples employing this approach in the
literature.” '® In this instance, care has been taken to identify
conditions where there is good evidence that the causal mutation
is null and does not encode a protein with either dominant
negative or gain of function properties. In 5 of the 76 diseases, our
goal was the over-expression of a paralog; the concept of treating
a genetic disease by modulating expression of a gene that
functionally compensates (at least partly) the mutation gene is a
well-known but comparatively unused therapeutic approach
exemplified by SMN2 induction in spinal muscular atrophy (7).
In the final instance of Tay Sachs disease, the neuraminidase
genes sit on a metabolic bypass pathway which may moderate
the clinical severity (29) although recent work has called this
interpretation into question (30).

Mining of CMAP for drug conferred gene induction

Broad differences of mRNA “responsiveness” to the drugs were
observed when mining the CMAP data; in general drugs such as
histone deacetylase inhibitors (HDACi's) induced the most genes
while others had little impact on the transcriptome (Supplemen-
tary Table 1). The response of 70 of the 75 target genes (Table 1)
to the 149 CMAP drugs also found in the 310 compounds that
were later tested in our fibroblast screen was extracted from the
CMAP dataset; only two genes failed to be increased by at least
one drug. Of the 10,430 possible drug-gene interactions (70
genes X 149 drugs) recorded in CMAP, 970 demonstrated
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induction (9.3%) in at least one of the three cancer cell lines
tested. It should be noted the significant majority of these hits
were singletons (89%) and a much smaller fraction displayed
induction in two (10%) or all three cell lines (1%; see Table 2;
Supplementary Table 2; columns LC-LK).

Causal reasoning engine knowledge base mining

The medical literature mining algorithm to identify drug-gene
relationships was initially set at Edge 2 low stringency settings (see
material and methods) but generated so many leads that there
was little value in terms of identifying true interactions (data not
shown). At the more stringent level focused at exclusively “Edge 1"
effects of the 23,250 potential drug-gene interactions (75 genes X
310 drugs), 119 different putative interactions were identified
(0.6%; Supplementary Table 2; column LF).

Cell based screening

310 drugs were tested for their impact on 51 target genes in
normal human fibroblasts as outlined in methods. Based on the
stringent statistical criteria used for identifying putative positive
drug-gene interactions (Z-score > 1.65 for both pools of five
containing a given drug), of 15,810 interactions tested in our cell-
based screen, 61 putative interactions were identified (0.4%;
Supplementary Table 2, column LG).

Validation of hits

Validation of a subset of the hits identified by one or more of the
three methods (685/970 for CMAP, 85/119 for CRE; 55/61 for the
cell-based screen) was undertaken in human skin fibroblasts by
incubating with single drug (2 uM and drug doses closer to
therapeutic levels) for 8 h followed by gRT-PCR measurement of
target mRNA. In total, of the 685 CMAP hits tested, 34 validated in
fibroblasts (5%), for the 85 CRE hits tested, 9 validated (11%) and
of the 56 fibroblast screen hits tested, 5 validated (9%). Overall, 47
different drug-gene interactions validated (Table 2), and in only
two cases; isotretinoin vs. SMAD3 (CMAP and fibroblast screen;
Fig. 1) and dexamethasone vs. ITPR1T (CMAP and CRE) was the
same interaction identified by more than one method (Fig. 2). Of
these 47, 13 demonstrated a robust response with therapeutic
levels (serum concentration) of the drug, another 13 showed a
modest response, and 21 displayed a response only when the
drug dose was very high (typically 10-fold or greater than
therapeutic levels). Furthermore, 19 drugs accounted for these 47
responses (see Table 2). Although transcriptionally active com-
pounds including the vitamin A analog isotretinoin (2 genes),
dexamethasone (3 genes), calcitriol (3 genes) were among the
agents which upregulated mRNAs, some on the transcriptomic
modulating list were unexpected; suprapharmacologic levels of
the laxative bisacodyl induced a full 11 target mRNAs while the
antipsychotic phenothiazine, fluphenazine upregulated 7. Given
one of the most robust responses was observed with isotretinoin
and SMAD3, we next attempted to see if there was a
corresponding protein induction; a greater than 2-fold induction
was seen with 100-500 nM isotretinoin (Fig. 3).

