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Abstract: Although Autism Spectrum Disorders (ASD) is recognized as being heavily influenced
by genetic factors, the role of epigenetic and environmental factors is still being established. This
study aimed to identify ASD vulnerability components based on familial history and intrauterine
environmental stress exposure, explore possible vulnerability subgroups, access DNA methylation
age acceleration (AA) as a proxy of stress exposure during life, and evaluate the association of ASD
vulnerability components and AA to phenotypic severity measures. Principal Component Analysis
(PCA) was used to search the vulnerability components from 67 mothers of autistic children. We
found that PC1 had a higher correlation with psychosocial stress (maternal stress, maternal education,
and social class), and PC2 had a higher correlation with biological factors (psychiatric family history
and gestational complications). Comparing the methylome between above and below PC1 average
subgroups we found 11,879 statistically significant differentially methylated probes (DMPs, p < 0.05).
DMPs CpG sites were enriched in variably methylated regions (VMRs), most showing environmental
and genetic influences. Hypermethylated probes presented higher rates in different regulatory
regions associated with functional SNPs, indicating that the subgroups may have different affected
regulatory regions and their liability to disease explained by common variations. Vulnerability
components score moderated by epigenetic clock AA was associated with Vineland Total score
(p = 0.0036, adjR2 = 0.31), suggesting risk factors with stress burden can influence ASD phenotype.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized
by alterations in social communication and the presence of stereotyped and restrictive
behaviors. It is a polygenic multifactorial disorder with a complex genetic architecture and
a heterogeneous clinical presentation [1,2].

The genetic component seems to have a major role in ASD vulnerability. The genetic
risk derives mostly from common genetic variants with a smaller contribution from de
novo and rare inherited variation (2.6% of the variance in liability) [3]. In some ASD cases,
a polygenic variation additively with strong acting de novo variants could increase the
risk [4]. The polygenic model assumes that many inherited variants contribute to ASD, each
with a small effect. This model is supported by many aspects, such as more than ten times
increased risk for autism in siblings of probands, and observation of sub-threshold autistic-
like traits in ASD first-degree relatives [5]. A polygenic liability to psychiatric disorders
has been discussed by studies showing genetic correlation among psychiatric disorders,
suggesting that they share common genetic factors [6,7]. Accordingly, not only ASD but
also other psychiatric disorders are more common among relatives of ASD cases [8,9].

The heritability of ASD is estimated to be around 50%, although varying between dif-
ferent studies [3,10], which shows that environmental factors are also important. Different
studies have shown an association between intrauterine stress exposure and a greater risk
for ASD [11–13]. Many environmental factors associated with ASD can change epigenetic
status, such as DNA methylation, and affect regulatory mechanisms in brain develop-
ment [11–17]. Genetic liability in combination with environmental factors crosses a risk
threshold triggering the disorder development [11,18]. Recent studies showed that vari-
ability in methylation levels in some genomic locations could be better explained by a
combination of genetic (G) and environmental (E) factors [19–25]. These regions, named
variably methylated regions (VMR), are located close to other functional genomic variations
and enriched with CpGs sites that could influence gene expression. These VMRs did not
change with age and are over-represented in Genome-Wide Association Studies (GWAS) of
both psychiatric and other complex diseases, possibly representing biological markers [19].

Besides the heterogeneous etiopathology, the ASD clinical presentation is also highly
heterogeneous and its dimensional diagnosis represents the idea that its features fall
along a continuum of severity [26–28]. It has been shown that besides core symptoms,
intellectual function, language abilities, and functionality contribute to this heterogeneity
and severity of clinical presentation [29]. Functionality measured by the Vineland scores
seems to have greater variability than ASD symptoms and has an important impact on
ASD trajectories [30]. To better understand the phenotypic heterogeneity and the severity
spectrum, different studies searched for ASD subgroups based on phenotype or genetic
variations, but none considered environmental influences [2,18,27,28,31–33].

