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Experimental quantum state 
discrimination using the optimal 
fixed rate of inconclusive outcomes 
strategy
Santiago Gómez1,2, Esteban S. Gómez1,2*, Omar Jiménez3, Aldo Delgado1,2, 
Stephen P. Walborn1,2 & Gustavo Lima1,2

The problem of non-orthogonal state discrimination underlies crucial quantum information tasks, 
such as cryptography and computing protocols. Therefore, it is decisive to find optimal scenarios for 
discrimination among quantum states. We experimentally investigate the strategy for the optimal 
discrimination of two non-orthogonal states considering a fixed rate of inconclusive outcomes (FRIO). 
The main advantage of the FRIO strategy is to interpolate between unambiguous and minimum 
error discrimination by solely adjusting the rate of inconclusive outcomes. We present a versatile 
experimental scheme that performs the optimal FRIO measurement for any pair of generated non-
orthogonal states with arbitrary a priori probabilities and any fixed rate of inconclusive outcomes. 
Considering different values of the free parameters in the FRIO protocol, we implement it upon qubit 
states encoded in the polarization mode of single photons generated in the spontaneous parametric 
down-conversion process. Moreover, we resort to a newfangled double-path Sagnac interferometer to 
perform a three-outcome non-projective measurement required for the discrimination task, showing 
excellent agreement with the theoretical prediction. This experiment provides a practical toolbox for a 
wide range of quantum state discrimination strategies using the FRIO scheme, which can significantly 
benefit quantum information applications and fundamental studies in quantum theory.

Quantum measurements lie at the core of quantum mechanics and are a cornerstone of interpretations of quan-
tum theory1. Moreover, they have a crucial role in the evolution of quantum systems2 and have found appealing 
applications such as estimating unknown physical parameters using quantum resources3,4. In quantum informa-
tion science, measurements are especially relevant for implementing quantum computing and communication 
protocols5. The simplest scenario involves two parties, where a sender can prepare and send information encoded 
in quantum states6. To access to this information, the receiver has to choose which quantum measurement will 
be performed7,8. Usually, the chosen measurement will depend on the properties of the received states and the 
features of the quantum protocol to be implemented. One possible task is identifying an unknown quantum state. 
One way to address this situation lies in the quantum tomography technique, which reconstructs the quantum 
state of an unknown physical system from the measured probabilities of a suitable set of observables. Neverthe-
less, the number of measurements required for a successful state reconstruction scales at least polynomially in 
the dimension of the state9, and requires multiple identical copies. Other tasks require identifying quantum states 
among others belonging to a given set in a single-shot measurement. However, performing this assignment is 
impossible deterministically when non-orthogonal states are considered.

Hence, quantum state discrimination (QSD) relies on identifying a quantum state belonging to a set of N 
known non-orthogonal quantum states. This task plays a fundamental role in several remarkable quantum pro-
tocols such as quantum key distribution10, quantum teleportation11,12, entanglement swapping13,14, and entangle-
ment concentration15,16. Moreover, being a fundamental protocol, QSD also has been studied in relation with: 
contextuality17, path distinguishability18–20, and quantum correlations21–23. Thus, there are well-known strate-
gies to implement QSD, namely the minimum error discrimination (MED)24,25, the unambiguous discrimination 
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(UD)26–29, and the maximum confidence discrimination (MCD)30–32, each focused on optimizing some figure 
of merit33. To implement any QSD strategy, it is necessary first to determine the corresponding measurement 
defined by a set of positive operator-valued measures (POVMs)34,35, and then engineer a way to implement these 
POVMs in an experimental realization36,37. In the case of MED, there are N POVM elements �i associated with 
the discrimination of one of the states ρi7. However, since the given states are non-orthogonal, the discrimination 
process will inevitably introduce errors in identifying each quantum state ρi24. In the MED strategy, the average 
error probability is minimized25,38. Conversely, UD has no error in identifying each quantum state ρi . This pro-
cess can be achieved by introducing an additional POVM element, �0 , which is associated with an inconclusive 
outcome28. Finally, the MCD strategy maximizes the confidence in taking the measurement outcome i to indicate 
that the ρi state was prepared8. QSD has been experimentally implemented for MED39–44, UD45–48 and also for 
MCD49,50. Moreover, the experimental realization for maximizing the mutual information51 between two users 
was also performed52.

