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Abstract: Despite the active development of SARS-CoV-2 surveillance methods (e.g., Nextstrain,
GISAID, Pangolin), the global emergence of various SARS-CoV-2 viral lineages that potentially cause
antiviral and vaccine failure has driven the need for accurate and efficient SARS-CoV-2 genome
sequence classifiers. This study presents an optimized method that accurately identifies the viral
lineages of SARS-CoV-2 genome sequences using existing schemes. For Nextstrain and GISAID
clades, a template matching-based method is proposed to quantify the differences between viral
clades and to play an important role in classification evaluation. Furthermore, to improve the typing
accuracy of SARS-CoV-2 genome sequences, an ensemble model that integrates a combination of
machine learning-based methods (such as Random Forest and Catboost) with optimized weights is
proposed for Nextstrain, Pangolin, and GISAID clades. Cross-validation is applied to optimize the
parameters of the machine learning-based method and the weight settings of the ensemble model. To
improve the efficiency of the model, in addition to the one-hot encoding method, we have proposed a
nucleotide site mutation-based data structure that requires less computational resources and performs
better in SARS-CoV-2 genome sequence typing. Based on an accumulated database of >1 million
SARS-CoV-2 genome sequences, performance evaluations show that the proposed system has a
typing accuracy of 99.879%, 97.732%, and 96.291% for Nextstrain, Pangolin, and GISAID clades,
respectively. A single prediction only takes an average of <20 ms on a portable laptop. Overall, this
study provides an efficient and accurate SARS-CoV-2 genome sequence typing system that benefits
current and future surveillance of SARS-CoV-2 variants.

Keywords: SARS-CoV-2; variants; sequence typing; machine learning; template matching; ensemble

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus
of coronavirus disease 2019 (COVID-19), emerged at the end of 2019, burdening both the
global economy and public health [1–4]. Next-generation sequencing has provided an
unprecedented opportunity to monitor the COVID-19 pandemic in real-time [5,6]. Dur-
ing the pandemic, vast amounts of SARS-CoV-2 genome sequences have been accumulated
at ever-growing rates and shared in the public database. As of 12 July 2022, more than
10 million SARS-CoV-2 genome sequences worldwide are available to researchers in the
online database Global Initiative on Sharing all Individual Data (GISAID) [7] (available at
https://www.gisaid.org/ (accessed on 12 July 2022)). Rapidly growing genome sequences
contribute to surveilling this fast-spreading pathogen and distinguishing emerging lin-
eages [8–12]. In particular, lineage classification is a critical tool for monitoring variants
of concern (VOCs) or variants of interest (VOIs) with reduced susceptibility to neutral-
izing antibodies or having higher transmissibility [13]. Research indicated that distinct
SARS-CoV-2 lineages could play a pivotal role in developing drugs and designing vaccines
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by altering pathogenesis in infected hosts or virus tropism [14,15]. Therefore, the rapid
identification of SARS-CoV-2 lineages, associated with different medical conditions and
symptoms, has assisted in the long-term surveillance of this pathogen and is of utmost
importance for updating SARS-CoV-2 vaccines [16–19].

Viral classification, allowing precise and unambiguous communication between re-
searchers in different fields, is a challenging problem [20,21]. At present, many scientists
are working on effectively categorizing SARS-CoV-2. The World Health Organization
(WHO) recommended the use of the Greek alphabet such as Alpha, Beta, Gamma, Delta,
and Omicron to classify SARS-CoV-2 genomes [22]. An early work by Chinese researchers
identified two major lineages, L and S, based on two highly linked single nucleotides [14].
In addition, other developed sequence typing tools, Nextstrain [23], GISAID [7], Phylo-
genetic Assignment of Named Global Outbreak Lineages (Pangolin) [11,24], COVID-19
Genotyping Tool [15], and Genome Detective Coronavirus Typing Tool [25], are critical
for tracking emerging diversity and spread of certain lineages. There are 25 Nextstrain
clades, 1725 Pango lineages, and 11 GISAID clades as of 20 April 2022. Nonetheless,
the phylogeny-based classification methods, such as GISAID [7] and Pangolin [11], demand
huge computation time and memory consumption [18]. Moreover, those methods have a
great demand for genetic distance thresholds when determining the maximal genetic differ-
entiation among closely related viruses [18,26]. As for the single nucleotide polymorphism
(SNP)-based classification methods, including Chinese lineage [14] and Nextstrain [23],
are not enough to fully address the complex genetic diversity of SARS-CoV-2, for those
two methods depend on mutations with significant geographic distribution and frequency
or marker mutations [27]. Since the genetic diversity of SARS-CoV-2 challenges the cur-
rent classification methods of SARS-CoV-2 variants [6], a more inexpensive, rapid, effective,
and robust classification method is needed to identify the lineage of the virus, making it possi-
ble to quantitatively partition and describe the diversity of SARS-CoV-2 lineages [8,12,28–30].
Given that an impressive amount of sequencing data is being generated, we intend to
adopt supervised learning-based approaches, which attempt to learn directly from the data,
to classify SARS-CoV-2 genome sequences.

As shown in Figure 1, the proposed system in this study focuses on the rapid classifi-
cation of SARS-CoV-2 genome sequences through supervised learning methods. Different
from the previous work, the focus of this study is not to discover new evolutionary branches,
but to provide a model with improved efficiency and accuracy based on existing Nextstrain,
GISAID, and Pangolin classification standards. In summary, the main contributions of this
study are listed as follows: (1) Supervised learning-based identification models are con-
structed for the three typing strategies of Nextstrain, GISAID, and Pangolin, respectively,
achieving rapid and accurate SARS-CoV-2 genome sequence typing. (2) A multilayer tem-
plate matching algorithm is proposed for SARS-CoV-2 genome sequence typing, achieving
ideal results for the Nextstrain and GISAID clades. (3) Based on the template matching
algorithm, this study has proposed a matching score-based method to quantify the differ-
ence between clades. (4) The lightweight data structure proposed in this study reduces the
computational resource requirements of the model. (5) Finally, the ensemble model can
achieve higher accuracy by fusing the prediction results of different methods. Extensive
tests on a large amount of SARS-CoV-2 genome sequences show that the classification
model constructed in this study has high accuracy and robustness. Furthermore, by intro-
ducing sub-models, this study can efficiently construct an extended model that identifies
newly emerging clades.
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Figure 1. Processing pipeline of the SARS-CoV-2 genome sequence typing system. The system mainly
includes data acquisition and preprocessing, multiple sequence alignment, data compression and
feature extraction, supervised model training, and model testing. The ensemble model can achieve
three different genome sequence typing predictions (GISAID, Nextstrain, and Pangolin). Templates
can be obtained from the training set, and the Nextstrain or GISAID clade of the testing SARS-CoV-2
genome sequence can be obtained directly through the matching algorithm.