We hypothesize that a model including environmental exposure factors in addition to
genetic ones could better explain the severity spectrum. The prenatal period is probably
the stage in which ASD environmental risk factors interacting with genetic play their major
role, however epigenetic programming, altered by environmental factors during infancy,
has an important impact on neurodevelopmental trajectories [34] and could contribute to
the severity spectrum separated from gestational exposure.

Differences between epigenetic and chronological age (age acceleration, AA) have
been associated with stress exposure [35,36]. This mechanism, known as ‘Epigenetic age’,
has the potential to assess an individual’s biological age based on DNAm levels. This
measurement can show the cumulative effect of environmental factors on the epigenetic
maintenance system, being used as a proxy of postnatal stress exposures [37]. So, we used
AA as a proxy of postanal environmental exposure. To study gestational environmental
exposure, considering that ASD vulnerability probably arises due to a genetic and gesta-
tional exposure interaction model [11–13] we used a Principal Component Analysis (PCA)
to capture the most important factors of vulnerability. We searched principal components
based on familial psychiatric history, pregnancy complications, psychosocial (maternal
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schooling, social class, stress), and toxic environmental exposures (tobacco, alcohol, drugs)
during gestation. The genetic component was assessed based on family history considering
its association with polygenic risk scores [38] and the greater contribution of common
variation in ASD risk [3]. As the objective of PC analysis was to find components of vul-
nerability represented by genetic and gestational exposure to better explore individuals
with a distinct gradient of vulnerability we search if they have differences in methylation
patterns enriched by VMRs associated with genetic and environmental factors that did
not change according to age. As it would be expected to find de novo and very rare
variants (MAF < 0.005) with higher effects for ASD with low IQ [4,39,40], we performed
a whole-exome analysis in a subsample to check if any individuals assigned to different
gradients of vulnerability according to our PC analysis was not a consequence of bearing
more rare genetic variations with higher functional impact.

Our results showed two components of ASD vulnerability: one is more associated
with psychosocial stress exposure and the other with a biological vulnerability. A gradient
of psychosocial stress exposure was detected and split into two groups, above and below
average. A biological difference along this gradient was supported by a different pattern of
VMRs between formed subgroups. The principal components and age acceleration were
associated with Vineland scores measured at 7 years of age. The current study suggests
that environmental factors can contribute to ASD phenotypic severity spectrum.

2. Materials and Methods
2.1. Participants

The sample of the present study was obtained from a Brazilian population that lives
in São Paulo city and contained 68 ASD children with blood samples available from a
previously published randomized clinical trial of a video modeling parenting training [41].
One patient that did not complete the Risk Scores questionnaire used to calculate the Risk
Scores was excluded from the PCA analysis. The inclusion criteria were: patients with
ASD diagnosed using ADI-R, ages between 3 and 7 years old, and IQ between 50 and 75.
Exclusion criteria were the presence of known genetic syndrome evaluated by a clinical
geneticist and individuals without the Risk Scores evaluation.

Patients were diagnosed using Autism Diagnostic Interview-Revised (ADI-R) [42],
a 93-item structured interview that is conducted with parents to measure the following:
reciprocal social interactions, communication, language, and behavior patterns [43]. The
revised version has been abridged and modified to suit children with a mental age of
approximately 18 months to adulthood and is linked to the DSM-IV and ICD-10 criteria.
The interview lasts approximately 1.5 h for children up to 4 years old and becomes a little
longer for older children. The score is based on the interviewer’s judgment regarding
the codes that best represent the behaviors described by the respondent, where the cutoff
points for the diagnosis are 10 points for the total, 10 points for item B (Social Interaction), 7
or 8 points for item C (Communication, 8 for verbal patients and 7 for non-verbal patients)
and 3 points for item D (restricted and repetitive behavior patterns).

