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Abstract
Humans and non-humans can extract an estimate of the number of items in a collection very rapidly, raising the question of
whether attention is necessary for this process. Visual attention operates in various modes, showing selectivity both to spatial
location and to objects. Here, we tested whether each form of attention can enhance number estimation, by measuring whether
presenting a visual cue to increase attentional engagement will lead to a more accurate and precise representation of number, both
when attention is directed to location and when it is directed to objects. Results revealed that enumeration of a collection of dots in
the location previously cued led to faster, more precise, and more accurate judgments than enumeration in un-cued locations, and
a similar benefit was seen when the cue and collection appeared on the same object. This work shows that like many other
perceptual tasks, numerical estimation may be enhanced by the spread of active attention inside a pre-cued object.
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Introduction

Perceiving the number of objects is a fundamental skill for
many animal species (Agrillo & Bisazza, 2014; Dehaene,
2011), as well as for humans, including infants (Izard, Sann,
Spelke, & Streri, 2009). What are the systems and faculties
that support this ability? Intuitively, we cannot estimate the
number of items in a visual collection unless we see the col-
lection. But, will visual attention enhance or hinder estimation
abilities? Perhaps neither, if focused attention is unnecessary
for enumeration and number is extracted as an ensemble fea-
ture across the whole visual scene (Alvarez, 2011; Torralba,
2003; Torralba, Oliva, Castelhano, & Henderson, 2006). But
when enumerating requires selecting a group of items from
among the background, perhaps visual attention is necessary.

Mechanisms of visual attention are employed to prioritize
the processing of information in the environment at a

particular moment. Past studies have shown that visual atten-
tion can be allocated either to a location in space or to an
object, termed location-based attention or object-based atten-
tion respectively (Duncan, 1984; Egly, Driver, & Rafal, 1994;
Posner, 1980). In a seminal study, Egly et al. (1994) used a
double-rectangle display to demonstrate that attention can be
delineated by the boundaries of objects, effectively spreading
through attended objects. This has been shown by cueing one
end of the two rectangles and then displaying a target either at
the cued location (valid trials) or at one of three remaining
locations (invalid trials). These locations include the other
end of the attended rectangle (invalid same object, IS) as well
as at the different ends of the unattended rectangle (invalid
different object, ID). Faster responses to the target object at
the uncued location of the same object compared to the
uncued location on the different object has been interpreted
as the result of spreading attention across the attended rectan-
gle (Fig. 1). This explanation is based on the idea that all the
two locations (i.e., same object different location, and differ-
ent object) are equidistant from the cued location – thus re-
sponses on the attended object benefit from facilitated
processing.

Despite the wealth of studies examining the role of
location- and object- based attention on the detection or dis-
crimination of visual stimuli (e.g., Brawn & Snowden, 2000;
Shomstein & Behrmann, 2008), far less is known about the
role of focusing attention on a specific location or object when
extracting visual information about numerical quantity.
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Recent evidence evaluating the connection between num-
ber, space, and attentional resources has demonstrated that
depriving visual attentional resources in a concomitant visual
or auditory dual task results in a higher cost in number repre-
sentation in the small number range than in larger
numerosities (Burr, Turi, & Anobile, 2010; Pomè, Anobile,
Cicchini, Scabia, & Burr, 2019). Moreover, depriving atten-
tional resources also distorts number mapping onto space.
Usually, when asked to position numeric digits or clouds of
dots appropriately on the “number line,” educated adults do so
accurately (linearly). However, young children, children with
dyscalculia, and unschooled adults with little math experience
show strong non-linearities in number-line mapping, with the
resulting number line taking on a logarithmic-like form
(Ashkenazi & Henik, 2010; Booth & Siegler, 2006;
Dehaene, Izard, Spelke, & Pica, 2008; Geary, Hoard,
Nugent, & Byrd-Craven, 2008). If attentional resources are
limited by a dual task, number-line mapping becomes
logarithmic-like even in typical adults (Anobile, Cicchini, &
Burr, 2012a), suggesting to some that depriving attention re-
veals the native “ logari thmic” nature of number
representation.