DISCUSSION

The era of next generation DNA sequencing based rare disease
gene identification has served to underline the comparative
dearth of effective rare disease therapies; fewer than 500 for the
thousands of disorders; the expense of many is such that payers
around the world are struggling and the potential to fund many
more is clearly in doubt. New means of identifying inexpensive
rare genetic disease therapies are clearly needed. As one possible
solution, rare diseases are approached here as problems of gene
dosage; conditions resulting from too little or too much of a given
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Table 1. The 76 diseases and associated 75 genes analyzed in this study (classified as haploinsufficient; paralog rescue, or hypomorph categories)

Gene Disorder OMIM# Fibroblast screen? CMAP data? CNS disease?
HAPLOINSUFFICIENT
AFG3L2 Spinocerebellar ataxia type 28 610246 yes yes yes
ATP1A2 Familial hemiplegic migraine type 2 602481 no yes yes
COL6A1 Bethlem myopathy 158810 yes yes no
CSF1R Hereditary diffuse leukoencephalopathy with spheroids 221820 no yes yes
GRN Frontotemporal lobar degeneration with ubiquitin-positive 607485 no yes yes
inclusions
ITPR1 Spinocerebellar ataxia type 15 606658 yes yes yes
MAPT Dementia, frontotemporal, with or without parkinsonism 600274 no yes yes
MPZ Charcot-Marie-Tooth disease type 1B 118200 no yes yes
NKX2-1 Chorea, hereditary benign 118700 no yes yes
OPA1 Optic atrophy type 1 605290 yes yes yes
PMP22 Hereditary neuropathy with liability to pressure palsies 162500 yes yes yes
SCN1A Dravet syndrome 607208 yes yes yes
SLC2A1 GLUT1 deficiency 612126 yes yes yes
SMAD3 Familial thoracic aneurysm/ Loeys Dietz syndrome type 3 613795 yes yes no
SPAST Hereditary spastic paraparesis type 4 182601 yes yes yes
PARALOG RESCUE (paralog target)
ABCD1 (ABCD2) X-adrenoleukodystrophy 300100 no yes yes
DDHD2 (DDHD1) Complex hereditary spastic paraplegia (SPG 54) 615033 yes no yes
FBN1 (FBN2) Marfan syndrome 154700 yes yes no
LIMS2 (LIMS1) Limb girdle muscular dystrophy with cardiomyopathy type, 2W 616827 yes yes no
SLC39A8 (SLC39A14) Congenital disorder of glycosylation, type IIn 616721 yes yes yes
HYPOMORPH
ACADVL ACADVL deficiency (VLCAD) 201475 no yes no
AGPAT2 Lipodystrophy, congenital generalized, type 1 608594 no yes no
AGXT Primary hyperoxaluria 259900 no yes no
ALDH18A1 Cutis laxa, autosomal recessive, type IlIA 219150 no yes yes
AMACR Apha-methylacyl-CoA racemase deficinecy 614307 no yes yes
ARSA Metachromatic leukodystrophy 250100 yes yes yes
ASAH1 Farber disease 228000 yes yes yes
Spinal muscular atrophy with progressive myoclonic epilepsy 159950
ASL Argininosuccinic aciduria 207900 no yes yes
ASPA Canavan disease 271900 no yes yes
ATP7A Occipital horn syndrome 304150 yes yes no
ATP7B Wilson disease 277900 yes yes yes
BCKDHA Maple syrup urine disease (intermediate), type la 248600 yes yes yes
BCKDHB Maple Syrup urine disease (Intermediate), type Ib 248600 yes yes yes
BSCL2 Lipodystrophy, congenital generalized, type 2 269700 yes yes no
CLN3 Ceroid lipofuscinosis type 3 (Batten disease) 204200 yes yes yes
CPT2 Carnitine palmitoyltransferase Il deficiency 255110 yes yes no
CTSA Galactosialidosis 256540 yes yes yes
DDHD2 Complex hereditary spastic paraplegia (SPG 54) 615033 no yes yes
EIF2B5 Central hypomyelination and vanishing white matter disease 603896 yes yes yes
ETFA Glutaric acidemia type 2 231680 yes no no
FH Fumarase deficiency 606812 yes yes yes
FKRP Limb girdle muscular dystrophy type 5C 607155 no yes no
GAA Glycogen storage disease type 2/Pompe 232300 yes yes no
GALC Krabbe disease 245200 yes yes yes
GALNS Mucopolysaccharidosis IVA 612222 yes yes no
GALT Galactosemia 230400 yes yes no
GBE1 Glycogen storage disease type IV 232500 yes yes no
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Table 1 continued

Gene Disorder OMIM# Fibroblast screen? CMAP data? CNS disease?
GLB1 Mucopolysaccharidosis type IVB (Morquio) 253010 yes yes no