IQ assessed by the Snijders–Oomen Nonverbal Intelligent Test—Revised (SON-R
2 1

2 –7) [44] used in children of 2 years and a half to 7 years. It evaluates the cognitive skills
without using verbal or written language. ASD patients’ functionality was assessed with
Vineland Adaptative Behavior Scale [45], which measures adaptative behavior in domains
related to communication, social skills, and daily life activities.

ASD severity was accessed with the Childhood Autism Rating Scale (CARS) [46,47],
an instrument used to assess the severity of autism symptoms. The scale assesses the
patient’s behavior through an informant (parents or guardians) in 15 domains that include:
personal relationships, imitation, emotional response, body use, use of objects, response to
changes, visual response, auditory response, response, and use of taste, smell and touch,
fear or nervousness, verbal communication, non-verbal communication, activity level,
level and consistency of intellectual response and general impressions of the examiner.
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Scores between 30 and 36 indicate mild to moderate autism and scores above 36 indicate
severe autism.

The patients’ internalizing and externalizing symptoms with the Child Behavior
Checklist CBCL [48]. The CBCL is part of an assessment system developed by Achenbach
and Rescorla [49] that assesses children’s behavior by age group. There are two versions:
one for children aged 1 1⁄2 to 5 years and one for children and teenagers aged 6 to 18 years.
In both instruments, the informant should be the parents or caregivers. The first version is
composed of 99 sentences that must be evaluated by the respondent as not true—as far
as is known; a little true or sometimes true; or very true or often true, which corresponds
respectively to 0, 1, and 2 points on the scale. The version for children and adolescents
aged 6 to 18 years comprises 138 sentences, of which 118 refer to behavior problems and 20
to social competence. This scale consists of 20 items that include the child’s activities, such
as games, games, and tasks; participation in groups; relationship with family and friends;
independence to play and school performance. In most of these items, parents are asked
to compare their children’s behavior with that of other children of the same age, in terms
of performance and time spent on each activity, marking it as below average, within aver-
age, or above average. The instrument assesses emotional reactivity, anxiety/depression,
somatic complaints, attention problems, aggressive behavior, sleep problems, social prob-
lems, thinking problems, and rule violations. From the scores obtained on these scales,
the child or adolescent can be included in the clinical, borderline, or normal ranges, in
relation to their global functioning and internalizing and externalizing profiles. For inclu-
sion in the internalizing profile, the items are considered isolation, somatic complaints,
anxiety/depression, and for inclusion in the externalizing profile, the items evaluated are
violations of rules and aggressive behavior. Carvalho et al., [50] report that the CBCL is
indicated in the literature as one of the most effective instruments in quantifying parental
responses about their children’s behavior.

The final sample used contains n = 67 children and mother pairs: 55 males (82.1%),
ages between 3 and 7 years old (mean 4.7, SD 1.3). IQ between 49–75 (mean 59.0, SD 8.8),
CARS between 24–52 (mean 36.86, SD 6.39), CBCL Internalizing Symptoms between 3–21
(mean 10.56, SD 4.55), CBCL Externalizing Symptoms 3–34 (mean 13.26, SD 6.85) and

ADI-R scores between 25–60 (mean 47.0, SD 7.0). The clinical genetic examination was
evaluated by a team of geneticists and no genetic syndromes were described.

Blood and data were collected at baseline for 66 children for methylation analysis
and an arbitrary subsample of 33 children, mother and father trios for exome analysis.
The present study was approved by the Hospital das Clinicas (University of São Paulo
Medical School) Ethical Committee (CAAE: 57067016.2.0000.0068, assessment #1.637.312).
All experiments were performed following the ethical principles for medical research
involving human subjects (Declaration of Helsinki), Informed consent was signed by the
legal guardians of all patients.