However, the fact that in these circumstances number rep-
resentation follows a logarithmic form does not necessarily
imply an intrinsic logarithmic representation of numerosity
(Gallistel & Gelman, 1992; Karolis, Iuculano, &

Butterworth, 2011). Several alternate explanations have been
put forward, including the possibility that the nonlinearity
results from a “central tendency of judgment” or “regression
toward the mean” (Anobile, Turi, Cicchini, & Burr, 2012b),
which applies to almost all properties – size, duration, speed,
etc. (Hollingworth, 1910). This has recently been modelled
within the Bayesian framework, where the mean across all
experienced numbers is considered a prior (Anobile,
Cicchini, & Burr, 2012a). As the effect of the prior depends
on the relative reliability (reciprocal variance) of the sensory
data, it will have more effect at high numerosities, as
numerosity thresholds increase with numerosity. This will re-
sult in a compressive non-linearity, which can resemble a
logarithmic transform (discussed in more detail later). Under
conditions of uncertainty – such as under attentional load or
with an unfamiliar numerical format – responses tend to be
biased toward the mean of the stimulus distribution.

Further evidence that the non-linearity could reflect a dy-
namic process rather than a static non-linearity is that the
response to the current trial correlates positively with the mag-
nitude of the previous stimulus, suggesting that participants
compute a weighted average of current and recent stimuli
(Cicchini et al., 2014). This study reinforced the connection
between the representation of number in space and the re-
quirement of attentional resources, in showing that the depen-
dency on previous stimuli was greater when attention had

Fig. 1 Schematic example of the typical sequence of Egly, Driver, and
Rafal (1994). The target, illustrated in the bottom row of the figure,
comprised filled squares: the valid target requires a shift in attention from
the preceding cue; in contrast the invalid targets require a between- or a

within-object shift from the cue. Shifting attention from a valid location to
an invalid one results in a cost in terms of reaction time (RT). ISI inter-
stimulus interval
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been deprived. However, only one study has so far investigat-
ed the role of increasing attentional engagement in a number
task. The authors demonstrate that enhancement of attention
through an alertness paradigm can improve the subitizing pro-
cess (Gliksman,Weinbach, &Henik, 2016). To a lesser extent
the improvement also occurred in the estimation range (from
five to nine elements), particularly when elements were pre-
sented in a canonical arrangement.

The current study was designed to examine the role of
attentional engagement in visual numerosity estimation, using
a visual cuing paradigm.We had three specific aims: (1) to test
the effects of enhancement of attention on numerosity percep-
tion, by directing attention to a previously cued object; (2) to
study the effects of attentional engagement on the mapping of
numbers onto space; and (3) to model the mapping effects
within a Bayesian framework. Taking advantage of the con-
tribution of both object- and location-based attention, we hy-
pothesized that enumeration of quantity would benefit from
focusing attention on a specific location, and that the advan-
tages found there would spread to the whole object to which
the cue had been presented. This should lead to faster, more
accurate, and more precise estimates compared with when
attention is directed to a different object. Moreover, we also
explored the possibility that, especially in the condition of
switching attention to a different object, the spatial represen-
tation of number would show a non-linear compression
resulting from a central tendency like that described by previ-
ous studies for many sensory judgments, which we model
within the Bayesian context.

Methods

Fifteen subjects (mean age: 22.26 years; SD: 3.61) took part in
the study. Informed consent forms were obtained from all the
participants in accordance with the Declaration of Helsinki.
Since 12 participants were recruited from Johns Hopkins
University (Baltimore, MD, USA) and three from the
University of Florence (Florence, Italy), the experimental pro-
tocol was approved by both the Institutional Review Board of
Johns Hopkins University and the Italian regional ethics com-
mittee (Comitato Etico Pediatrico Regionale—Azienda
Ospedaliero-Universitaria Meyer—Florence).

Apparatus, stimuli, and procedure

Stimuli were generated using MATLAB software together
w i t h t h e P s y c h o p h y s i c s T oo l b o x e x t e n s i o n s
(Kleiner, Brainard, & Pelli, 2007) and displayed on an LCD
monitor driven by a Macintosh iMac computer (with a reso-
lution of 1,920 x 1,080 pixels, refresh rate = 60 Hz). The
subjects were seated approximately 50 cm from the screen
and viewed the display binocularly. The displays comprised

a pair of adjacent black rectangles oriented either vertically or
horizontally with equal probability. Each rectangle (9.18° x
25.14°) was centered 6.65° from fixation. The fixation was a
white cross (0.48° x 0.48°). The cue (three 9.18° x 0.28° white
lines, overlapping one end of a rectangle) and the target,
consisting of a collection of dots displayed in a circular region
of 4°, were located at the end of the two rectangles. The back-
ground of all displays was gray. The default diameter of the
dots was 0.25° and the maximum variability in size between
dots was ± 31%.