2. Materials and Methods
2.1. Data Collection and Preprocessing

As of 20 April 2022, 1,088,952 complete SARS-CoV-2 genome sequences with high cover-
age [31] were extracted from the GISAID database (https://www.gisaid.org/ (accessed on
12 July 2022)). Notably, to improve the persuasiveness of the results, these sequences were
extracted by the collection dates and regions (Figure 2). Given the different classification
densities of the three typing tools (GISAID, Nextstrain, and Pangolin), sequences of each clade
or lineage were uniformly sampled according to the collection date. Overall, the amounts of
downsampled sequences are 91,772, 203,740, and 279,899 for GISAID, Nextstrain, and Pan-
golin, respectively.

Figure 2. Temporal and spatial distribution of the extracted SARS-CoV-2 genome sequences. A total
of >1 million SARS-CoV-2 genome sequences are downloaded from the GISAID database.

The above nucleotide sequences were aligned with the reference sequence (Wuhan-
Hu-1, NCBI accession NC_045512) using the option of “addfragments” in MAFFT version
7.490. Each sample was composed of the aligned nucleotide sequence and its designated
label. For the GISAID and Pangolin, the designated clades or lineages were contained
in the metadata of the corresponding genome sequences. For the Nextstrain part, labels
of sequences were obtained from the Nextclade system (https://clades.nextstrain.org/
(accessed on 12 July 2022)). After this step, samples with classification labels were obtained.
These samples were then divided into training sets (25%) and testing sets (75%).

https://www.gisaid.org/
https://clades.nextstrain.org/
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2.2. Data Compression and Feature Extraction

As only part of the SARS-CoV-2 genomes have mutations [31], to reduce the computa-
tional cost, invariant sites of the aligned genome sequences were discarded [24] to obtain
compressed sequences. We referred to the nucleotide site screening protocol provided by
Nextclade (https://clades.nextstrain.org/ (accessed on 12 July 2022)) and PangoLEARN
(https://github.com/cov-lineages/pangoLEARN/ (accessed on 12 July 2022)) and selected
feature extraction strategies suitable for different typing methods through subsequent
model training and cross-validation. Specifically, Nextclade defined each clade by the
combination of signature mutations, providing a total of 83 mutations for 25 clades. On
the other hand, PangoLEARN removed nucleotide sites without any SNPs and a total of
4544 sites were preserved.

Given the number of reserved nucleotide sites, we have tested three data structures
(Figure 3):

(1) f1 is with the size of n× 1, where n is the number of reserved sites (n ∈ [83, 4544]).
f1 contains five different values (A, T, G, C, and -), and those sites with unknown nucleotides
due to sequencing errors were replaced with the nucleotides of the reference sequence [24].

(2) f2 is with the same size as f1. Element 1 indicates that the nucleotide type of this
site is different from the reference sequence.

(3) f3 is with the size of n× 5. Each sequence was represented as a vector of one-hot
encoded nucleotides [24].

Figure 3. Examples of the three data structures applied in this study. f1 is basically the same
as the sample, and the unknown nucleotides in the sample are replaced with nucleotides at the
corresponding locations in the reference sequence. f2 is obtained by aligning the sample sequence
with the reference sequence, thereby highlighting the mutation sites. f3 has the largest amount of
data, and each site is represented by a 5× 1 vector.

It is noted that f1 is only applied to the template matching method, while f2 and f3 are
applied to machine learning-based methods. Details will be explained in the subsequent
algorithm description section.

2.3. Template Matching Method

The template matching method was proposed for GISAID and Nextstrain clades.
These two typing strategies have fewer branches (11 and 25, respectively) than Pangolin,
avoiding the computational explosion of the matching algorithm. Furthermore, to balance
the calculation efficiency and matching accuracy, a hierarchical matching algorithm is
applied. Specifically, the template matching method is based on data structure f1, and the
exact matching score is computed by Hamming Distance [32]:

dH(A, B) =
N

∑
i=1

(A(i)⊕ B(i)), (1)

where N is the number of selected sites, and⊕ stands for the exclusive OR (XOR) operation.
Based on (1), the exact matching score between the query sequence and one of the template
sequences is defined as:

S(Q, Tj) = 1−
dH(Q, Tj)

N
, (2)

where Q is the compressed query sequence, Tj denotes the jth template sequence, and N is
the number of reserved sites.

https://clades.nextstrain.org/
https://github.com/cov-lineages/pangoLEARN/
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Templates can be obtained from the training set, and this work selected the sequence
with the highest coverage as the template for the corresponding clade. The proposed
multilayer matching algorithm is described in Algorithm 1, where C∗l and C∗h are the output
clades at the low and high resolution of matching, respectively. For most query sequences,
the exact matching (Step 2) at the high resolution is only performed twice, ensuring the
accuracy and efficiency of the proposed algorithm.

Algorithm 1 Two-level resolution template matching algorithm

Require: The compressed query sequence Ql and Qh. Two groups of templates {Tl} and

{Th} with length Nl and Nh. The number of templates for each group is denoted as Nt.

1: Initial matching scores: Smax
l ← 0, Smax

h ← 0.

2: Step 1: Exact matching between Ql and {Tl}:
3: for i = 1 to Nt do

4: Si
l = 1− dH(Ql ,Ti

l )
Nl

.

5: if Si
l > Smax

l then

6: Smax
l ← Si

l , Cmax
l ← Ci, where Ci is the ith clade.

7: end if

8: end for

9: Sort {Si
l} in descending order: {Si′

l }. The superscripts 1′ and 2′ are the clade index

numbers corresponding to the highest and next highest scores, respectively.

10: if S1
′

l > S2
′

l then

11: C∗l ← Cmax
l .

12: return C∗l .

13: else

14: The clade index numbers with the same and the highest score form the set Ih, and the

size of Ih is Nh
t , where Nh

t ≥ 2.

15: Continue with Step 2.

16: end if

17: Step 2: Exact matching between Qh and {Th}:
18: for i in Ih do

19: Si
h = 1− dH(Qh ,Ti

h)
Nh

.