GM1-gangliosidoses Type 3 230650

GUSB Mucopolysaccharidoses VII 253220 yes yes yes
HARS Usher syndrome 614504 yes yes yes
HEXA Tay Sachs disease 272800 yes yes yes
HEXB Sandhoff disease 268800 yes yes yes
HPRT1 Kelley-Seegmiller syndrome 300323 yes yes no
HSD11B2 Mineralocorticoid Excess 218030 no yes no
HSD17B4 D-bifunctional protein deficiency 261515 yes yes yes
IDS Mucopolysaccharidoses I 309900 yes yes yes
IDUA Mucopolysaccharidoses | 607014 no yes yes
MAN2B1 Alpha-mannosidosis type | 248500 yes yes yes
MUT Methylmalonic aciduria, mut type 251000 yes yes yes
NEU1 Sialidosis type 1 256550 yes yes yes
OTC Ornithine transcarbamylase deficiency 300461 no yes yes
PHYH Adult Refsum disease 266500 yes yes yes
PLP1 PLP1-related disorders 312080 no yes yes
PMM2 Congenital disorder of glycosylation type 1C 212065 yes yes yes
POLR3A Leukodystrophy, hypomyelinating, 7 607694 yes no yes
PPT1 Ceroid lipofuscinosis type1 600722 yes yes yes
SACS ARSACS 270550 yes yes yes
SBDS Shwachman-Bodian-Diamond syndrome 260400 yes no no
SCARB2 Action myoclonus renal failure syndrome 254900 yes yes yes
SGSH Mucopolysaccharidoses |lI 252900 no yes yes
SLC16A2 Allan-Herndon-Dudley syndrome 300523 no yes yes
SLC52A2 Brown-Vialetto-VanLaere Sensory neuropathy 614707 no yes yes
SLC6A8 Creatine transporter deficiency 300352 no yes yes
SUMF1 Multiple sulfatase deficiency 272200 yes no yes
TYMP Mitochondrial DNA depletion syndrome type 1 603041 yes yes yes
METABOLIC BYPASS

NEU1 Tay Sachs disease 272800 yes yes yes

protein activity. We set out to establish the frequency with which
drug-gene interactions (in this case, pharmacologic upregulation
of mRNA) can be first identified and then validated as a possible
therapeutic approach to attenuate this pathogenic dysregulation
for a targeted group of rare diseases. We searched an extensive
transcriptomal database (Connectivity Map (CMAP); 149 drugs; 70
genes), used a text mining platform (causal reasoning engine; 310
drugs; 75 genes) and conducted a targeted drug screen on normal
human fibroblasts (310 drugs; 51 genes). Forty-seven examples of
drug induction of potential rare disease modifying genes were
identified in this fashion.

Although we assessed 75 genes/76 disorders, it is clear that
there exist many others that could be assessed, in particular the so
called hypomorphs. In theory any recessive disorder with
missense mutations that preserve both the correct protein
localization and some function could be a potential target.
Broadly speaking 28% of 7000 genetic disorders are recessive
(http://ec.europa.eu/health/rare_diseases/orphanet/report_en)
and approximately 70 percent are missense.'” It is not known
what fraction of these preserves some function and correct
cellular targeting but even it were as low as 25% there are over
three hundred such disorders and this may be an underestimate.

In terms of the initial identification of potentially significant
drug-gene interactions, the CMAP had, by far, the greatest
proportional yield of the three approaches; 9.3% (970/10,430)
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were potentially positive compared with only 0.6% (119/23,250)
and approximately 0.4% (61/15,810) for the CREKB mining and
cell-based assay, respectively. It should be noted that although the
CMAP appeared much more effective than the other two
approaches in identifying putative positives, an interaction was
scored as a positive if just one cell line (of the three tested)
showed a response; if only those that showed a response in all
three lines were counted, the yield dropped to 1%, much closer to
the values obtained for the other two platforms.