In order to discourage reliance on a single continuous var-
iable such as density or total surface area for numerical judg-
ments (see, e.g., Feigenson, Libertus, & Halberda, 2013;
Halberda & Feigenson, 2008; Libertus, Feigenson, &
Halberda, 2011), we manipulated the non-numerical aspects
of our stimuli so that on half of the trials the two arrays were
equated for individual dot size (i.e., the average size of the
dots in each collection was equal), and on the other half the
cumulative surface area of dots was equated. The minimum
distance between dots was 0.15°. Dot position was randomly
determined with the constraint that dots never overlapped.

Each trial began with a fixation display comprising the
central cross and two rectangles, which remained on for a
random time from 500 to 1,000 ms, to avoid subjects
predicting the onset of the cue. Following the fixation display,
the cue was presented for 100 ms and then replaced by the
fixation display for another 200 ms. The target comprised a
cloud of yellow dots and was presented for 200 ms followed
by a number line with extremes of 1 and 35 (with in-between
number ticks spaced apart at equal distance), which extended
for 42° (Fig. 2).

To initiate the session, participants pressed the space bar
when ready. They were asked to fixate on the central cross
throughout each trial, and to position and click a mouse point-
er on the position of the number line corresponding to the
estimated numerosity. Participants ran four sessions of 150
trials each, with numerosities ranging from 5 to 30, presented
in random order.

Eye position was monitored visually by the experimenter
during all sessions.

Each session comprised 75% valid trials, in which the cue
and the target (cloud of dots) appeared in the same location
(Valid Same Location, VSL); in the other 25% of trials the cue
and the target did not appear in the same location: in 12.5% the
target appeared in the cued object but at a different location
(Invalid Same object, IS), and in the other 12.5% the target
appeared in the un-cued object but equally distant from the
cue (Invalid Different object, ID).

Data analysis

The first 20 trials of each session were treated as training
and excluded from the analyses. For each condition,
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responses that were more than two standard deviations
above or below the mean were removed (less than 2%
of the trials for each condition: 1.4%, 1.5%, and 1.8%
of trials for VSL, IS, and ID, respectively).

All the analyses were conducted separately for the three
different positions of cue and target: VSL, in which the
target (cloud of dots) appeared at the same location of the
cue; IS, in which the target appeared in the same cued object
but at a different location; and ID, in which the target ap-
peared in a different object than the cue.

We performed two types of analysis, a power fit and a
Bayesian model of central tendency.

Power fit In order to estimate the slope, intercept, and
sigma of each subject's estimates we used a maximum-
likelihood estimation approach, using an R-based pack-
age (PsiMLE; Odic, Im, Eisinger, Ly, & Halberda,
2016). Because of the unbalanced nature of our design
(75% of the trials fell in the VSL condition and only
12.5% each in the IS and ID conditions), we took ad-
vantages of PsiMLE, which simultaneously estimates
beta, intercept, and sigma, combining likelihood across
different target values. PsiMLE allows for predicting
responses to target values not presented or to restricted
samples since it generates an entire probability distribu-
tion modeling participants’ internal representations (Odic
et al., 2016)

This method maximizes the parameters that fit the
normal distribution CDF (cumulative distribution

function), with intercept (α), slope (β), and an extra
parameter sigma (σN) that describes the variability of
the estimates of each dot quantity given the actual dot
quantities (N) and participants' responses (R) with a
likelihood function:

L α;β; σN jN;Rð Þ ¼ ∏n
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π α þ β*N*σNð Þ2

q exp −
Rk−α þ β*Nkð Þ2

2* α þ β*Nk*σNð Þ2
 !