20: if Si
h > Smax

h then

21: Smax
h ← Si

h, Cmax
h ← Ci, where Ci is the ith clade.

22: end if

23: end for

24: C∗h ← Cmax
h .

25: return C∗h .

2.4. Difference Matrix between Clades

Based on the template matching method, this study proposed a difference matrix
D to characterize the distance between clades. D is a diagonal matrix, and its element
Dij is computed by (3), where i and j refer to two different clades, and Ti and Tj are the
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corresponding templates. M1 and M2 are the numbers of sequences that can be correctly
classified with the feature length N f .

Dij =
1

M1 + M2
(

M1

∑
k=1

dH(Qk
j , Ti)

N f
+

M2

∑
l=1

dH(Ql
i , Tj)

N f
) (3)

The difference matrix D of the 25 Nextstrain clades is shown in Figure 4. A larger
Dij implies a larger difference between clades i and j. D can not only be used to quantify
differences between clades but also play a role in the evaluation of models.

Figure 4. The difference matrix D of the Nextstrain clades. Each element in the matrix represents
the difference between the corresponding two Nextstrain clades, and the dark color represents a
larger difference.

2.5. Ensemble Learning-Based Classifier

Seven supervised classifiers were applied in this work, including Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Multilayer
Perceptron (MLP), Adaboost, and Catboost. Our goal is to screen out the optimal classifica-
tion models and evaluate the performance of those classifiers on the two data structures
f2 and f3, respectively. In addition, this study explored the ensemble of multiple models,
such as the weighted fusion of multi-model predictions.

• LR is one of the most commonly used analytical methods in epidemiology and
medicine [33]. As an extension of linear regression, LR is quite efficient with time
and memory requirements, processing larger data with smaller resources. Using the
one-vs.-rest (OvR) scheme, LR is applied for multiclass tasks. However, LR is prone
to underfitting, resulting in low accuracy, especially in multi-classification tasks with
unbalanced samples.

• DT adopts a tree structure for classification model training [34]. Starting from the root
node, each branch divides the training data into disjoint subsets. The decision tree can
be visualized and easily understood and interpreted. On the other hand, DT is prone
to overfitting and is sensitive to data bias.

• RF is ensembled by multiple decision trees [24,35]. Each tree is built using a sub-set
of the training sets. All decision trees vote on the classification, and the category
with the most votes is the classification result of the RF. The RF prediction model can
be trained fast and is easy to operate in parallel. In addition, the RF can output the
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feature importance computed as the total reduction of the criterion brought by that
feature [36]. Previous studies have revealed that RF shows better performance than
LR and DT in terms of SARS-CoV-2 clade classification [24,28].

• SVM solves the classification problem by finding the best hyperplane, which correctly
divides the training sets and maximizes the geometric interval between the support
vectors [37]. The hyperplane is presented as:

w·x + b = 0, (4)

where x is the feature vector, and w and b represent the normal and intercept vectors
of the hyperplane, respectively. By introducing kernel functions, SVM can solve
nonlinear classification problems.

• MLP is an artificial neural network consisting of fully connected layers with at least
one hidden layer [38]. Taking the case with one hidden layer as an example, the math-
ematical model of the MLP can be expressed as:

f (x) = w2 · φ(w1 · x + b1) + b2, (5)

where x is the input vector, w1 and w2 are the weights of input and hidden layers, b1
and b2 represent the bias vectors. φ is the activation function, such as the rectified
linear unit function (ReLU) or the hyperbolic tan function (tanh).

• Adaboost is applied as a strong classifier constituted with multiple weak classifiers [39].
A base classifier is first trained from the initial training set, and the weights of training
samples are then adjusted based on the training loss. As a result, the misclassified
samples obtain more attention in subsequent training iterations. After T iterations
of training, these T weak classifiers (ht(x)) are weighted to form a strong classifier
(H(x)), and a weak classifier with a smaller classification error has a larger weight αt:

H(x) = sign
( T

∑
t=1

αtht(x)
)
. (6)

• Catboost is an algorithm for gradient boosting on decision trees [40,41]. Since the
default parameters of Catboost provide great training results, it can reduce the time
of parameter tuning. Catboost requires less hyperparameter tuning, reducing the
possibility of overfitting and making the model more general. Additionally, Catboost
supports model training on GPUs, improving training efficiency on large datasets.
However, for the processing of categorical features, Catboost still consumes a lot of
memory and time.

After training and testing the above models, on the one hand, this study analyzed
the advantages and disadvantages of different models in the application of SARS-CoV-2
genome sequence typing and selected the optimal model; on the other hand, this study
explored the combination of different models to obtain better prediction results than a
single model. To facilitate the combination of the above methods, all classifiers were trained
with enabled probability estimates. Furthermore, the proposed ensemble learning system
applied weighted voting as the combination strategy [42]. Taking the Nextstrain clade
typing task as an example, pi

j represents the probability that the ith classifier predicts the
jth clade. The ensembled probability of the jth clade is computed as:

Pj =
N

∑
i=1

ωi · pi
j, (7)
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where N is the number of ensembled models, and ωi is the weight of the ith classifier,
satisfying that ∑ ωi = 1. The ensembled sequence typing prediction result C∗ is determined
with the maximum probability:

C∗ = arg max
j
{Pj}. (8)

2.6. Evaluation Metrics

To facilitate the internal verification and external testing of the model, this study
mainly applies statistics including precision, recall, F-score, training and testing efficiency
to quantify the model. In addition, for GISAID and Nextstrain, this study also applies the
average difference D̄ to test the classifier:

D̄ =
1

NF

NF

∑
k=1
Dk

ij, (9)

where NF represents the number of samples with incorrect predictions.

3. Results

All experiments in this study were conducted on a portable laptop with an Intel Core
i7 CPU (32G memory) at 2.30 GHz and an Nvidia RTX3070 GPU (8 G).

3.1. Feature Extraction

This study applied the sites provided by Nextstrain and Pangolin as the basis for
feature extraction. As of 20 April 2022, Nextstrain provides 83 (Fmin) nucleotide sites for
the classification of 25 SARS-CoV-2 clades. On the other hand, Pangolin provides 4544
(Fmax) nucleotide sites for the classification of over one thousand lineages. To meet the
requirements of different typing strategies for accuracy, efficiency, and calculation memory
usage, this study filtered the features and obtained different levels of feature scales in the
range of [Fmin, Fmax].