The proportion of the putative positive drug-gene interactions
which were next validated (qRT-PCR amplification of the specific
MRNA from normal human fibroblasts grown in 2 uM drug) was
more consistent; approximately 5% of cases for the CMAP, 11% of
the CREKB drug-gene interactions and 9% for our targeted drug
screen validated (Table 2; Supplementary Table 2; columns LC-LK).
These relatively low validation rates likely devolve from a number
of factors; in the case of CMAP, the cells were transformed and not
primary lineages and the drug concentration was comparatively
high (10 uM). The CREKB showed the highest validation rate at
11%, closely followed by the targeted drug screen (9%). None-
theless approximately 90% of putative hits did not validate. In the
case of CREKB, the inference of a direct drug-gene interaction is
based on medical literature encompassing a wide range of tissue
and cell types with different drug concentrations and timing; thus
the one in ten validation rate might be expected. With regard to
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Table 2. Assessment in the fibroblast screen, presence in Connectivity
map database and CNS involvement

GENE DRUG Validation CMAP CREBK FScreen
response
ATP1A2 Calcitriol [++4] z n/a
Biperiden ++ X n/a
ITPR1 Dexamethasone  ++ X z
Dasatanib [++] z
Ethacrynic acid [++] 1
SCNTA Bisacodyl [++4] X
SLC2A1 Buspirone ++ X
Metformin [++] z
Deferoxamine [++] XX
Fluphenazine [++4] X
SMAD3 Isotretinoin ++ XX 1
Fluphenazine ++ XXX
SPAST Naltrexone [++] XX
Fluphenazine ++ XX
FBN2 Dexamethasone  ++ z
LIMS1 Isotretinoin [++4] X
SLC39A14 Bisacodyl [++] X
Acetylcysteine + z
AGPAT2 Mexiletine + X n/a
AGXT Theophylline ++ X n/a
Trazodone ++ X n/a
AMACR Fluphenazine + XX n/a
ASAH1 Fluphenazine ++ XX
ATP7A Bisacodyl [++] X
BCKDHB  Chlorpropamide + X
CLN3 Bisacodyl [++] X
CTSA Bisacodyl [++] X
GALC Bisacodyl [++] X
Mexiletine + X
GALNS Bisacodyl [++] X
GUSB Idarubicin + 1
HEXA Idarubicin + 1
Bisacodyl [++] X
HEXB Bisacodyl [++4] X
HPRT1 Chlorpropamide  + X
HSD11B2  Calcitriol + z n/a
IDS Bisacodyl [++] X
Naltrexone [++] X
Fluphenazine ++ X
IDUA Buspirone + X n/a
MAN2B1 Idarubicin + 1
Dacarbazine ++ X
NEU1 Bisacodyl [++4] X
Fluphenazine ++ XXX
SGSH Mexiletine + X n/a
TYMP Calcitriol [++] z
CSF1R Dexamethasone + z n/a

++ = robust response (>75% induction),+ = modest induction (40-74%)
[++] =induction only observed with high dose of drug (therapeutic dose)
x =response observed in one cell line, xx =two cell lines, xxx = three cell
lines

z=lidentified by causal reasoning engine algorithm

1 =identified by fibroblast screen

n/a=not applicable as screen was not performed on this gene

The remaining blank cells indicate that a gene-drug interaction was not
demonstrated/predicted based on CMAP, CREKB or FScreen.
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the fibroblast screen, the 9% validation rate was unanticipated; it
may be that the combination of drugs in pools of 5 to achieve the
greatest throughput resulted in unpredictable synergistic multi-
drug effects that increased the false positive rate. Conversely, it is
also likely that repression of gene expression by individual drugs
may have masked drug pool induction events resulting in false
negatives.

Nevertheless, 47 different drug-gene interactions were identi-
fied by the three different methods, showing that these
approaches can be used in a complementary manner. The
methodologies themselves have significant differences; CREKB is
mined from a medical literature often directed toward specific
diseases, drug classes and specific readouts while the system wide
gene expression data found in CMAP are from cells that are
transformed with all the genetic anomalies that that may entail.
Interestingly if one looked exclusively at the CMAP drug-gene
interactions in which all three cell lines were positive, 18% (2/9)
validated; the highest yield by a significant margin. Finally, the
normal human skin fibroblasts used in the FDA screen while a
technically tractable cell line express only approximately two
thirds of the transcriptome over 80% of which encode proteins
expressed in all tissues (i.e,, “housekeeping proteins”).'®

The mining of existing computational datasets for drug
repurposing has been explored by other groups. In particular, a
number of reports using the CMAP have been published, focusing
on more common conditions such as dyslipidemia,'® pain,®
cancer,”’ inflammatory bowel disease,*? cachexia,®® osteoporo-
sis,?* and alopecia.”® A recently published systematic assessment
of the CMAP mining for drug repurposing for cancer and other
common diseases showed predictive utility particularly for
cancer.?® Our study is the second of which we are aware that
uses the CMAP to study rare genetic diseases 2’ and unique in that
it utilizes single gene levels rather than gene signatures as the
therapeutic target. Similarly the causal reasoning engine platform
12 has been used by a number of groups to look for established
drugs with activity against cancer and pain;?® it has not to our
knowledge been used to look for gene induction or applied to
rare diseases.