:

ð1Þ

N corresponds to the number of dots presented (ranging
from 5 to 30), α corresponds to the intercept of the linear
regression, β corresponds to the slope, σN corresponds to the
linearly increasing scalar variability (equivalent to coefficient
of variation, CV), and R corresponds to participants’ number
responses on the number line. PsiMLE simultaneously esti-
mates all three parameters of interest. Using PsiMLE, we fit
each participant’s estimates with the best fitting power func-
tion and obtained the corresponding three parameters of inter-
est (exponent, scaling factor, and variability). The power func-
tion is given by:

Y ¼ αxβ

ð2Þ

where α is the scaling factor, x is the actual numerosity tested,
and β is the exponent. Our measure of estimation variability,
σN, correlated strongly with the more traditionally used CV

Target Valid

+ + +

Targets Invalid

Fixation
500- 1000 msec

Cue
100 msec

ISI
200 msec

+
IS

+ID

+
VSL 13 .3°

13.3°

6.65°

How many dots were in the cloud?

1 355 10 15 20 25 30

Target
200 msec

Fig. 2 Example of a sequence of events within a trial (see also Fig. 1 for a
schematic illustration of the original study by Egly et al., 1994). The
target consisted of yellow dots presented either in the previously cued
location (Target Valid, upper figure) or in an invalid location, which
could be in the previously cued object (Target Invalid, middle figure) or

in the other object (Target Invalid, lower figure). The collection of dots
could never appear diagonal to the cue. After the presentation of the cloud
of dots in one of the three possible locations, participants had to mouse
click the corresponding perceived numerosity on a number line spanning
from 1 to 35. ISI interstimulus interval
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measure (relation of σN to CV; r = 0.93, p < .001). Because the
PsiMLE method yields better reliability in estimates (Odic
et al., 2016), we used σN throughout our analyses. However,
the pattern of results was very similar when analyzing CV
withmore standard techniques (standard deviation normalized
by numerosity).

Bayesian model To explore the possibility that the non-linear
compression of the spatial representation of number could
result from dynamic temporal context, producing regression
to the mean, we modelled our number-line mapping with a
Bayesian model similar to that used by Anobile, Cicchini, and
Burr (2012a), which assumes that subjects base their perfor-
mance on an estimate that combines both their sensory esti-
mates and an a priori hypothesis about the stimulus.

Bayes’ rule states that:

p RjNð Þ∝p Rð Þp NjRð Þ ð3Þ
where R is the response and N is the numerosity of the stim-
ulus. p(N|R) is termed the likelihood, p(R) the prior, and
p(R|N) the posterior. We model likelihood with a Gaussian
distribution centered on the stimulus, the width of which is
estimated by the variability of the estimates (σN), averaged
over participants. The prior is also modelled as a Gaussian
distribution centered on the mean of the stimulus range, with
standard deviation free to vary to best fit the data.

Bayes’ Law states that the optimal combination of infor-
mation is obtained by point-wise multiplication of the two
Gaussian distributions:

∅p RjNð Þ∝φ xð Þ μR;σRð Þφ xð Þ μp;σp
� � ð4Þ

where φ(x) indicates the Gaussian function, the center of
which is given by a weighted average of the centers of the
likelihood and that of the prior. The resulting distribution is
itself a Gaussian probability density function, the mean of
which will be between the sensory estimate and the central
prior:

bR ¼ Pσ2
R þ Nσ2

P

σ2
R þ σ2

P
ð5Þ

where bR is the predicted response and P the mean of the prior
(estimated to best fit the data).

σR ¼ kNα ð6Þ
where k is a constant and α the exponent, both estimated
from the data. The constant k is given by the estimates
of CV, separately for each condition, reported in Fig. 3.
The extent to which the prior draws the results towards
the mean depends on the relative widths of the prior
and sensory likelihood functions. As the width of the

sensory pdf increases with N, the effect will be stronger
for large than for small numerosities, resulting in a
compressive function (Fig. 5).

Results

Precision

We calculated the precision or variability (σN) of the
numerosity estimations for the three attentional condi-
tions for each participant, using the PsiMLE package
(Fig. 3A). Inspection of the figure revealed that preci-
sion decreased as attention was diverted from the cued
to the un-cued object. In particular we found (post hoc
comparisons) less precise estimation for invalid different
object (ID) trials, compared with both the valid location
trials (VSL: t = 3.65; ptukey = 0.002) and the invalid
same-object trials (IS: t = 2.44; ptukey = 0.04). There
was no significant difference between the two condi-
tions within the same object (t = 1.20; ptukey = 0.2),
although cueing to the same position within the object
(VSL) caused slightly (but non-significantly) lower
thresholds than cuing different positions within the ob-
ject (IS), 0.15 compared with 0.19.