The discrimination of unknown quantum states also has been studied. In this case, the communicating 
parties have no information about the states to be discriminated. Remarkably, it has been demonstrated that 
discrimination is feasible even in this situation. This is achieved through a programmable discriminator53–58, that 
is, a device where the unknown states to be discriminated are stored. In particular, it has been shown that this 
programmable discriminator is universal and attains a success probability close to the optimum of unambiguous 
state discrimination. In addition, the discrimination between two known families of non-orthogonal quantum 
states has been studied from the point of view of neural networks59,60. Nevertheless, implementing it is highly 
costly since the device requires a priori stored information and additional ancilla systems to work properly.

Under certain conditions, the MED and UD strategies coincide with the MCD strategy31,61. Moreover, MED 
and UD can be joined simultaneously in a more general QSD scheme known as fixed rate of inconclusive out-
comes (FRIO)62–64. In the case of QSD by FRIO, the average error probability in identifying the quantum state 
ρi is minimized under the condition of fixing the probability of inconclusive results65. Although for MED, UD 
and MCD there is no analytical solution to the discrimination by FRIO of N arbitrary non-orthogonal states66, 
in the case of two pure non-orthogonal states with arbitrary a priori preparation probabilities, the complete 
optimal solution is known61,67. Moreover, experimental schemes for the realization of FRIO onto two pure non-
orthogonal states have been proposed68,69.

Here we present an experimental realization of FRIO discrimination on two pure non-orthogonal states 
encoded on the polarization state of single photons created by the spontaneous parametric down-conversion 
(SPDC) process. We use a double-path Sagnac interferometer to implement a genuine three-outcome POVM 
over a single polarization qubit performing the required measurement. A notable feature of our experimental 
setup is that it can be easily configured to implement the optimal FRIO POVM for all pairs of non-orthogonal 
states, arbitrary a priori probabilities, and any value of the fixed rate of the inconclusive outcome. In particular, 
it allows us to implement MED, UD, and any intermediate case of FRIO by fixing the rate of inconclusive out-
comes, showing a good agreement with the theoretical results61,67. This experimental platform gives a flexible 
and customizable toolbox for a wide range of QSD strategies involving the FRIO scheme, which can be helpful in 
exploring novel applications for quantum information protocols and further research in quantum foundations.

Methods
We consider a qubit source of two pure non-orthogonal states denoted by |φ1� and |φ2� , with a priori preparation 
probabilities η1 and η2 , respectively. Without loss of generality, these states can be written as

where the states {|0�, |1�} represent the logical basis. The overlap between the states is given by the parameter 
s = �φ1|φ2� = cos(2α) , considering s ∈ [0, 1] . Moreover, the a priori probabilities can be set arbitrarily and they 
must satisfy the constraint η1 + η2 = 1 . The FRIO discrimination process is carried out by using three POVM 
elements, where �1(2) is associated to the identification of |φ1(2)� and �0 corresponds to the inconclusive out-
come, where no information of the states can be learned from the measurement. These three operators satisfy 
the condition

where 1 is the identity operator. We define the following probabilities p1(2) , r1(2) and q1(2) , corresponding to the 
probabilities of success, error and the inconclusive outcome, respectively, in the discrimination of |φ1(2)� . These 
probabilities encompass all possible outcomes in this case, that is p1(2) + r1(2) + q1(2) = 1.

The average probabilities of success Ps , error Pe and inconclusive outcome Q over the states, are given by61

where ρ1(2) = |φ1(2)��φ1(2)| , and ρ = η1ρ1 + η2ρ2 . It is straightforward to see that the average probabilities 
satisfy Ps + Pe + Q = 1.

Optimal strategy for FRIO discrimination.  The optimal FRIO strategy minimizes the average error 
probability Pe under the constraint that the inconclusive outcome probability Q is fixed. For this case, the opti-

|φ1� = cosα|0� + sin α|1�,
|φ2� = cosα|0� − sin α|1�,

�1 +�2 +�0 = 1,

(1)
Ps = tr(η1ρ1�1)+ tr(η2ρ2�2) = η1p1 + η2p2,

Pe = tr(η1ρ1�2)+ tr(η2ρ2�1) = η1r1 + η2r2,

Q = tr(ρ�0) = η1q1 + η2q2,
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mal probabilities for FRIO were obtained by Bagan et al.61. Due to the symmetry of this task, it is enough to 
consider the case η1 ≤ η2 , that is, when 0 ≤ η1 ≤ 1/2 . The FRIO solution identifies three intervals where the 
optimal probabilities can be obtained. These intervals depend on the overlap values s and the probability η1 given 
a fixed value of Q61,67. Interval I is defined as

