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Our aim was to evaluate differences in gait acceleration intensity, variability, and stability of

feet and trunk between older females (OF) and young females (YF) using inertial sensors.

Twenty OF (mean age 68.4, SD 4.1 years) and 18 YF (mean age 22.3, SD 1.7 years)

were asked to walk straight for 100 meters at their preferred speed, while wearing

inertial sensors on their heels and lower back. We calculated spatiotemporal measures,

foot and trunk acceleration characteristics, their variability, and trunk stability using the

local divergence exponent (LDE). Two-way ANOVA (such as the factors foot and age),

Student’s t-test and Mann–Whitney U test were used to compare statistical differences

of measures between groups. Cohen’s d effects were calculated for each variable.

Foot maximum vertical (VT) acceleration and amplitude, trunk-foot VT acceleration

attenuation, and their variability were significantly smaller in OF than in YF. In contrast,

trunk mediolateral (ML) acceleration amplitude, maximum VT acceleration, amplitude,

and their variability were significantly larger in OF than in YF. Moreover, OF showed

lower stability (i.e., higher LDE values) in ML acceleration, ML, and VT angular velocity

of the trunk. Even though we measured healthy OF, these participants showed lower

VT foot accelerations with higher VT trunk acceleration, lower trunk-foot VT acceleration

attenuation, less gait stability, and more variability of the trunk, and hence, were more

likely to fall. These findings suggest that instrumented gait measurements may help for

early detection of changes or impairments in gait performance, even before this can be

observed by clinical eye or gait speed.

Keywords: walking, aging, wearable system, motor control, balance

INTRODUCTION

Falls among older adults are the leading indirect cause of disability and death (1). Epidemiological
studies have shown that the 30% of people aged 65 years and older fall, with an increase in incidence
to 40% in people over 80 years (2). This is due to poorer physiological function and control of
stability with aging (3). In China, 53% of falls occur while walking (4), and hence, it is particularly
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important to pay attention to the gait performance of older
adults for early identification of stability problems to prevent
falls. Moreover, many studies have shown that among people over
60 years, females were more likely to fall (5–7), as about 65% of
women and 44% of men fell in their usual place of residence (8).
Therefore, we focused on the gait stability of females in our study.

There are several ways to evaluate gait, such as clinical
function tests, questionnaires, and measurements in a
biomechanics laboratory (9). Questionnaires and clinical
tests cannot reflect gait performance outside the laboratory,
and sometimes have poor objectivity (10). Gait assessment
in a biomechanical laboratory has the advantage of capturing
whole-body kinematics which is accurate but also costly,
time-consuming, and limited to space and time (11).
Nowadays, the feasibility of inertial sensors to quantify
the whole-body gait kinematics has been demonstrated
(12), and they can be used to collect gait data in people’s
own environment by a single sensor on either the trunk or
foot (13, 14).

Gait stability reflects the ability to keep walking in the
face of perturbations (15, 16). Dynamical systems and non-
linear time series analysis can be used to evaluate gait stability
by quantifying the complex and chaotic characteristics of the
human body (17). One of these measures, the local divergence
exponent (LDE), has been shown to have good reliability and
validity (18–20). The LDE quantifies the average exponential
rate of divergence of neighboring trajectories in state space and
provides a direct measure of the sensitivity of a system to small
perturbations (21).

Internal perturbations of the human body cause variability
and randomness in gait (22). If gait is within a stable range,
people would not need to correct this variability. Increased
variability likely reflects a less automatic gait pattern, instability,
and increased susceptibility to falls (14). Studies also confirmed
that variability in some gait characteristics (such as stride length,
stride width, and stride time) is highly related to the risk of falling
(23, 24). However, some studies suggested that variability is not
equal to stability, as the level of variability was not necessarily
negatively related to the level of stability (25, 26).

As the control of stability in gait declines with aging, we
aimed to use inertial sensors to assess differences in gait stability
and variability between healthy young (YF) and older females
(OF). In doing so, we focused on data obtained from the trunk
and foot sensors and calculated acceleration intensity, stability,
and variability measures. We hypothesized that OF have lower
gait stability and increased variability on trunk accelerations
compared with YF.