Given the successful application of the RF classifier in Pangolin [24], the RF classifier
was trained to classify the 25 clades of Nextstrain, and the initial feature scale was set to
l5 = Fmax. Then, the feature importance distribution was obtained as shown in Figure 5.
Since the RF classifier adopts the one-hot method ( f3 in Section 2.2), each site corresponds
to a 5× 1 vector. Therefore, for the site weight calculation, the maximum value of the
five features was used as the importance weight of the site. Taking 10−3, 10−4, and 10−5

as the thresholds, l2, l3, and l4 were obtained, respectively. The corresponding numbers
of effective sites are 192, 464, and 1048, respectively. Obviously, l1 corresponds to the
83 effective sites provided by Nextstrain, and l5 corresponds to the 4544 sites offered by
Pangolin. It should be pointed out that GISAID has the least number of clades. To simplify
the model training, this study applied the same feature settings as Nextstrain for the
construction of the GISAID clade typing model.
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Figure 5. The feature importance distribution of the RF classifier obtained from the Nextstrain
training dataset. The index is the result of sorting the sites in descending order of importance. l2, l3,
and l4 are obtained by setting the threshold of the feature importance to 10−3, 10−4, and 10−5.

3.2. Nextstrain Clade Typing Results

The datasets used for the Nextstrain typing experiment consist of two groups: the first
group (SN

1 ) includes 50,935 sequences for model training; the second group (SN
2 ) includes

152,805 sequences for model testing.

3.2.1. Training of the Nextstrain Clade Typing Models

Firstly, parameter optimization was performed for template matching using dataset
SN

1 . As shown in Algorithm 1, hyperparameters of the proposed multilayer matching
algorithm are mainly Nl and Nh. Nh was set to 4544 (l5), and Nl was set to four levels (l1,
l2, l3, l4). As shown in Figure 6a, test1 (Nl is set to l1 = 83) obtains the highest matching
accuracy and efficiency. As the number of features for coarse matching increases, the time-
consuming increases; however, the accuracy decreases. At the same time, the number of
misclassified samples with large differences (>0.1) also increases accordingly (Figure 6b).
The template matching algorithm assigns all features the same score weight. Despite the
shortcomings of this design, the proposed method has simple parameter settings and high
matching efficiency, and subsequent experiments show that this method can match the
performance of machine learning methods in sequence typing. In addition to the optimized
parameter Nl for the template matching algorithm, the difference matrix of the Nextstrain
clades as shown in Figure 4 was also obtained.

Different from the template matching algorithm, the machine learning method can
obtain the weights of features, so as to play the role of automatic screening of features in
the training process. In light of RF’s excellent performance in SARS-CoV-2 clade classi-
fication [24], this part applied the training dataset SN

1 to test the performance of the RF
classifier with different numbers of features (l1, l2, l3, l4, and l5) and data structures ( f2
and f3).

The 3-fold cross-validation results of the RF classifier are shown in Figure 7. The four
curves in each sub-figure correspond to 100, 200, 500, and 1000 estimators, respectively.
The recall and F-score curves show similar trends across different experimental groups.
As the number of features increases, the training and validation time increases. In addition,
the cross-validation based on data structure f3 is much more time-consuming than that
on f2. However, the recall and F-score of f2 are only marginally inferior to those of f3,
showing the superiority of the lightweight data structure f2 for typing SARS-CoV-2 genome
sequences. Overall, the group with feature size l3, data structure f3, and estimator number
1000 obtained the best classification accuracy (Figure 7e,f).
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(a) (b)

Figure 6. Template matching performance on the Nextstrain training set SN
1 . (a) the average F-scores (red)

and the training time (green) for each of the tests; (b) difference statistics for misclassified samples.

(a) Time cost with f2 (b) Recall with f2 (c) F-score with f2

(d) Time cost with f3 (e) Recall with f3 (f) F-score with f3

Figure 7. Cross-validation results of the RF classifier on the Nextstrain training dataset SN
1 . The first

and second rows represent the validation results using the f2 and f3 data structures, respectively.

Since Catboost has the advantages of rapid parameter tuning, high accuracy, low
risk of overfitting, and is suitable for GPU-accelerated training [40,41], this study further
analyzed the cross-validation results of the Catboost classifier. The results of the 3-fold
cross-validation of the Catboost classifier on dataset SN

1 are shown in Figure 8. The recall
and F-score curves shown in Figure 8a,b indicate that the Catboost classifier is slightly better
than the RF classifier. In addition, the best classification result is obtained at the number of
features l3. As for time cost, the advantage of f2 is more prominent (Figure 8c). Figure 8d
shows the curves of learning error and testing error in one of the cross-validations, and the
horizontal axis represents the number of iterations.
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The above two sets of experimental results show that the SARS-CoV-2 genome se-
quence typing based on both data structures f2 and f3 can achieve ideal results. The former
( f2) has a prominent advantage in efficiency, while the latter ( f3) has a slight advantage in
accuracy. In addition, choosing the number of features as l3 achieved ideal results in both
accuracy and efficiency. The other five classifiers were trained by 3-fold cross-validation
with the feature size of l3. The cross-validation results of the seven models based on the
training dataset SN

1 are shown in Table 1, arranged in descending order of the F-score. D̄
stands for the average difference computed by (9). Catboost, RF, and Adaboost obtained the
top three classification accuracy. DT obtained the highest efficiency but the worst accuracy.
In addition, the D̄ of the seven models are all less than 0.08, and over half of them are
less than 0.06, indicating that the misclassified samples mainly exist between clades with
small differences.

(a) (b)

(c) (d)

Figure 8. Three-fold cross-validation results of the Catboost classifier on the Nextstrain training
dataset SN

1 . (a,b) show the recall and F-score curves; (c) shows the average time cost per cross-
validation; (d) shows the learning and testing error curves.
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Table 1. The cross-validation results of the seven classifiers on the Nextstrain training dataset SN
1 .