where Q0 = 2s
√
η1η2 is the maximum inconclusive event probability for this interval. Interval II is defined as

with Qth = 2η1η2(1−s2)
1−Q0

 a threshold value that separates intervals II and III. The optimal probabilities for these 
intervals are given by

for i = 1, 2, and Q = 1− Q . Therefore, the optimal error probability Pe valid in intervals I and II is minimal 
and reads

On the other hand, the interval III is defined when

and the optimal probabilities are given by

and the optimal average error probability is given by67

where c = η1η2(1− s2) . Note that the optimal strategy in interval III is implemented using a two-outcome 
projective measurement.

A notable feature of FRIO discrimination is that allows not only MED (when Q = 0 ) and UD (when 
Q = Qmax ), but also intermediate cases. Here, Qmax is the maximum possible value for Q in each interval defined 
above. To show the versatility of this state discrimination scheme, we present an optical experiment performing 
FRIO for both cases (MED and UD), and we consider an intermediate case for the inconclusive event Q = Q0/2 
using the same device implementing the required POVMs in Eq. (1) for each interval. The optimal POVM imple-
mentation depends on the overlap s between the non-orthogonal qubit states {|φi�} . These states are prepared by 
encoding the polarization modes (horizontal and vertical directions) of single photons generated using a heralded 
source based on the SPDC process. We are able to finely tuning the parameter s and the a priori preparation 
probabilities ηi , performing FRIO strategies ( Q = 0 , Q = Q0/2 , and Q = Qmax ) considering seven values of the 
overlap s in two preparation scenarios, when η1 = η2 and η1 < η2.

Experimental description.  To carry out FRIO quantum state discrimination, we implement a heralded 
photon source based on the spontaneous parametric down-conversion (SPDC) process and a two-path Sagnac 
interferometer to perform the required measurement. The experimental setup is depicted in Fig. 1. A continu-
ous-wave laser at 405 nm pumps a type-II nonlinear periodically poled potassium titanyl phosphate (PPKTP) 
crystal to create degenerate down-converted photons at 810 nm with horizontal and vertical polarization. To 
ensure the degenerate phase-matching conditions and remove the remaining pump beam, a Semrock high-
quality narrow bandpass filter centered at 810 nm is used, with 0.5 nm of bandwidth and a peak transmission 
of > 90% . To maximize the coincidence count rate, we consider a numerical model70. Precisely, the optimal 
coupling condition is reached when ωDCP =

√
2ωp , where ωp and ωDCP are the waist modes of the pump beam 

and the down-converted photons at the center of the PPKTP crystal, respectively. In our case, these waists are 
adjusted using a 20 cm focal length lens L and 10× objective lenses.
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The generated photon pairs can be used to implement a heralded single-photon source, in the sense that one 
down-converted photon arrives at the trigger detector announcing the passage of the other photon through the 
stages of Alice and Bob (see Fig. 1). Therefore, a polarizing beam splitter (PBS) is placed after the PPKTP crystal 
to separate the down-converted photons deterministically. Then, they are sent to the trigger and Alice section 
coupling into single-mode optical fibers (SMF), removing any spatial correlation between them that could arise 
from imperfections when satisfying the phase-matching conditions in the crystal. Moreover, to maintain the 
polarization state of the photons through the propagation in the optical fiber, we use a manual fiber polariza-
tion controller for the photon arriving at Alice, and polarizing films are placed in front of the trigger and Alice’s 
detectors to ensure the correct polarization mode of the detected state.