Having identified 47 possible leads, we shall next assess for a
protein upregulation reflecting mRNA induction; we have shown
this for a number of conditions (e.g., SLC2A1 by deferasirox,
SMAD3 by isotretinoin; Fig. 3) and would anticipate that, despite a
considerable attrition, a significant proportion of the remainder
shall as well.?* 3° Following this assessment in vivo analysis for
induction in the tissue of greatest pathophysiologic relevance will
be undertaken.

Finally, although the concept of increasing an underexpressed
protein to treat rare genetic disease is intuitively attractive, insight
into the biology of the disease process will also be critical for the
next stage of assessment. For example Loeys Dietz type Il
aortopathy despite being caused by haploinsufficiency of the
TGFB responsive SMAD3 transcription factor,®' counterintuitively
results in an induction of the TGF@ axis.>®> Treatment of young
SMAD3 * mice with SMAD3 inducing retinoic acid thus appears
only to add to TGFf activation and not to improve but possibly
exacerbate their aneurysmal phenotype. The timing of the
repletion (earlier rather than later) appears critical to the
possibility of benefit (E. MacFarlane; personal communication).

In another example, autosomal-recessive intellectual disability
with cerebellar atrophy syndrome (also known as congenital
disorder of glycosylation, type Il) is caused by a comparative
manganese deficiency resulting from mutation of the manganese
transporter gene SLC39A8.3% We anticipated induction of the
paralogous manganese transporting SLC39A14 would be bene-
ficial at the outset of this study, but recent work has shown that
loss of this transporter results in manganese accumulation.3* The
gene is an exporter of manganese via hepatic metabolism and its
upregulation might actually only worsen the manganese
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Fig. 2 Venn diagram showing the overlap of the validated drug-
gene interactions identified by the three methods. Thirty four of 685
CMARP hits tested, 9 of 85 CREKB hits and 5 of 55 hits identified in the
fibroblast cell-based screen validated by gRT-PCR measurement of
target mRNA in single drug dosing (2 uM) of fibroblasts for 8h.
(Table 2)

Isotretinoin vs SMAD3

depletion observed in the syndrome; downregulation of the
SLC39A14 may therefore be the desired outcome. It is clear that
after a promising drug gene induction is observed, validation in
the appropriate animal disease model is critical.

In conclusion, two in silico approaches and a directed drug
screen configured to identify putative drug-gene (mRNA) interac-
tions for rare genetic diseases has provided new putative target
drugs that may be further tested for in vivo protein induction as a
prelude to potential use as repurposed rare disease therapeutics.
Our experience with pharmacologic modulation of gene activity
will help frame expectations for those pursuing this path and the
data presented here will serve as a useful resource for those
studying specific diseases and genes.

METHODS
Drug selection

Although the Connectivity Map employed 1300 compounds * '° and the
CREKB subtends ~ 450,000 causal relations (12), for purposes of tractability
the definition of a subset of compounds was needed. Given that
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Fig.3 a Sample western blot for SMAD3 protein in NHF treated with
various concentrations of isotretinoin (13-cis-retinoic acid; 13-CRA)
for 16h. b Quantified SMAD3 protein expression. Error bars
represent SEM. n=4. Heat shock cognate protein 70 (HSC70)
*p < 0.05

repurposed medications for rare disorders will likely have to be given for
life, 310 drugs were therefore selected for testing from the Screen-well v2
FDA approved drug library (Enzo Life Sciences) using overall safety profile
and tolerability as desirable characteristics (Supplementary Fig. 1). The
impact of these 310 drugs on 75 genes as elicited by two and, where
possible, all three approaches therefore comprised the central focus of our
work.

Mining of existing CMAP datasets

Broad Institute’s CMAP (https://www.broadinstitute.org/cmap/) is a data-
base of drug-gene interactions employing the Affymetrix GeneChip U133-
A microarray-based transcriptomic analysis of mRNA extracted from three
cell lines (Hela, PC3, and MCF?7) individually treated with ~ 1300 drugs for
6h at a concentration of 10uM.> ' All drugs demonstrating mRNA
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induction for each of the genes represented in this dataset were identified
(70/75 target genes; Table 1). These were then cross-referenced with our
FDA drug panel identifying 149 drugs that were utilized in the CMAP
screen.