MATERIALS AND METHODS

Participants
A total of 20 healthy OF and 18 YF were recruited from the
campus of Beijing Sport university, China (Table 1). None of
our participants had any orthopedic or neurological disorders,
acute pain, or other complaints that might have affected gait and
they were all able to walk independently without a walking aid.

TABLE 1 | Participant characteristics.

Groups YF OF p-Value

(T-test)

Age (years) 22.3 (1.7) 68.4 (4.1) <0.001***

Height (m) 1.65 (0.04) 1.59 (0.05) <0.001***

Body mass (kg) 54.66 (3.93) 63.2 (7.95) <0.001***

BMI (kg/m2) 20.19 (1.53) 24.96 (2.60) <0.001***

Leg length (cm) 88.21 (3.53) 87.28 (3.19) 0.29

OF, older females; YF, young females; BMI, body mass index. ***p < 0.001.

All participants were informed about the research procedures,
and the protocol was approved by the Ethics Committee of
Sports Science Experiment of Beijing Sport University (approval
number: 2021010H).

Data Acquisition
Participants wore three inertial sensors (Xsens MTw Awinda, the
Netherland) on the heels and the lumbar region of the trunk,
using the supplied elastic belt. These sensors had a sample rate
of 100 samples and a range of −160 m/s2 and +160 m/s2. Data
collection was synchronized between sensors. All participants
wore the same model of shoes. They were asked to walk 100
meters on a straight running track at a self-selected speed, since
gait variability is expected to be minimal at this speed for healthy
people (27). In addition, although clinical gait tests are usually
4 or 10 meters, these tests do not represent daily-life gait very
well (28). Therefore, 100 meters used in this study can well
reflect the natural gait at a comfortable speed without participants
being exhausted.

Gait Measures
MATLAB (R2019b, MathWorks Inc, Natick, MA, USA) was used
to analyze data without the first and last steps. Each gait cycle
was identified from the sagittal plane angular velocity of foot
sensors with three gait events: heel-strike (Theel_strike), toe-off
(Ttoe_off), and foot-flat (Tfoot_flat) (29). Stride time was defined as
the duration between two consecutive Theel_strike. Combined with
the gait events of both feet, we got the initial double support (IDS)
period and the terminal double support (TDS) period.

For the trunk sensor, sensor data were realigned to a
coordinate system based on the accelerometer’s orientation with
respect to gravity (vertical, VT, axis) and optimization of left-
right symmetry (mediolateral, ML, axis) (10, 30).

For the foot sensors, initial displacements were calculated
by integrating linear accelerations twice for each gait cycle (in
the global coordinate system), using the zero-velocity-update
method to eliminate drift, assuming linearity of the drift (31).
The hence obtained direction of displacement was not necessary
along the x- or y-axis of the global coordinate system. To obtain
meaningful stride lengths, we thus rotated the obtained positions,
the acceleration, and angular velocity of the feet to a coordinate
system that was aligned with the direction of walking (i.e., end
position minus starting position), with the VT axis being VT.
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Then, walking speed was obtained by dividing the distance of the
walking direction by the time.

For acceleration measures, maximum VT acceleration of feet
and trunk was calculated to reflect the intensity of ground
contact (32). It has been suggested that people stabilize their
heads during walking (33). Although the trunk segment plays a
key role in damping gait-related oscillations (33), the damping
of oscillations by the trunk in the VT direction has been
suggested to be minor (34, 35). Hence, such accelerations must
be attenuated by the lower limbs. Thus, we calculated trunk-foot
VT acceleration attenuation, which was used in our study, and
was calculated by the difference in maximum VT acceleration
between trunk and foot, which represents the impact absorption
of the lower limbs. Acceleration amplitude (in the coordinate
system prescribed by the walking direction, see above) for each
direction [anteroposterior direction (AP), ML, and VT] was
calculated as the range of acceleration in a gait cycle.

For the above measures of each person, after getting the
mean and SD over all cycles (see Tables 2, 3), we obtained the
coefficient of variation (CV) by dividing the SD by the mean (36)
(see Supplementary Table 1).