Alice can prepare the two non-orthogonal states {|φ1�, |φ2�} using the half-wave plate HWP(θ ) to encode a 
polarization qubit her photon. The polarization qubit states read

where |H� and |V� are the horizontal and vertical polarization modes, and θ is the inclination angle of the HWP 
with respect to its fast axis. The photons are sent to Bob through free space to implement the FRIO state dis-
crimination procedure. To generate the global unitary transformation U over the non-orthogonal states required 
to implement the POVM69, we resort to couple the polarization degree of freedom with two spatial propagation 
modes as an ancilla system. First, Bob rotates the polarization state using a half-wave plate HWP1 oriented at 
angle θ1 and then inputs the state to the two-path Sagnac interferometer configuration, which is composed of 
three laser mirrors, the HWP2 and a PBS. In this device the polarization is coherently coupled with the spa-
tial modes71–73, since the PBS splits the incident photon through the clockwise (reflected) or counterclockwise 
(transmitted) mode inside the interferometer. Thus, the PBS operation can be seen as a controlled-NOT gate: the 
photon populates a spatial mode depending on the input polarization state. Moreover, in the counterclockwise 
path, HWP2 is aligned at angle θ2 , which rotates the photon’s polarization again if it propagates in this spatial 
mode. Then, a new passage through the same PBS superposes the two spatial modes. We denote the initial and 
second photon propagation paths by |1� and |2� . Lastly, an HWP3 at θ3 and a PBS are placed in the |1� mode to 
obtain three outcomes that determine the required POVM. The global unitary can be written as

where the transformation C(θi) represents a rotation of the polarization in an angle 2θi . Then, applying U onto 
the non-orthogonal states {|φ1�, |φ2�} gives us the following transformation,

(2)
|φ1� = cos 2θ |H� + sin 2θ |V�,
|φ2� = cos 2θ |H� − sin 2θ |V�,

U = C(θ3) · CNOT · C(θ2) · CNOT · C(θ1),

(3)
U |φ1�|1� =

√
p1|V�|1� +

√
r1|H�|1� + √

q1|V�|2�,
U |φ2�|1� =

√
r2|V�|1� +

√
p2|H�|1� + √

q2|V�|2�,

Figure 1.   Experimental setup used to implement FRIO quantum state discrimination. Alice can prepare the 
non-orthogonal state |φi� using the half-wave plate HWP(θ) , encoding on a single photon generated at the 
heralded source based on the SPDC process. Bob uses a two-path Sagnac interferometer to perform the three-
outcomes POVM needed for the chosen discrimination strategy covered by the FRIO scheme. Each outcome 
is associated with success, error, and inconclusive results. In particular, for intervals I and II, the inconclusive 
outcome Q is detected in the spatial mode labeled by |V2� . Thus, the state |φ1� is identified when |V1� is detected, 
while the |φ2� is associated to detecting in |H1� . See the main text for more details.
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where the parameters pi , ri , and qi are the optimal success, error, and inconclusive outcome probabilities associ-
ated to discriminate |φi� . Indeed, for the case when η1 = η2 = 1/2 (that is, equal state preparation), we can write 
these optimal probabilities in terms of the waveplate angles θ and θ1 , θ2 , θ3:

for i = 1, 2 , while θ1 and θ3 are fixed at 0 and π/4 , respectively. Remarkably, for these values of the initial state 
preparation probabilities η , the optimal probabilities for FRIO discrimination correspond to the interval I for 
any inner product s between the states |φi�.

On the other hand, for η1 < η2 we have that the optimal probabilities are given by

where the sign ± is taken according to the state labeled by i = 1, 2 to be discriminated in the FRIO process. 
Hence, the action of U reveals the three possible results associated with the output states which we labeled as 
{|V�|1�, |H�|1�, |V�|2�} . Thus, detection at the corresponding output modes is the final step for implementing 
any POVM described by the operation given in Eq. (3). For FRIO discrimination, the unitary transformation in 
Eq. (3) allows us to cover all cases belonging to intervals I and II discussed in the last section. Indeed, detection 
in the |V�|2� mode corresponds to the inconclusive result for both states |φi� (see Fig. 1). On the other hand, 
detection in the |V�|1� mode corresponds to the success (error) in the discrimination of |φ1(2)� , while a detection 
in |H�|1� corresponds to the error (success) in the discrimination of |φ1(2)�.

For the case of interval III, the optimal measurement corresponds to a two-outcome projection61. In this case, 
the unitary transformation can be written as follows

where there is no detection at |V�|2� mode. Thus, the detection in |V�|1� corresponds now with the inconclusive 
result. Then, for η1 < η2 in interval III we obtain the following optimal probabilities:

To detect the output photons, PerkinElmer single-photon avalanche detectors (APDs) were placed in the trigger 
path and the outputs of the Sagnac interferometer to record the photon statistics. A coincidence count module 
receives the signal from the detectors, where the timing delay was adjusted between each detector’s output and 
the heralding trigger signal. We actively control the pump laser power (1 mW), setting a 500 ps coincidence 
gate to minimize the accidental counts, generating a coincidence rate of ∼ 1400 photons pairs per second. This 
corresponds to a spectral brightness up to ∼ 400000 photon pairs (s mW nm)−1.