Mining the CREKB

Given the extensive and increasingly detailed biomedical literature, text-
mining has become a promising approach with which to identify putative
drug-gene interactions.®> The Pfizer CREKB integrates microarray tran-
scriptomic data with causal statements derived from the biomedical
literature (Ingenuity and Selventa “knowledge bases”) to infer upstream
molecular mechanisms mediating observed gene expression changes.!" 12
The underlying knowledge base (CREKB) was used to predict pathway
targets that would impact the expression of the disease-related mRNA for
our target 75 disease genes for the 310 drugs under test. The interactions
were then classified by the proximity of their relationship. Edge 1 effects
refer to a direct link, whereas edge 2 is inferred from indirect relationships
(e.g., when considering drug A and gene C, a direct impact of A on Cis an
edge 1 effect while drug A affecting gene B which regulates gene C is an
edge 2 effect.) However, edge 2 effects were extremely common therefore
only edge 1 direct links were scored. This approach was able to distinguish
directionality in terms of the relationship, i.e., up-regulation of gene targets
by drugs vs. repression.

Fibroblast-based drug screening

Pooled drugs (5 per well) at 2 uM each were utilized; drugs were assessed
twice in the screen, and never pooled with the same drugs (Supplementary
Table 1). Dosing was conducted on normal human fibroblasts at an early
passage (10) grown to 100% confluence in 10 cm dishes to minimize
differential responses devolving from the cycling state of the cell. Cells
were collected after an 8 h treatment via trypsin and RNA isolated by
RNeasy MICRO with on-column DNAsing (QIAGEN). Minimal toxicity was
observed by light microscopy at 8 h. cDNA was synthesized via the iScript
Advanced system (BIO-RAD) then transferred to a 384-well plate and gPCR
performed using the iQ Supermix (BIO-RAD) on a CFX-384 instrument (BIO-
RAD). Each sample was represented in triplicate wells (technical replicates).
In total, gPCR was performed on 51 different target genes of interest
(Supplementary Table 2; column B). The remaining genes were not tested
due to very low/negligible expression in fibroblasts. In addition GAPDH
and YWHAZ were also run to determine relative stability of signal and
cDNA concentration. Relatively low signals (Ct values > 27) were observed
for 20/53 genes analyzed.

The drug screen was configured so that a single 384-well qPCR plate
contained all 128 drug pools (5 drugs per pool) comprising our library in
triplicate; thus a single gene was measured in each of the 53 qPCR plates
(51 genes tested). Each 384 well plate thus had the same array of drug
pools; it was noted that some pools had tendency to either consistently up
or downregulate irrespective of the gene being tested. Although the
source of the “hot” and “cold” drug pools is unclear, a plate correction was
conducted; an individual drug pool-gene reading was normalized against
the geometric mean of all genes tested for the corresponding drug pool in
all other plates (i.e., 53 qPCR Ct values per drug pool). Z-scores were then
calculated for each gene dataset. Each drug of the 310 drug panel was
represented twice in the pools of five; an mRNA level demonstrating a Z-
score greater than 1.65 (p value < 0.05) for a given drug in both pools was
identified as a putative hit warranting additional investigation and
validation.

Western blot validation of isotretinoin

Following treatment of fibroblasts (NHF) with isotretinoin, cells were lysed
using radioimmunoprecipitation assay buffer supplemented with protease
and phosphatase inhibitors by sonicating for 30's followed by a resting
period of 30s, repeated for a total of 8 min using a water bath sonicator
(DiaMed Transsonic T460). Samples were then centrifuged at 4 °C for 40
min and protein was quantified using a Bradford Protein Assay (Bio-Rad
#500-0006). 40 ug of protein was loaded on 11% acrylamide gels and run
at 80V for 30 min, then 120V for 1 h before being transferred with a Bio-
Rad Semi-Dry Transfer system (Amersham Biosciences TE 77 Semi-Dry
Transfer Unit) onto nitrocellulose membranes (Bio-Rad, #162-0115) for 1 h
15min at 65 milliAmps/gel. Membranes were blocked in PBS/Tween
(0.05% Tween-20) with 5% dried skimmed milk for 1h. Anti-SMAD3
antibody (Abcam #ab40854) was used at 1:3000 in PBS/Tween (0.05%
Tween-20) with 5% dried skimmed milk powder overnight at 4 °C. Anti-
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rabbit secondary antibody was used at 1:5000 (Cell Signaling Technology,
#7074S) in PBS/Tween (0.05% Tween-20) with 5% dried skimmed milk
powder at room temperature for 1 h. Both primary and secondary antibody
washes were followed by three 15-minute washes with PBS/Tween (0.05%
Tween-20). Antigen detection was carried out using Clarity (Bio-Rad, #170-
5061) according to the manufacturer’s instructions. Loading control anti-
HSC70 (Santa Cruz Biotechnology, #sc-7298) was used at a concentration of
1:2000 in PBS/Tween (0.05% Tween-20) with 5% dried skimmed milk powder
at room temperature for 1 h. Anti-mouse secondary antibody was used at
1:5000 (Cell Signaling Technology, #7076S) in PBS/Tween (0.05% Tween-20)
with 5% dried skimmed milk powder at room temperature for 1h. Blots
were quantified using ImageJ 1.48v software.