We also examined how precision varied with numerosity
(Fig. 3B). For this analysis, we did not use the PsiMLE pack-
age but calculated the SDs for the number line judgments.
Because of the unbalanced design of the experiment (only a
few trials in the invalid conditions), we collapsed data over
participants, and performed a two-way ANOVA, with condi-
tion and numerosity as factors. Both main factors were signif-
icant (F(1,26) = 6.74, p = 0.01; F(25,26) = 2.02, p = 0.04 for
condition and numerosity, respectively), but the interaction
was not (F(25,26) = 0.27, p = 0.99). This separate analysis
as a function of numerosity confirms the PsiMLE analysis,
showing a difference between the conditions. From inspec-
tion, the unattended condition clearly has the higher
thresholds.

The color-coded lines through the data are best-fitting pow-
er functions, following Eq. 2. All three conditions follow a
compressive non-linearity, with exponents of 0.54, 0.53, and
0.24 for conditions VSL, IS, and ID, respectively. However,
as there was no significant interaction in the ANOVA, and the
number of trials is very small in the unattended condition
(12.5% total), there is no evidence that the dependency on
numerosity is actually different. We therefore fit all the data
together, collapsing over numerosity to get more robust esti-
mates of standard deviation, and fit those data with a power
function. This fit is shown by the black curve, and has an
exponent of 0.48, similar to the two attention conditions.
This implies that precision thresholds do not actually scale
with numerosity, asWeber’s Lawwould imply, but scale with
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the square-root (exponent 0.5) of numerosity, as has been
found in the past with number-line tasks (Cicchini et al.,
2014). We will use this relationship with numerosity to model
the Bayesian predictions in Fig. 6.

Accuracy of number line

We next examined the average accuracy of number-line map-
ping for the three different conditions. Figure 4 shows the
results, plotting average numerosity estimates against actual
numerosity, averaged over all subjects. Data from each con-
dition are fit with a power function (Eq. 2), pooling together
all participants. The mean exponents of the power function (β)
of Eq. 2 (obtained from fitting each participant’s estimates
with the best fitting power function using PsiMLE) were, re-
spectively, 0.68 (±0.03) for the VSL condition in green; 0.63
(±0.03) for the IS condition in blue; and 0.51(±0.02) for the ID
condition in red (see inset bar graph). The exponents reveal
the non-linearity of the relationship, with the VSL condition
being the more linear while the other two conditions demon-
strate progressively increasing compressive non-linearities.

For every subject, the non-linear component was far larger
in the ID condition (different object) than in the IS condition
(same object). Post hoc comparisons showed a significant
difference in non-linearity between the condition in which
the target appeared in the cued object but in a different loca-
tion compared to the condition in which the target appeared in
a different object (t = 2.57; ptukey = 0.03), and a further signif-
icant spatial cuing effect with VSL trials being more linear
than ID (t = 3.7; ptukey = 0.002), but not significantly more
linear than IS trials (t = 1.13; ptukey = 0.49).

Overall, the measurements of precision and accuracy con-
firm the hypotheses that estimation of numerosity is improved
by the spread of attention within the cued object, at the ex-
pense of the object outside the focus of attention.

Fig. 3 Precision analyses. (A) Estimation variability (σN) obtained from
the PsiMLE package for the three conditions: valid same location (VSL –
green), invalid same object (IS – blue), and invalid different object (ID –
red). Precision decreased as the attention was diverted from the cued
location to the un-cued object, but there was no significant difference
between the two valid cued conditions, same object or same location.