Data Structure f2 Data Structure f3

Approach Precision
(%) Recall (%) F-Score (%) D̄ Time (s) Precision

(%) Recall (%) F-Score (%) D̄ Time (s)

Catboost 99.776 99.778 99.777 0.048 6.6 99.796 99.798 99.797 0.047 134.9
RF 99.765 99.751 99.758 0.047 32.2 99.794 99.796 99.795 0.048 63.8
Adaboost 99.690 99.692 99.691 0.057 250.2 99.761 99.760 99.760 0.061 715.6
LR 99.714 99.716 99.715 0.051 17.3 99.740 99.726 99.733 0.048 79.8
SVM 99.711 99.713 99.712 0.048 9.6 99.727 99.729 99.728 0.047 63.5
MLP 99.641 99.645 99.643 0.067 34.9 99.674 99.676 99.675 0.066 167.2
DT 99.486 99.486 99.486 0.078 1.0 99.491 99.491 99.491 0.079 2.1

3.2.2. Testing of the Nextstrain Clade Typing Models

The dataset SN
2 with 152,805 sequences was tested for external validation. In addition

to the seven learning-based classifiers, this part tested the proposed template matching
method (TM) and the ensemble model (Ensemble). Based on the cross-validation results
in Section 3.2.1, the weights of classifiers in the ensemble model were set as: ω1 = 0.25
(Catboost), ω2 = 0.25 (RF), ω3 = 0.2 (Adaboost), ω4 = 0.15 (LR), ω5 = 0.1 (SVM), ω6 = 0.05
(MLP). DT obtained the worst classification measures (Table 1) and was not used for the
ensemble method.

Table 2 shows the results of the nine classification methods on dataset SN
2 , and the

average testing time required for each aligned sequence is also represented in the table.
Firstly, considering the precision, recall, and F-score measures, the Catboost classifier
achieved the best performance among seven machine learning-based methods for both
f2 and f3. RF, Adaboost, and LR also achieved ideal classification results for both f2 and
f3. Secondly, methods using data structure f2 were less time-consuming. RF, LR, and DT
obtained higher accuracy and efficiency on data structure f2. Thirdly, TM achieved better
classification measures (precision, recall, and F-score) than any machine learning-based
method. Finally, the ensemble model achieved the highest accuracy among all methods.
The confusion matrix produced by the ensemble model based on f3 is shown in Figure 9.
Although the f2-based ensemble method is slightly inferior to the f3-based one on the
three classification measures, the former is significantly more computationally efficient
than the latter. In addition, except for DT, all methods, including TM and the ensemble
model, obtained D̄ < 0.055, indicating that the misclassified samples are mainly distributed
among clades with small differences, like the Delta (21A, 21I, and 21J) and the Omicron
(21M, 21K, and 21L) clades (as marked with pink boxes in Figure 9). To further compare
the classification performance of different methods, the receiver operating characteristic
(ROC) curves of different methods on dataset SN

2 using data structure f2 were plotted in
Figure S1. The ensemble model obtained the best performance with the largest area under
the curve (AUC).

Table 2. Results of the nine classification methods on the Nextstrain testing dataset SN
2 .

Data Structure f2 Data Structure f3

Approach Precision
(%) Recall (%) F-Score (%) D̄ Time

(ms)
Precision

(%) Recall (%) F-Score (%) D̄ Time
(ms)

Catboost 99.839 99.840 99.839 0.052 0.05 99.854 99.854 99.854 0.054 2.64
RF 99.823 99.824 99.823 0.047 0.19 99.817 99.816 99.816 0.048 0.39
Adaboost 99.810 99.809 99.810 0.051 0.84 99.831 99.831 99.830 0.054 2.18
LR 99.816 99.816 99.816 0.048 <0.01 99.809 99.809 99.808 0.051 <0.01
SVM 99.742 99.741 99.741 0.046 0.44 99.797 99.798 99.797 0.049 4.66
MLP 99.669 99.667 99.665 0.045 <0.01 99.792 99.786 99.789 0.044 0.01
DT 99.687 99.686 99.686 0.077 <0.01 99.664 99.664 99.664 0.078 <0.01

Ensemble 99.876 99.876 99.876 0.046 1.64 99.879 99.879 99.879 0.051 9.79

TM Precision: 99.858%, Recall: 99.855%, F-score: 99.856%, D̄: 0.049, Time: 4.76 ms
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Figure 9. Confusion matrix produced by the ensemble model on the Nextstrain testing dataset SN
2

using data structure f3. The dark color represents a larger number of samples. Pink boxes mark easily
misclassified samples distributed between clades with small differences.

3.3. GISAID Clade Typing Results

The experimental process of the GISAID clade typing is similar to Section 3.2. This
part adopted the feature extraction method as described in Section 3.1 and conducted
experiments on both f2 and f3 data structures. The datasets used for the GISAID typing
experiment consist of two groups: the first group (SG

1 ) includes 22,943 sequences for
training; the second group (SG

2 ) includes 68,829 sequences for testing.

3.3.1. Training of the GISAID Clade Typing Models

There are 11 GISAID clades involved in this study (Figure 10). The difference ma-
trix D was calculated based on the training dataset SG

1 by Equation (3). Compared with
Nextstrain’s difference matrix (Figure 4), GISAID’s D shows clear discrimination. Differ-
ences between the eight clades (L, V, S, O, G, GH, GV, and GR) in Figure 10 are quite small
(Dij ≤ 0.04), while GK (Delta), GRY (Alpha), and GRA (Omicron) are quite different from
other clades (Dij ≥ 0.09).

Firstly, the hyperparameters Nl and Nh of the proposed multilayer matching Algorithm (1)
were set based on SG

1 . Nh was set to 4544, and Nl was set to four levels (l1, l2, l3, and l4).
The corresponding four sets of training results are shown in Figure 11. Test3 and test4
obtained the same F-score, and the former was much more efficient. In addition, Figure 11b
shows that there is no significant difference in the distribution of Dij. Based on the above
results, the parameter Nl of the template matching method for GISAID clade typing was
set to l3.

Secondly, the 3-fold cross-validation was applied to the machine learning-based meth-
ods. Based on the good performance of the RF and Catboost classifiers in the Nextstrain
clade typing, we applied these two methods for feature scale selection. The cross-validation
results based on five different feature scales and two data structures are shown in Figure 12.
Overall, as the number of features increases, the training time increases, and the recall and
F-score increase. Furthermore, the model with data structure f3 slightly outperforms f2 in
terms of recall and F-score. To this end, the number of features used for the GISAID clade
classification was set to l5.
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The cross-validation results of the seven models based on the training dataset SG
1 are

shown in Table 3. They are sorted in descending order by the F-score. All six other methods
except MLP achieved higher recall rates and F-scores on data structure f3. DT obtained
the highest efficiency, but the second-to-last accuracy. SVM obtained the lowest accuracy
on both f2 and f3 data structures. Furthermore, the accuracy of the GISAID clade typing
is lower than that of Nextstrain, and the D̄ of misclassified samples of the GISAID clade
typing is larger.