We calculated the LDE of acceleration and angular velocity of
each dimension separately (in the coordinate system prescribed
by the walking direction, see above). The time series of
50 gait cycles was normalized into 5,000 samples, with an
average of 100 samples per cycle. From these data, state
spaces were reconstructed using the method of correlation
integral (C-C method), which not only can determine both
embedding dimension and delay time but also has good
robustness to the noise in a small amount of data (37) (see
Supplementary Tables 2, 3 for dimension and delay values). LDE
was expressed as the mean logarithmic rate of divergence per
stride using Rosenstein’s method (38). Higher values of the LDE
indicate lower local stability.

Statistical Analysis
Normality was assessed using the Kolmogorov–Smirnov test.
For measures of the left and right feet, differences were tested
using two-way ANOVAs, with within-subject factor Foot (left
and right) and between-subject factor Group (YF and OF). For
other measures, we used Student’s t-tests to compare between
age groups. For LDE, which appeared not distributed normally,
we compared between groups using the Mann–Whitney U test.
For all measures, p < 0.05 was considered as a significant
effect. Cohen’s d effects were calculated for each variable as the
difference between group means divided by the group pooled
SD. Magnitudes of d = 0.01, 0.20, 0,50, 0.80, 1.20, and 2.0 were
considered very small, small, medium, large, very large, and huge,
separately (39–41).

RESULTS

Descriptive characteristics of the participants are summarized in
Table 1. OF were significantly older, shorter, and had a higher
weight and BMI than YF. The mean age of OF and YF was 68.4
and 22.3, respectively.

Table 2 shows the mean values for all measures. We found
no interaction between Foot and Group for any of the outcome
measures and no significant effect of Foot. Hence, all variables
that were calculated for both feet are displayed as averages
over both feet. OF had a higher maximum VT acceleration
of the trunk than YF, with a medium effect size (0.75), but a
smaller maximum VT acceleration of the feet than YF, with a
very large effect size (1.34). As a result, OF had significantly
smaller trunk-foot VT acceleration attenuation, with a very
large effect size of 1.8. In addition, VT accelerations of OF
amplitude of the feet were significantly smaller than YF, with
a medium effect size (−0.59). For the trunk, OF’s ML and VT
acceleration amplitudes were significantly larger than YF, and the
effect size of the latter was the largest (0.76). The LDE of trunk
from ML acceleration and from ML and VT angular velocity
was significantly larger (less stable) for OF than for YF, with
large (1.01), very large (1.48), and medium effect size (0.66),
respectively.

Table 3 shows the variability of all measures. No significant
differences in variability of spatial-temporal gait measures
were found between groups. The variability of maximum VT
acceleration of the feet was significantly smaller for OF than
YF, and its effect size was 1.70. While for the trunk, the
variability of the maximum VT acceleration was significantly
larger for the OF (medium effect size 0.72). The variability
of trunk-foot VT acceleration attenuation was smaller in OF
than in YF (effect size very large, 1.87). OF had significantly
smaller variability of acceleration amplitude of the feet in
three directions than YF, with huge effect size in ML direction
(2.53) and large effect size in the VT direction (1.01). For
the trunk, variability of acceleration amplitude of OF was
significantly larger than YF in ML and VT direction, with
effect sizes of 0.41 and 0.86, respectively. The CV of gait
measures showed largely the same pattern as the SD (see
Supplementary Table 1).

DISCUSSION

Mean Gait Measures
In this study, we used inertial sensors to evaluate differences
in acceleration intensity, variability, and stability of
feet and trunk during gait between healthy YF and
OF. Although older adults generally were suggested to
walk slower due to physical limitations, such as muscle
weakness or loss of flexibility (42), the OF in our study
walked at a similar preferred speed and stride length
as the YF.

We found a reduction in foot VT maximum acceleration
in OF, which probably reflected a reduction of peak ground
reaction forces. Such a reduction of ground reaction forces
could result from a crouch-like gait, which has been shown
in young adults to lead to a reduction of the peak ground
reaction force (43, 44). Such a crouch-like gait may increase
the metabolic cost of locomotion in the elderly (45). Although
the trunk segment plays a key role in damping gait-related
oscillations (33), the damping of oscillations by the trunk in
the VT direction has been suggested to be minor (34, 35).
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TABLE 2 | Mean (and SD) of all gait measures.