Availability of data, materials and methods

The CMAP database is available at: https://www.broadinstitute.org/cmap/
The Pfizer CREKB was made available to us through collaboration.

ACKNOWLEDGEMENTS

We are grateful to Justin Lamb (Genometry), architect of the CMAP for his support
and informed counsel and to Christoph Brockel (Pfizer) for CREKB analysis. This work
was performed under the Care4Rare Canada Consortium funded by Genome Canada,
the Canadian Institutes of Health Research, the Ontario Genomics Institute (OGI-049),
Ontario Research Fund, Genome Quebec, Genome British Columbia, and CHEO
Foundation.

AUTHOR CONTRIBUTIONS

AJ.M. was involved with experiment design, experiment implementation and
manuscript writing and editing. S.P. performed western blots. A.M., D.D. and K.B. were
involved in experiment design and they along with S.S and J.H. were involved
manuscript writing and editing. All authors provided intellectual input and approved
the final manuscript.

COMPETING INTERESTS

The authors declare they have no competing interests.

REFERENCES

1. Chong, J. X. et al. The genetic basis of mendelian phenotypes: discoveries,
challenges, and opportunities. Am. J. Hum. Genet. 97, 199-215 (2015).

2. Mazzucato, M., Visona Dalla Pozza, L., Manea, S., Minichiello, C. & Facchin, P. A
population-based registry as a source of health indicators for rare diseases: the
ten-year experience of the Veneto Region’s rare diseases registry. Orphanet. J.
Rare. Dis. 9, 37 (2014).

3. McKusick, V. A. Mendelian inheritance in man and its online version, OMIM. Am. J.
Hum. Genet. 80, 588-604 (2007).

4. Philippakis, A. A. et al. The matchmaker exchange: a platform for rare disease
gene discovery. Hum. Mutat. 36, 915-921 (2015).

5. Haffner, M. E. History of orphan drug regulation—United States and beyond. Clin.
Pharmacol. Ther. 100, 342-343 (2016).

6. Huang, R. et al. The NCGC pharmaceutical collection: a comprehensive resource
of clinically approved drugs enabling repurposing and chemical genomics. Sci.
Transl. Med. 3, 80ps16 (2011).

7. MacKenzie, A. Sense in antisense therapy for spinal muscular atrophy.
doi:10.1056/NEJMcibr1114629 (2012).

8. Edgar, R, Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic. Acids. Res. 30, 207-210
(2002).

9. Lamb, J. et al. The connectivity map: using gene-expression signatures
to connect small molecules, genes, and disease. Science 313, 1929-1935
(2006).

10. Lamb, J. The connectivity map: a new tool for biomedical research. Nature. 7,
54-60 (2007).

11. Enayetallah, A. E,, Ziemek, D., Leininger, M.T. et al. Modeling the mechanism of
action of a DGAT1 inhibitor using a causal reasoning platform. PLoS ONE 6,
€27009 (2011).

12. Chindelevitch, L. et al. Causal reasoning on biological networks: interpreting
transcriptional changes. Bioinformatics. 28, 1114-1121 (2012).

13. INSERM. Prevalence and incidence of rare diseases: bibilographic data. Orphanet
Rep. Ser. Rare Dis. Collect. 1, 1-55 (2015).

npj Genomic Medicine (2017) 14


https://www.broadinstitute.org/cmap/
http://dx.doi.org/10.1056/NEJMcibr1114629

np)

Mining the transcriptome for rare disease therapies
AJ Mears et al.

8

14.

15.

20.

21.

22.

23.

24,

25.

26.

27.

Beaulieu, C. L. et al. FORGE Canada consortium: outcomes of a 2-year national
rare-disease gene-discovery project. Am. J. Hum. Genet. 94, 809-817 (2014).
Holler, C. J. et al. Trehalose upregulates progranulin expression in human and
mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat
frontotemporal dementia. Mol. Neurodegener. 11, 46 (2016).