Figure 10. The difference matrix D of the GISAID clades. Each element in the matrix represents
the difference between the corresponding two GISAID clades, and the dark color represents a
larger difference.

(a) (b)

Figure 11. Template matching performance on the GISAID training set SG
1 . (a) the average F-score (red)

and the training time (green) for each of the tests; (b) difference statistics for misclassified samples.
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(a) (b) (c)

Figure 12. Cross-validation results of the RF and Catboost classifiers on the GISAID training dataset
SG

1 . (a) the average time cost per cross-validation; (b) the recall rates of the RF and Catboost classifiers
on data structures f2 and f3; (c) the F-scores of the RF and Catboost classifiers on data structures f2

and f3.

Table 3. The cross-validation results of the seven classifiers based on the GISAID training dataset SG
1 .

Data Structure f2 Data Structure f3

Approach Precision
(%) Recall (%) F-Score (%) D̄ Time (s) Precision

(%) Recall (%) F-Score (%) D̄ Time (s)

Catboost 95.247 95.092 94.X 0.074 24.6 95.660 95.467 95.389 0.071 603.9
MLP 95.437 95.280 95.200 0.072 714.2 95.208 95.110 95.017 0.069 1487.1
LR 94.903 94.896 94.780 0.070 62.3 95.068 94.921 94.866 0.072 294.7
RF 94.547 94.465 94.364 0.071 133.8 94.853 94.735 94.621 0.070 707.7
Adaboost 94.022 94.012 93.978 0.072 1005.2 94.591 94.574 94.536 0.074 3581.5
DT 93.337 93.405 93.365 0.073 4.5 93.870 93.902 93.871 0.075 10.3
SVM 93.268 92.927 92.850 0.073 211.8 93.489 92.861 92.399 0.076 321.8

3.3.2. Testing of the GISAID Clade Typing Models

Further external validation was conducted to compare different typing models, using
the dataset SG

2 with 68,829 sequences. In addition to the seven supervised learning-based
methods, TM and the ensemble model were also tested. Different from Nextstrain, the num-
ber of features used by the GISAID classification models is l5. DT and SVM with the
worst classification accuracy were removed from the ensemble model. Based on the cross-
validation results shown in Table 3, the weights of the five classifiers in the ensemble model
were set as: ω1 = 0.25 (Catboost), ω2 = 0.25 (MLP), ω3 = 0.20 (LR), ω4 = 0.20 (RF),
ω5 = 0.10 (Adaboost).

Table 4 shows the results of nine classification methods on the testing dataset SG
2 ,

and the average testing time per sequence is also presented. Firstly, considering precision,
recall, and F-score, the RF classifier achieved the best performance among those seven
machine learning-based methods on both f2 and f3, followed by Catboost, LR, Adaboost,
and MLP. TM is inferior to other models in the precision, recall, and F-score. However, its D̄
is smaller, indicating that the misclassified samples of TM are mainly distributed between
clades with small differences. Notably, the seven machine learning-based models have very
little difference in accuracy between f2 and f3. Moreover, the ensemble model achieved the
highest precision, recall, and F-score on f2. In terms of computational efficiency, the predic-
tion time per sample of the ensemble model on f2 was only 31.7% of that on f3, providing an
accurate and efficient solution for the GISAID clade typing. The confusion matrix produced
by the ensemble model on f2 is shown in Figure 13. To facilitate comparison, elements
in the matrix are expressed as proportions. Among them, the recall rates of clades O and
GR are less than 90% and the recall rate of clade O is the lowest (78.7%). Figure S2 shows
the ROC curves of different methods on dataset SG

2 using data structure f2. The ensemble
model obtained the largest AUC.
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Table 4. Results of the nine classification methods on the GISAID testing dataset SG
2 .

Data Structure f2 Data Structure f3

Approach Precision
(%) Recall (%) F-Score (%) D̄ Time

(ms)
Precision

(%) Recall (%) F-Score (%) D̄ Time
(ms)

RF 96.082 96.019 95.966 0.072 1.06 96.162 96.093 96.039 0.072 1.31
Catboost 96.064 95.928 95.860 0.073 0.57 96.130 95.983 95.920 0.073 2.17
LR 95.745 95.628 95.554 0.071 0.02 95.981 95.890 95.831 0.072 0.13
Adaboost 95.592 95.595 95.566 0.074 3.26 95.685 95.689 95.644 0.073 11.74
MLP 95.849 95.768 95.708 0.072 0.02 95.678 95.727 95.613 0.071 0.25
DT 95.029 95.046 95.031 0.073 0.01 95.461 95.476 95.455 0.074 0.02
SVM 95.112 94.910 94.846 0.074 27.54 93.916 93.286 92.889 0.078 143.63

Ensemble 96.433 96.291 96.235 0.074 5.00 96.357 96.140 96.066 0.074 15.75

TM Precision: 88.366%, Recall: 85.203%, F-score: 82.540%, D̄: 0.055, Time: 7.04 ms

Figure 13. Confusion matrix produced by the ensemble model on the GISAID testing dataset SG
2

using data structure f2. The dark color represents a larger proportion.

3.4. Pango Lineage Typing Results

Unlike the Nextstrain and GISAID typing issues, the number of lineages defined by
Pangolin is significantly increased [24], and TM is no longer suitable for Pango lineage
typing. Due to a large number of lineages, the time-consuming and computational cost of
model training increases significantly. Further considering the results in Sections 3.2 and 3.3
and the performance of pangoLEARN [24], this study mainly applied RF and Catboost to
conduct the Pango lineage typing research. In view of the validity of the model and the
limitation of computing resources, we set the minimum number of samples of each lineage
to 50, and a total of 710 lineages were obtained (lineages with less than 50 samples were
discarded). In addition, no more than 2000 samples were screened for each lineage. Finally,
a total of 279,899 sequences (69,565 training samples (SP

1 ) and 210,334 testing samples (SP
2 ))

were obtained.

3.4.1. Training of the Pango Lineage Typing Models

SP
1 was applied to build the RF classifier, achieving the feature importance distribution

(shown in Figure 14). Comparing it with the feature distributions of Nextstrain and GISAID,
Pangolin (green) has the widest distribution of effective features, with only 53 of the 4544
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sites weighting 0. Therefore, this study adopted the same setting as PangoLEARN [24] in
the number of effective nucleotide sites (l5 = 4544).