Significance values refer to post hoc t-test comparisons (*p < 0.05, **p
< 0.01, ns p > 0.05). (B) Standard deviations of responses as a function of
physical number. The color-coded lines show the best-fitting power func-
tions of the three conditions; the black dashed line is for the data pooled
over conditions. The exponents for the four curves are: all data 0.48; VSL
data in dark green 0.54; IS data in blue 0.53 and ID data in red are 0.24

Fig. 4 Relationship between the presented numerosity and average
estimates, estimated separately for the three conditions (valid same
location in green, invalid same object in blue, and invalid different
object in red). Continuous lines represent the power-fitting function (β).
Thin color-coded vertical lines represent the standard deviations. The
small inset on the bottom right represents the mean betas for the three
conditions, respectively. Significance values refer to post hoc compari-
sons (*p < 0.05, **p < 0.01, ns p > 0.05)
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Regression to the mean

Following the procedure of Anobile et al. (2012), we fit
our data with the Bayesian model of central tendency
(Eq. 3), where the posterior probability of a particular
response is given by the normalized product of the sen-
sory data (the likelihood distribution resulting from a
given number of dots, estimated from the data) and
the “central tendency” prior, which draws the sensory
estimates towards the center. Curves in Fig. 5B are the
best fits assessed by minimizing R2, the ratio between
the Explained Sum of Squares and the Residual Sum of
Squares. Best fits of the data were obtained with prior
centered at 15, near the mid-point of the stimulus range
(5–30). Overall the curves show that the Bayesian mod-
el for the three number lines clearly captured the pattern
of results (0.53 < R2 < 0.70). For the conditions of
VSL and IS, the number line is quite linear (dark green
and blue dashed lines), while for ID trials (red line) the
mapping shows a clear compressive non-linearity, as
previously observed (Anobile et al., 2012a).

As the Bayesian model of central tendency predicts
that the magnitude of mapping distortion should depend
on the level of sensory noise, we measured the

correlation between the non-linearities assessed by the
fit to the power function (β of Eq. 2) and individual
internal noise of estimates. This measure was obtained
by dividing the responses by the actual number tested
and then computing the standard deviation (SD) for the
three conditions separately. Figure 6 shows the relation-
ship between non-linearity and discrimination thresh-
olds. As predicted, participants with higher discrimina-
tion thresholds also had higher non-linearities (r = 0.45,
p = 0.002).

We also show the prediction of an ideal observer mod-
el that uses a prior standard deviation of 17 dots, derived
from the averaged stimuli intensity. The Bayesian model
fit, with one degree of freedom (width of the prior),
showed a R2 of 0.15. We also performed the same anal-
ysis on our measure of estimation variability (σN), and the
pattern of results looked the same. To compute the fit, we
used the model of Cicchini, Anobile, and Burr (2018), of
an ideal observer, which blends current noisy sensory in-
formation with a central prior.

WL ¼ σ2
P

x2*WF2 þ σ2
P

ð7Þ

Fig. 5 Illustration of the central-tendency model of non-linear mapping.
(A) Probability density functions for likelihood, prior, and posterior (Eq.
3), for two physical displays of 5 or 30 dots to be mapped onto a 1–75
number line. For all three number lines, the prior is a Gaussian probability
density function centered at 15 dots on the number line with a standard
deviation of 5 (determined by best fit to data). The likelihood was also
Gaussian, centered at the physical number L, with a standard deviation of
3 (determined by best fit to data). The posterior is the product of the

sensory likelihood and the prior. If the prior is closer to the center of the
test range, the posterior will be biased towards the center of the distribu-
tion. The strength of the bias depends on the relative uncertainty of like-
lihood and prior. As the standard deviation of the likelihood for larger
magnitudes increases, the bias towards the prior also increases. (B) Data
from Fig. 4, with the simulations shown by dashed curves. Thin color-
coded vertical lines represent the standard deviations
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Reaction times

Finally, since the previous literature on location- and object-
based attention has focused on the differences in reaction
times (RTs) between the condition tested (suggesting a RT
advantage for target presented in the same previously cued
location or the same previously cued object compared to the
uncued object), we also analyzed RTs to respond on the num-
ber line. RTs of less than 150 ms were not included in the
analysis (less than 2% of the trials).