From the above discussion, it is clear that our experimental setup allows us to implement the optimal FRIO 
POVM for any pair of non-orthogonal states, arbitrary a priori probabilities, and any value of the fixed rate of 
inconclusive outcomes. This is done by adjusting the values of the angles θ1, θ2 , and θ3 on the corresponding 
wave plates.

Results and discussion
To show the practicality of the FRIO discrimination scheme using our experimental setup, we implemented the 
discrimination procedure between the two non-orthogonal polarization qubits given in Eq. (2) for a range of 
state overlaps s. A key feature of our experiment is that we use a single optical device to implement the complete 
range of FRIO from MED to UD and include any intermediate case. Indeed, the implementation of every strat-
egy depends on the Sagnac interferometer configuration relying on the angles of the half-wave plates HWP1(θ1 ), 
HWP2(θ2 ) and HWP3(θ3 ), as was shown in Eqs. (4), (5), and (7). To show the utility of the setup, we consider 
two cases regarding different states preparation probabilities, in which Alice can prepare the states among the 
cases η1 = η2 = 0.5 and η1 = 0.3, η2 = 0.7 to experimentally validate Bob’s discrimination device. Since in the 
FRIO scheme these probabilities also bias the discriminated (detected) states [see Eq. (1)], Alice sets these prob-
abilities experimentally by changing the integration time of the coincidence detection rate in terms of the settled 
values of η by the source. Moreover, as we mentioned before, we considered three different rates of inconclusive 
outcomes, namely Q ∈ {0,Q0/2,Qmax} , where the specific values depend on the inner product s and parameters 
ηi . We recall that these three values of Q correspond to MED ( Q = 0 ), UD ( Q = Qmax ), and an intermediate case 
( Q = Q0/2 ) in FRIO state discrimination.

In a preliminary step, with waveplates HWPi(θi) set to θi = 0 , we evaluated the polarization interference 
visibility ǫ at the output of the interferometer by measuring in both Pauli bases σz and σx , corresponding to the 
logical and diagonal polarization bases, respectively. We obtain the mean visibility ǫ = 0.981± 0.006 , which is 

(4)

pi =
1

2
(cos 2θ cos θ2 + sin 2θ)2,

ri =
1

2
(cos 2θ cos θ2 − sin 2θ)2,

qi = (sin θ2 cos 2θ)
2,

(5)

p1, r2 = (cos 2θ(sin θ3 cos θ2 cos θ1 − cos θ3 sin θ1)± sin 2θ(sin θ3 cos θ2 sin θ1 + cos θ3 cos θ1))
2,

p2, r1 = (cos 2θ(cos θ3 cos θ2 cos θ1 + sin θ3 sin θ1)± sin 2θ(sin θ3 cos θ1 − cos θ3 cos θ2 sin θ1))
2,

q1,2 = sin θ2(cos 2θ cos θ1 ± sin 2θ sin θ1)
2,

(6)
U |φ1�|1� =

√
q1|V�|1� +

√
r1|H�|1�,

U |φ2�|1� =
√
q2|V�|1� +

√
p2|H�|1�,

(7)
p2, r1 = (cos 2θ cos θ3 ± sin 2θ sin θ3)

2,

q1, q2 = (cos 2θ sin θ3 ± sin 2θ cos θ3)
2.
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typical in polarization-based experiments, where imperfections arise from experimental errors due to laser pump 
fluctuations in the SPDC process, imperfect spatial mode overlap, and misalignment in the waveplate settings. 
To take these into account in our comparison between experiment and theory, a white noise model is assumed, 
considering then the following state received by Bob

where i ∈ {1, 2} , 1 is the identity matrix.
FRIO quantum state discrimination was implemented for state overlap s ranging from orthogonal ( s = 0 ) 