Figure 14. The feature importance distribution of three SARS-CoV-2 genome sequence typing
strategies. The index is the result of sorting the sites in descending order of importance.

Due to a large number of Pango lineages, a larger amount of training samples require
more computing resources and training time. To this end, we further downsampled SP

1
to obtain six sets of training samples by setting the maximum number of samples (Nmax)
for each lineage. Nmax was set to 25, 50, 100, 200, 300, and 500, and the corresponding
training dataset size (Ntrain) was 13,916, 22,123, 35,757, 48,408, 61,069, and 69,565. The 3-fold
cross-validation results on f2 and f3 are shown in Figure 15. The horizontal axis in Figure 15
represents the number of samples involved in training in each cross-validation, which is
66.67% of Ntrain. Figure 15a shows that the training time is positively correlated with the
number of samples, and the training on f2 is more efficient. Figure 15b,c show that the
F-scores and recall rates have very similar trends, and the classification performance on
the two data structures differs very little. Considering both accuracy and efficiency, f2
performs better than f3 in Pango lineage typing. Further experiments showed that Catboost
had very close validation results to RF.

(a) (b) (c)

Figure 15. Cross-validation results of the RF classifier on the Pangolin training dataset SP
1 . (a) the

time cost per cross-validation; (b) the recall rates of the RF classifier on data structures f2 and f3;
(c) the F-scores of the RF classifier on data structures f2 and f3.

3.4.2. Testing of the Pango Lineage Typing Models

We applied RF and Catboost to construct the Pango lineage classifiers and integrated
the prediction results of the two models. To improve the accuracy of the classifiers, all
samples in SP

1 (69,565) were used for model training. The testing results on the dataset SP
2
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(210,334) are shown in Table 5. Furthermore, in the ensemble model, the weights of the
prediction results of both models (RF and Catboost) were set to 0.5. It is worth noting that
the RF classifier on data structure f3 is the same as that applied by PangoLEARN [24] and
can be used for comparison. As shown in Table 5, the proposed ensemble model on data
structure f2 achieved the highest classification precision, recall, and F-score. The ensemble
model improved the classification accuracy on both data structures and achieved better
performance on f2 with less computation. Figure 16 shows the F-score distribution of the
three models. The vertical axis represents the proportion of the Pango lineages in different
F-score intervals. The ensemble model obtains the highest proportion of lineages with an
F-score ≥ 95%. Furthermore, Figure S3 shows the ROC curves of the three methods on
dataset SP

2 using data structure f2. The ensemble model outperforms RF and Catboost with
a larger AUC.

Table 5. Results of the Pango lineage classifiers on the testing dataset SP
2 .

Data Structure f2 Data Structure f3

Approach Precision (%) Recall (%) F-Score (%) Time (ms) Precision (%) Recall (%) F-Score (%) Time (ms)

RF 97.687 97.469 97.509 0.39 97.696 97.474 97.515 0.44
Catboost 97.667 97.519 97.554 0.66 97.588 97.425 97.464 1.85

Ensemble 97.889 97.732 97.766 1.69 97.868 97.715 97.746 3.01

Figure 16. F-score distribution of different models on Pango lineage classification. The vertical axis
represents the proportion of the Pango lineages in different F-score intervals.

3.5. Model Extension with Newly Emerging Clades

To deal with the classification of newly emerging clades, we tried to obtain an extended
model by training a sub-model based on the existing model. Taking Nextstrain as an
example, we obtained 561 sequences with high coverage of two new clades (22A (Omicron)
and 22B (Omicron)) from the GISAID database. The collection dates of these sequences are
from 25 April 2022 to 12 July 2022. According to Nextclade (https://clades.nextstrain.org/
(accessed on 12 July 2022)), 22A (Omicron) and 22B (Omicron) evolved from 21L (Omicron).
For brevity, they are abbreviated as 22A, 22B, and 21L.

We applied the same method as the main model (Section 2.5) to construct a sub-model
for the classification of the three clades (21L, 22A, and 22B). An extended model is composed
of the main model and a sub-model. For sequences to be classified, we firstly applied
the main model for classification. For the sample whose main model output was 21L,
we continued to apply the sub-model for further classification. To this end, an extended
classification model capable of handling newly emerging clades can be obtained with only
a small amount of work. It should be pointed out that the construction of the sub-model
needs to incorporate the nucleotide mutation sites of the two new clades 22A and 22B based
on the original features. In this study, the training set (22A and 22B) was compared with

https://clades.nextstrain.org/
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the reference sequence, and the nucleotide sites with mutation rates exceeding a certain
threshold were extracted. As a result, 35 additional feature points were obtained.

The resulting confusion matrix (Table 6) on the testing dataset shows that only four
samples were mistakenly assigned to another clade by the sub-model, achieving a weighted
accuracy of 99.519%. Furthermore, out of all 831 samples, only one sample with clade
21L was misassigned to 21M by the main model. All samples of clades 22A and 22B were
correctly assigned to their father clade 21L by the main model. The training of the sub-
model took only a few minutes and the extra testing time for each aligned sequence was
less than 10 ms. Therefore, by introducing the sub-model, this study can rapidly construct
an extended model that accurately identifies newly emerging clades.

Table 6. Confusion matrix resulting from the test of the sub-model, comprising 831 samples belonging
to 3 clades (21L, 22A, and 22B).

Predicted Label

21L 22A 22B

True Label
21L 409 2 0
22A 0 240 0
22B 1 1 178

4. Discussion

Facing the SARS-CoV-2 genome sequence typing problem, this study built classifiers
for three typing strategies of GISAID, Nextstrain, and Pangolin. In addition to the machine
learning-based methods, this study has proposed a method based on template matching
for GISAID and Nextstrain. Based on the template matching algorithm, we obtained the
difference matrix between viral clades and applied it as one of the classifier evaluation indi-
cators. To achieve a fast and accurate classifier, two improvements have been made. First,
two data structures based on one-hot coding and site mutation were used for nucleotide
sequence transformation. Second, a weighted fusion strategy was applied to obtain an
ensemble model. Overall, our study achieved the highest accuracy on Nextstrain clade
typing (precision: 99.879%, recall: 99.879%, F-score: 99.879%), followed by the Pangolin
(precision: 97.889%, recall: 97.732%, F-score: 97.766%) and the GISAID (precision: 96.433%,
recall: 96.291%, F-score: 96.235%).