Data in Fig. 7 show averaged RTs calculated for each
participant and each condition. Post hoc comparisons
showed a significant 200-ms cueing effect (t = 3.44; ptukey
= 0.004), with valid same-location RTs (1.07; 0.14) being
faster than invalid different object (1.27; 0.20). The cue
also led to faster responses when the target appeared at
the cued object (IS) than at the un-cued object (ID) (t =
2.58; p

tukey
= 0.03), with a 140-ms advantage. These results

suggest that estimation of numerosities suffers from the
shift of attention from one cued object to another un-cued
object, leading to slower RTs in computing the estimation
(same-object advantage). Moreover, a comparison be-
tween the VSL and IS revealed that participant RTs were
not significantly faster when the target appeared at the
cued location compared to the cued object (t = -0.85; p-

tukey = 0.67). These results reinforce the precision and
accuracy results in suggesting that both location-based
and object-based cues are informative, and that attention
spread from the cued location to the whole object.

Discussion

The present study examined the role of attention in the enu-
meration process. Previous studies have shown that when at-
tention is disengaged from a numerosity task, the subitizing
process is impaired. Much less impairment was found in the
estimation process. Here, we examined whether presentation
of a visual cue that increases attentional engagement in a given
task can facilitate the estimation process, leading to a less
compressive representation of number in space compared to
when attention is diverted elsewhere. The results revealed that
enumeration of a collection of dots in the location previously
cued led to more precise and more accurate judgments than
enumeration in uncued locations. In particular, the visual cue
facilitated the estimation process when both the cue and the
target were presented in the same previously cued object.

Since much literature on object- and location-based atten-
tion has examined the effects of attention by measuring RTs,
we also calculated the time participants took to report their
responses on the number line. Consistent with previous find-
ings, RTs were faster when the target appeared in the previ-
ously cued location compared with uncued locations, with an
advantage also when the target was presented in the cued
object compared with the uncued object.

Findings of previous studies on the contribution of object-
and location- based attention pointed out two main effects: a
spatial cueing effect and a same-object advantage (the first
referring to advantages in detecting the target when it appears
in the cued location; the latter referring to advantages in de-
tecting the target when it appears in the cued object rather than
the uncued object). Here we first demonstrated that these re-
sults generalized to the extraction of numerosity. We also
demonstrated that numerosity benefits from object-based

Fig. 6 Non-linearity index plotted against a measure of internal noise of
estimation. The gray curve shows Bayesian model predictions (see Eq. 7);
color-coded squares refer to the different condition tested (valid same
location green; invalid same object blue, and invalid different object red)

Fig. 7 Mean reaction times. Averaged reaction times calculated for each
participant and each condition (Valid same location in green; invalid
same object in blue; invalid different object in red). Color-coded dots
represent the mean reaction times each subject each condition.
Significance values refer to post hoc comparisons (*p < 0.05, **p <
0.01, ns p > 0.05)
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attentional resources. In particular, the same attentional advan-
tage found here for cuing within the object as cuing the precise
location suggests that attention to number spreads from the
cued location to the whole cued object. As previously men-
tioned, studies on the contribution of attention to numerosity
perception have mainly focused on the effect of depriving
attentional resources in a number task. Enhancing rather than
depriving attention can affect enumeration within the
subitizing range. Gliksman et al. (2016) found that cued arrays
within the subitizing range were enumerated faster than
uncued arrays, indicating that subitizing is an attention-
dependent process and can be manipulated through enhanced
alertness. This alerting effect, when enumerating arrays within
the subitizing range, has also been found in individuals diag-
nosed with developmental dyscalculia, although such cuing
was unable to expand their smaller-than-normal subitizing
range (Gliksman & Henik, 2018). Here we expand these re-
sults by finding that, also within the estimation range, previ-
ously cued arrays are enumerated faster, more precisely, and
more accurately than uncued arrays, indicating that estimation
processes are facilitated by inducing a manipulation that in-
creases attentional engagement during an enumeration task.

When asked to position the perceived numerosity of clouds
of dots on a number line, humans normally do so accurately,
that is, linearly. However, when attentional resources are
diverted by a concurrent demanding conjunction task, the
judgments become distinctly non-linear, which is well de-
scribed by a logarithmic relationship (Anobile, Cicchini, &
Burr, 2012a). This suggests that both linear and compressed
maps can coexist, and the use of one or the other may be due to
a variety of task-driven strategic factors. It has been suggested
that the neural substrate underlying the logarithmic mapping
of number may reflect the bandwidth of neurons selective to
number, as in both non-human and human primates neural
responses in the intraparietal sulcus show a logarithmic-like
tuning, with bandwidth proportional to preferred number
(Nieder, 2005; Nieder & Merten, 2007; Piazza, Izard, Pinel,
Le Bihan, & Dehaene, 2004), consistent with a pre-attentive
logarithmic mapping onto the number line.