to perfect overlap ( s = 1 ). As shown in Eq. (2), the inner product s is set experimentally through the angle of 
HWP(θ ), since s = cos 4θ . For instance, for s = 0 we set θ = π/8 to generate |φ1� , and θ = −π/8 to generate |φ2� . 
For s = 1 we set θ = 0 for both |φ1� and |φ2� . The experimental results are shown in Fig. 2 (for the η1 = η2 = 0.5 
case), and Fig. 3 (for the η1 = 0.3 , η2 = 0.7 case). Alice used a data integration time of 10 s for both non-orthog-
onal states in Fig. 2, while for data in Fig. 3 times of 6 s and 14 s were used for |φ1� and |φ2� , respectively. In both 
figures we plot the experimental average success Ps , error Pe , and inconclusive probability Q obtained from the 
recorded success pi , error ri , and inconclusive outcome probability qi related to the state |φi� , as shown in Eq. 
(1). These probabilities are presented as a function of seven different values for the inner product s ∈ 0, . . . , 1 . In 
Figs. 2 and 3, the first (second) column of plots corresponds to the results obtained when Alice sends the state|φ1� 
( |φ2� ). The right-most column shows the average success, error, and inconclusive probabilities, defined as the 
sum of these probabilities considering η1 and η2 [see Eq. (1)]. Additionally, the expected (theoretical) values of 
the probabilities are defined in Eq. (1) using slightly mixed states (8) and are depicted by solid lines in every plot.

The error bars are smaller than the experimental points and were obtained with Gaussian error propagation 
and considering the Poisson statistic of the recorded coincidence counts. We can observe a good agreement 
between the expected and recorded results for every case regarding different inner product s. Additionally, for 
the case when η1 < η2 showed in Fig. 3, we plot the solid lines with three colors to indicate the three intervals in 
FRIO. Precisely, the blue color corresponds to interval I, while the green and red colors correspond to intervals II 

(8)ρi = ǫ|φi��φi| +
(1− ǫ)

2
1,

Figure 2.   The success Ps , error Pe and inconclusive Q average probabilities as a function of the inner product 
s, when η1 = η2 = 0.5 for both states |φi� are plotted in the third column. The first (second) column shows the 
success p1(2) , error r1(2) and inconclusive q1(2) rates when Alice prepares the state |φ1� ( |φ2� ) and Bob performs 
FRIO. The solid and dashed lines in each subplot represent the different values for the mentioned probabilities 
considering three different values for Q. They were computed using Eq. (8). As was aforementioned, for equally 
prepared states, we have only access to interval I, which is represented by the blue color in all subplots. Thus, 
since η1 = η2 , each state’s success, error, and inconclusive rates behavior is the same while the inner product s 
varies.
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and III, respectively. Although the optimal measurement depends on the interval where the FRIO discrimination 
is performed, we obtain results close to the expected ones regarding the three intervals. This fact is a signature of 
the robustness of our platform against different experimental settings, which allow a wide range of discrimination 
processes contained in the FRIO scheme.

Conclusion.  We present a single experimental device capable of discriminating between non-orthogonal 
polarization states of single photons in the fixed rate of inconclusive outcomes state discrimination scheme, 
for which the well-known Minimum Error and Unambiguous state discrimination methods are limiting cases. 
The device is based on a polarization-controlled Sagnac interferometer with nested waveplates and allows for 
FRIO state discrimination to be implemented for a wide range of parameters, which are defined by the overlap 
and input statistics of the input states tested. In our setup, Alice controls a photon pair source and encodes non-
orthogonal polarization states into a heralded single photon. She sends the photon to Bob, who uses the inter-
ferometer to implement a POVM measurement with up to three outcomes. We show that this single device can 
implement a wide range of state discrimination procedures. Good agreement between theory and experimental 
results is obtained considering the two-path Sagnac interferometer visibility, which is about 98% . The versatility 
of the single device makes it directly applicable for quantum information tasks such as quantum communica-
tions.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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Figure 3.   The success Ps ( pi ), error Pe ( ri ) and inconclusive Q ( qi ) probabilities as a function of the inner 
product s for preparation probabilities given by η1 = 0.3 and η2 = 0.7 . Like Fig. 2, each line in the subplots 
represents the corresponding probabilities for the state in Eq. (8). Note that the curves in the first and 
second columns differ due to the preparation probabilities satisfying η1 ≤ η2 . Therefore, the protocol tries to 
discriminate |φ2� better than |φ1� . However, for optimizing the average success probability Ps , the |φ1� must also 
be considered. Additionally, the three optimization intervals appear for this case, and they are represented by the 
blue, green, and red colors.
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