(1) Nextstrain: Our study has studied the classification of 25 Nextstrain clades, using
seven machine learning-based methods and a template matching-based method. The en-
semble model achieved the highest classification precision, recall, and F-score. The template
matching algorithm achieved a classification performance comparable to any machine
learning-based classifier. In addition, the difference matrix D obtained from the matching
algorithm can intuitively represent the distance between different clades. Figures 4 and 9
show that the misclassified samples are mainly distributed between clades with small
differences. Furthermore, data structure f2 has a better classification performance in SARS-
CoV-2 genome sequence typing. Although the accuracy is slightly lower than that of f3,
the computational efficiency is improved by more than five times (as shown in Table 2).

(2) GISAID: Research on the classification of 11 GISAID clades has been carried out in
this work. The ensemble model on data structure f3 achieved the best results. Compared
with the Nextstrain clade typing, TM performs worse in the GISAID clade classification,
and the F-score is lower than 85%. Figure 10 shows that except for GRA, GRY, and GK,
the GISAID clades are less diverse (Dij ≤ 0.04). Furthermore, a total of 13 (23.6%) elements
in Figure 10 are less than 0.03, while those in Figure 4 equal zero. It indicates that the
separability between GISAID clades is lower than that of Nextstrain clades. The ensemble
model on f3 obtained the highest typing accuracy with an ideal computational speed.

(3) Pangolin: A total of 710 Pango lineages are included in this study. The classification
accuracy of RF and Catboost is very close, and the ensemble of the two methods can obtain
higher precision, recall, and F-score. More interestingly, the performance of the ensemble
model on f2 is better than that on f3, with higher accuracy and less computation time.
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Compared with existing SARS-CoV-2 typing studies, our results have both improve-
ments and limitations. The Genome Detective Coronavirus Typing Tool [25] can only
identify the SARS-CoV-2 clades of several VOCs. In addition, this method is computation-
ally inefficient, taking an average of 30 ms per genome. UShER [43] places sequences on
a comprehensive tree and supplied sequences need to be uploaded to UShER’s servers
where processing takes place. In addition, it takes an average of 18 ms to place one sample
onto the reference tree using 16 threads and achieves an accuracy of 98.5% for samples with
one parsimony-optimal placement. On the other hand, Nextclade [44] is an open-source
project for viral genome alignment, mutation calling, clade assignment, quality checks,
and phylogenetic placement. Although its web version can provide comprehensive and
up-to-date sequence analysis results, its offline version performs clade assignment based on
a small number of valid nucleotide sites, with low accuracy, and partial sequences cannot be
effectively identified. Compared with Nextclade and UShER, this study does not construct
the evolutionary tree but focuses on the typing of genomes. In addition, the methods pro-
posed in this study (the template matching and the ensemble model) are computationally
efficient (<20 ms for one sample) with higher accuracy (>99.85%). The disadvantage of our
work is that we can only identify existing clades and cannot discover new SARS-CoV-2
clades. However, the proposed extended model can identify newly emerging clades by
training sub-models with only a small amount of work.

As for the GISAID clade typing, its classification accuracy is relatively low. GISAID
classification is based more on several marker variants than strictly phylogenetic relation-
ships [18]. Moreover, clade O refers to other clades that do not meet the GISAID clade
definition [45]. This can further explain that the typing model has the worst accuracy on
clade O (recall: 77.249%, F-score: 86.625%). The PhenoGraph [46] classification identifies
303 SARS-CoV-2 clades and is consistent with, but more detailed and precise, than the
known GISAID clades [18]. It provides an unsupervised clustering method for SARS-CoV-2
clades. In contrast, we provide supervised models for a different classification density.
Although the weighted recall of the proposed model is about 96%, VOCs such as GK (Delta)
and GRA (Omicron) can achieve an accuracy of over 99%.

The Pangolin classification tool [24] provides the basis for the research in this study.
Different from PangoLEARN, this study tried a lightweight data structure f2 with higher
efficiency. The classification accuracy has been improved through model integration.
The limitation of our method is that only 710 SARS-CoV-2 lineages are included in this
study due to the constraints of computational resources. This problem can be solved by
increasing the hardware configuration level and downloading more data. In addition,
GNU-based Virus IDentification (GNUVID) is applied to assign sequence type profiles to
all high-quality SARS-CoV-2 genomes [28]. The overall prediction statistics of GNUVID on
high-quality genomes are precision (94.7%), recall (96.4%), and F-score (95.0%), which are
lower than those of the classifier proposed in this study. In addition, this study adopts the
lightweight data structure f2 to improve the classification efficiency, and the average time
per sequence is about 10 ms, which is much lower than the 31 ms of GNUVID [28].

5. Conclusions

This study presents a SARS-CoV-2 genome sequence classification system based on
supervised learning methods. Overall, the system aims to achieve rapid and accurate
SARS-CoV-2 genome sequence typing for the three typing strategies of Nextstrain, GISAID,
and Pangolin, respectively. When we obtained SARS-CoV-2 genome sequences from
COVID-19 patients, the system proposed in this study can be applied to efficiently and
accurately type these sequences, which would help to carry out relevant epidemiological
analysis and provide reliable typing and traceability basis for effectively blocking its
spread. For Nextstrain and GISAID, this study has proposed a method based on template
matching. Through the strategy of multi-layer matching, we improved the efficiency of
the matching algorithm. The template matching method achieved satisfactory results
in the Nextstrain clade typing. A template matching-based difference metric method
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is proposed to quantify the difference between two clades and serve as an evaluation
factor for classifier performance. Furthermore, we have proposed an ensemble model
that integrates a combination of machine learning methods (such as Random Forest and
Catboost) with optimized weights. In addition to the one-hot coding method, this study
has proposed a data structure based on nucleotide site mutation, which obtains good
results in SARS-CoV-2 genome sequence typing. While obtaining ideal classification
accuracy, the computational resources are greatly reduced. Finally, verified by a large
number of testing datasets, the ensemble model proposed in this study helps to improve
the accuracy of the classification system (Nextstrain: 99.879%, Pangolin: 97.732%, GISAID:
96.291%). This study provides a comprehensive and efficient method for SARS-CoV-2
genome sequence typing, which helps to monitor the diversity of SARS-CoV-2, thereby
serving the global anti-epidemic. In addition, by introducing sub-models, this study can
rapidly construct an extended model that accurately identifies newly emerging clades
without retraining the main model constantly. Future work will focus on the discovery of
new clades and the identification of recombination.
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