However, another realistic possibility is that the compres-
sion may reflect a “central tendency of judgments,” a long-
standing notion (Hollingworth, 1910). That numerosity may
be subject to the central tendency is further support for the
notion of number being a primary visual attribute (Burr &
Ross, 2008). Jazayeri and Shadlen (2010) have recently re-
vived the concept of central tendency in Bayesian terms,
where the mean becomes the prior, which combines with
the sensory likelihood to produce the posterior, which will
be biased towards the mean. Given that the likelihood is es-
sentially the product of the Weber fraction and dot number,
and Weber fraction is fairly constant, the likelihood is much
broader at the higher than lower number range. Thus, the
higher range will be more drawn towards the mean than the

lower range, and this will result in the compressive non-
linearity that is observed in Fig. 5, and well fitted by a power
function with exponent less than one. It is also well approxi-
mated by a logarithmic function (Siegler & Opfer, 2003;
Stanislas Dehaene et al., 2008). Here we modelled our
number-line data with a simple Bayesian model that predicted
the compressive shape, and fitted the data well, accounting for
about 60% of the variance.

What purpose does the prior – and central tendency in
general – serve? As others have argued, a prior based on the
statistics of the sensory events can improve performance –
measured as the sum of total error – at the expense of reducing
veridicality (see Jazayeri & Shadlen, 2010). Effectively, under
conditions of uncertainty, performance can be improved by
considering the past history of events. This could explain why
under the condition of the invalid different object, given that
the precision is lower, the prior becomes more effective (as it
is the relative widths of prior and sensory likelihood that de-
termine the extent of central tendency).

Each of the aspects we have noted (e.g., the benefits of
attention, both at a location and within an object; the pull of
a central tendency on number responses) might function either
at the level of number perception (e.g., the extraction algo-
rithms that take visual evidence as input) or number represen-
tation (e.g., the resulting Gaussian curves that represent num-
ber along a mental number line). Indeed, there are likely to be
effects at each of these levels of processing (e.g., perhaps the
effects of attention are primarily in number perception (i.e.,
extraction), while the effects of a central tendency are at the
level of number representations). This will be an interesting
area for future research.

It is clear that number, space, and attention are intercon-
nected. A growing body of evidence links the ontogenetically
inherited nonverbal system with the culturally invented and
linguistically mediated number code (Feigenson et al., 2013).
Number acuity, which improves during development
(Halberda & Feigenson, 2008), correlates with formal mathe-
matics achievement (Anobile, Stievano, & Burr, 2013;
Mazzocco, Feigenson, & Halberda, 2011) and predicts math
skills years later (Halberda, Mazzocco, & Feigenson, 2008).
Conceptions of how numbers map onto space develop during
school years (Booth & Siegler, 2006; Siegler & Booth, 2004;
Siegler & Opfer, 2003); kindergarten children represent num-
bers in space in a compressed, seemingly logarithmic scale
(e.g., placing the number 10 near the midpoint of a 1–100
scale). The scale becomes progressively more linear over the
first 3 or 4 years of schooling. Interestingly, dyscalculic chil-
dren (those who suffer from a specific mathematical learning
disability) show poor number acuity (Halberda et al., 2008;
Piazza et al., 2010) and a more logarithmic representation of
the number line than controls (Ashkenazi & Henik, 2010;
Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007;
Geary et al., 2008). Other studies have shown that, along with
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deficits in numerical processing, dyscalculics also show defi-
cits in attention (Ashkenazi & Henik, 2010), and there is a
clear interplay between attention and math skills (Anobile
et al., 2013). It would be interesting to study the relationship
between attention enhancement and math abilities.

To conclude, the present study revealed that the estimation
process could be facilitated by inducing a manipulation that
increases attentional engagement during an enumeration task.
Research focusing on a mechanism that can enhance rather
than deprive attentional resources could prove helpful when
considering rehabilitation in conditions such as dyscalculia. In
particular, future research can examine whether procedures
that act to increase attention can also improve the ability to
map number into space in dyscalculic populations.
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