OF YF p-value Effect size

Spatial-temporal measures

Stride time (s) 1.04 (0.07) 1.07 (0.05) 0.06 −0.69

Initial double support period, IDS (%) 14.30 (1.70) 14.00 (1.20) 0.50 0.00

Terminal double support period, TDS (%) 14.10 (1.60) 14.30 (1.40) 0.76 0.02

Swing (%) 35.80 (1.70) 35.90 (1.20) 0.78 −0.01

Velocity of feet (m/s) 1.35 (0.17) 1.37 (0.14) 0.88 −0.06

Stride length of feet (m) 1.28 (0.11) 1.35 (0.12) 0.06 −0.61

VT Acceleration maximum (m/s2)

VT maximum acceleration of feet 24.81 (4.32) 33.52 (8.78) <0.001*** −1.34

VT maximum acceleration of trunk 18.04 (2.75) 16.43 (1.09) 0.011* 0.75

Trunk-foot vertical acceleration attenuation (m/s2) 17.00 (3.73) 28.62 (8.61) 0.023* −1.80

Acceleration amplitude (m/s2)

AP acceleration amplitude of feet 86.53 (14.35) 94.11 (13.45) 0.13 0.53

ML acceleration amplitude of feet 31.25 (7.01) 28.37 (4.53) 0.29 −0.86

VT acceleration amplitude of feet 60.11 (10.34) 68.30 (9.74) 0.007** −0.59

AP acceleration amplitude of trunk 8.97 (2.69) 7.35 (1.69) 0.07 0.71

ML acceleration amplitude of trunk 9.11 (2.89) 8.52 (1.28) 0.01* 0.26

VT acceleration amplitude of trunk 11.94 (3.88) 9.65 (1.39) 0.01* 0.76

Local Divergence Exponent (LDE)

AP acceleration of trunk 1.15 (0.46) 1.00 (0.37) 0.28 0.35

ML acceleration of trunk 0.84 (0.18) 0.68 (0.12) 0.005** 1.01

VT acceleration of trunk 0.92 (0.26) 0.87 (0.21) 0.89 0.19

AP angular velocity of trunk 0.80 (0.31) 0.69 (0.30) 0.06 0.38

ML angular velocity of trunk 0.97 (0.23) 0.69 (0.11) <0.001*** 1.48

VT angular velocity of trunk 0.73 (0.32) 0.56 (0.12) 0.048* 0.66

AP, anteroposterior direction; ML, mediolateral direction; VT, vertical direction; OF, older females; YF, young females. p-values refer to group comparisons based on t-tests, except for

measures of the feet, where they refer to the main effect of Group. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 3 | Variability (and SD) of all gait measures.

OF YF p-value Effect size

Spatial-temporal gait measures

Stride time (s) 0.02 (0.01) 0.02 (0.01) 0.64 −0.23

Initial double support period, IDS (%) 0.74 (0.11) 0.71 (0.11) 0.48 0.35

Terminal double support period, TDS (%) 0.80 (0.20) 0.79 (0.15) 0.93 0.17

Swing (%) 0.75 (0.16) 0.75 (0.19) 0.97 0.10

Velocity of feet (m/s) 0.06 (0.03) 0.08 (0.04) 0.05 −0.72

Stride length of feet (m) 0.02 (0.01) 0.05 (0.05) 0.13 −0.38

VT Acceleration maximum (m/s2)

VT maximum acceleration of feet 4.05 (1.39) 7.90 (3.26) <0.001*** −1.70

VT maximum acceleration of trunk 1.02 (0.44) 0.78 (0.13) 0.007** 0.72

Trunk-foot vertical acceleration attenuation (m/s2) 4.02 (1.09) 7.99 (2.91) 0.008** −1.87

Acceleration amplitude (m/s2)