. Albifana, V., Bernabeu-Herrero, M. E., Zarrabeitia, R., Bernabeu, C. & Botella, L. M.

Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT): effects of
raloxifene, on Endoglin and ALK1 expression in endothelial cells. Thromb. Hae-
most. 103, 525-534 (2010).

. Krawczak, M. et al. Human gene mutation database-a biomedical information

and research resource. Hum. Mutat. 15, 45-51 (2000).

. Edqvist, P-H. D. et al. Expression of human skin-specific genes defined by tran-

scriptomics and antibody-based profiling. J. Histochem. Cytochem. 63, 129-141 (2015).

. Wagner, A. et al. Drugs that reverse disease transcriptomic signatures are more

effective in a mouse model of dyslipidemia. Mol. Syst. Biol. 11, 791 (2015).
Chang, M., Smith, S., Thorpe, A., Barratt, M. J. & Karim, F. Evaluation of phenox-
ybenzamine in the CFA model of pain following gene expression studies and
connectivity mapping. Mol. Pain. 6, 56 (2010).

Claerhout, S. et al. Gene expression signature analysis identifies vorinostat as a
candidate therapy for gastric cancer. PLoS ONE 6, e24662 (2011).

Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate
for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).

Kunkel, S. D. et al. mRNA expression signatures of human skeletal muscle atrophy
identify a natural compound that increases muscle mass. Cell. Metab. 13, 627-638
(2011).

B, A. M. et al. Connectivity map-based discovery of parbendazole reveals targe-
table human osteogenic pathway. Proc. Natl. Acad. Sci. U. S. A. 112, 12711-12716
(2015).

Ishimatsu-Tsuji, Y., Soma, T. & Kishimoto, J. Identification of novel hair-growth
inducers by means of connectivity mapping. FASEB. J. 24, 1489-1496 (2010).
Cheng, J,, Yang, L., Kumar, V. & Agarwal, P. Systematic evaluation of connectivity
map for disease indications. Genome. Med. 6, 540 (2014).

Yuen, T. et al. Disease-drug pairs revealed by computational genomic con-
nectivity mapping on GBA1 deficient, Gaucher disease mice. Biochem. Biophys.
Res. Commun. 422, 573-577 (2012).

28.

29.

30.
31.

32.
33.
34.

35.

Denk, F. et al. HDAC inhibitors attenuate the development of hypersensitivity in
models of neuropathic pain. Pain. 154, 1668-1679 (2013).

Guo, Y. et al. How is mRNA expression predictive for protein expression? A
correlation study on human circulating monocytes. Acta. Biochim. Biophys. Sin. 40,
426-436 (2008).

Gry, M. et al. Correlations between RNA and protein expression profiles in 23
human cell lines. BMC. Genomics. 10, 365 (2009).

Van Laer, L, Dietz, H. & Loeys, B. Loeys-dietz syndrome. Adv. Exp. Med. Biol. 802,
95-105 (2014).

van der Pluijm, I. et al. Defective connective tissue remodeling in Smad3 mice
leads to accelerated aneurysmal growth through disturbed downstream TGF-f8
signaling. EbioMedicine. 12, 280-294 (2016).

Boycott, K. M. et al. Autosomal-recessive intellectual disability with cerebellar
atrophy syndrome caused by mutation of the manganese and zinc transporter
gene SLC39A8. Am. J. Hum. Genet. 97, 836-893 (2015).

Tuschl, K. et al. Mutations in SLC39A14 disrupt manganese homeostasis
and cause childhood-onset parkinsonism-dystonia. Nat. Commun. 7, 11601
(2016).

Wu, Z, Wang, Y. & Chen, L. Network-based drug repositioning. Mol. Biosyst. 9,
1268-1281 (2013).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Supplementary Information accompanies the paper on the npj Genomic Medicine website (doi:10.1038/s41525-017-0018-3).

npj Genomic Medicine (2017) 14

Published in partnership with the Center of Excellence in Genomic Medicine Research


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/s41525-017-0018-3

	Mining the transcriptome for rare disease therapies: a comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen
	Introduction
	Results
	Identifying potential therapeutic targets
	Mining of CMAP for drug conferred gene induction
	Causal reasoning engine knowledge base mining
	Cell based screening
	Validation of hits

	Discussion
	Methods
	Drug selection
	Mining of existing CMAP datasets
	Mining the CREKB
	Fibroblast-based drug screening
	Western blot validation of isotretinoin
	Availability of data, materials and methods

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