AP acceleration amplitude of feet 5.97 (1.77) 7.52 (1.91) 0.026* −0.85

ML acceleration amplitude of feet 4.64 (1.20) 5.84 (1.88) 0.045* −2.53

VT acceleration amplitude of feet 4.92 (1.38) 9.69 (2.72) <0.001*** −1.01

AP acceleration amplitude of trunk 1.26 (0.45) 1.05 (0.31) 0.350 0.53

ML acceleration amplitude of trunk 0.98 (0.48) 0.82 (0.21) 0.017* 0.41

VT acceleration amplitude of trunk 1.31 (0.67) 0.08 (0.15) <0.001*** 0.86

AP, anteroposterior direction; ML, mediolateral direction; VT, vertical direction; OF, older females; YF, young females. p-values refer to group comparisons based on t-tests, except for

measures of the feet, where they refer to the main effect of Group. *p < 0.05, **p < 0.01, ***p < 0.001.
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In our study, we found a lower trunk-foot VT acceleration
attenuation and a higher trunk acceleration amplitude in OF,
which implies decreased cushioning (impact absorption) and
hence less preservation of the stability of the head (46). Even
though foot (VT) accelerations were lower in OF, suggesting
less impact, the OF were not able to attenuate the higher
accelerations in the trunk. This reduction in impact absorption
may be caused by age-related neuromuscular changes, such as
a reduced muscle strength of the triceps surae and quadriceps
femoris (47), degraded stiffness and elastic modulus of the
tendons (48), muscle co-contraction, and degraded absorption
of the intervertebral disc (49). Considering that two-thirds of
the weight of the human body is in the upper body, such
higher trunk accelerations may be destabilizing, which may
cause falls (50).

For stability, LDE calculated from trunk time-series data
has been shown to better reflect differences in gait stability
due to age than LDE calculated from data of other segments
(51). In our study, OF showed significantly lower local dynamic
stability (higher LDE) in ML acceleration, ML, and VT angular
velocity. Among these, the LDE calculated from trunk ML
angular velocity had the largest effect size. As stability in the
ML direction needs more control than stability in the AP
direction during gait (52, 53), decreased LDE of trunk angular
velocity in ML direction could be an early indicator of gait
stability problems.

Variability Measures
All participants in this study walked under the same
environmental conditions. Thus, any between-subject
differences in variability arose from differences in (internal)
neuromotor noise and not (external) environmental noise.
No differences were found in the variability of spatiotemporal
measures, which was consistent with a previous study showing
that temporal gait variability of older non-fallers was not
significantly different from young adults in terms of SD
and CV (27).

Our OF walked with less variability of maximum
VT acceleration of feet variability than YF (Table 3,
Supplementary Table 1). However, the variability of ML
and VT acceleration amplitude of the trunk was larger for the
OF, which could suggest OF are at a higher risk of balance loss
and falling (36).

All in all, our findings suggest that stability of the
trunk might be a more sensitive indicator of locomotor
impairment and potential future risk of falls than changes
in variability of the trunk, as the LDE had higher effect
sizes (54). Measures of the variability of acceleration of the
feet showed even higher effect sizes and might thus be
even more useful. However, here, it should be noted that
these effects were opposite from theoretically expected, with
the OF having lower (means and variability) acceleration
of the foot.

Limitations
All tests in our study were aimed at testing the same
hypothesis, that is, OF are less stable and more variable

than YF, hence, we did not use a correction for multiple
testing. Nonetheless, not correcting may lead to Type I
errors, and thus, some caution is warranted. Furthermore, the
older participants in our study were quite fit and additional
studies are needed to further investigate the applicability of
acceleration attenuation when studying older adults. Future
research can expand the sample size and conduct a multi-
center study to obtain more representative results. Although
we used only trunk and feet sensors for practical usefulness,
the underlying mechanisms for the alterations in gait in
the older women remain unclear and would require more
detailed assessments of, e.g., whole-body kinematics and
muscle activity.

CONCLUSIONS

Although healthy OF had similar walking speeds and
spatiotemporal parameters as YF during steady-state walking,
they showed lower VT foot accelerations and higher VT trunk
accelerations, suggesting less impact and less absorption of the
impact. In addition, lower gait stability and higher variability
of trunk movements for OF also indicated they were more
likely to fall. The measures derived from the accelerations
of the trunk were sensitive to reflect the gait instability as
expected, especially trunk-foot VT acceleration attenuation
and its variability. While the variability of foot acceleration
amplitudes was also sensitive to age, these differences were
opposite from expected, making it harder to draw any
conclusion as to their usefulness for fall prediction. These
findings suggest that instrumented gait measurements may
help for early detection of changes or impairments in gait
performance, even before this can be observed by clinical eye or
gait speed.
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