2.2. Risk Factor Variables

The risk factor was scored according to (a) Family social class [51,52] measured
by Criterio Brasil [53], (b) Maternal schooling [52], (c) Maternal stress during gestation
(familial fights, illness, or death in the family, verbal or physical aggression, and emo-
tional or depression symptoms during pregnancy) [14,54], (d) Toxic environmental expo-
sures (Tobacco, alcohol and drug, exposure to pesticides, and use of known deleterious
medications during pregnancy), (e) Familial psychiatric history (ASD, schizophrenia, de-
pression, bipolar disorder, alcohol and/or drug abuse, obsessive-compulsive disorder,
anxiety, attention deficit, and hyperactivity disorder) [18] and (f) Gestational complications:
Eclampsia/preeclampsia, gestational diabetes and excess of weight gain during gestation
(Appendix A and Table S1).
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2.3. Statistical Analysis

The statistical language R (v3.5.2) on RStudio was used for all statistical analyses.
For descriptive analyses, mean scores, standard deviations (SD), and frequencies were
calculated. To achieve comparability among variables, scores were transformed into
standardized z-scores. A principal component analysis (PCA) was performed with the
risk factors variables using the “prcomp” function with default parameters, except for the
scale set to TRUE. Exposure factors represented in at least 30% of the respondent sample
were included in PCA analysis. Only components with an eigenvalue greater than one
were retained. To select variables with important contributions to PCs compositions we
considered correlations >0.70 between variables and components.

2.4. Methylation Analysis

For the methylation analysis, DNA from whole blood samples was treated using
the EZ DNA Methylation kit (Zymo Research, Irvine, CA, USA). The bisulfite-converted
DNA was hybridized in the BeadChip Human Methylation 450 microarrays (Illumina
Inc., San Diego, CA, USA) following the manufacturer’s protocol. Raw data was extracted
by iScan SQ scanner using the GenomeStudio software (v.2011.1), with the methylation
module v.1.9.0 IDAT files. Raw data is available at the GEO database (GSE164563).

Data analysis was performed using the minfi package [55] and other Bioconductor
packages [56] (http://www.bioconductor.org, accessed on 15 September 2017). Quantile
normalization [57] performed signal intensity normalization of Infinium I and II probes and
‘noob’ method (Normal-exponential convolution using out-of-band probes) background
correction [58]. Batch effects were corrected using the ComBat [59] from the ChAMP pack-
age (v. 2.8.3) [60]. Cell composition was estimated based on the Houseman method [61], and
no difference was found between the groups. Quality control steps removed 2784 probes
(detection p-value > 0.01), 11,214 probes in sex chromosomes, 16,474 probes in SNPs and
26,480 located in cross-reactive sites [62], resulting in 428,560 for the differential analysis.

Identification of differentially methylated probes (DMPs) was performed with M-
values (logit of β-values) employing an empirical Bayesian framework linear model from
the limma package [63,64], sex factor was used as an adjusted variable Only DMPs with
adjusted p-value < 0.05, corrected for multiple comparison effects by the Benjamini and
Hochberg method, were considered further. Functional Epigenetic Modules (FEM) package
(v.3.10.0) was used to find the differential methylation interactive hotspots [65]. DNA
methylation age and age acceleration (AA) were calculated using Horvath’s epigenetic
clock [36].

2.5. Enrichment Analyses rVarbase and VMRs

A set of 1000 random groups was created based on CpG coordinates from the Illumina
Infinium Human Methylation 450K BeadChip platform. The specific number of probes
selected for each group was based on the number of CpGs analyzed for each cluster. Coor-
dinated comparison of CpGs/random groups and rVarBase [66] database were performed
to calculate overlapping elements in rVarBase using BEDTools [67] and estimate the p-value.
For VMRs enrichment analysis, the Multivariate State Estimation Technique (MSET) al-
gorithm [68] with 10,000 permutations was used. We used VMRs lists from 4 different
studies: Islam et al. [23], Teh et al. [20], Garg et al. [25], and Hachiya et al. [19] (Databases
are described in detail in Appendix B).

2.6. Whole-Exome Analysis

The whole-exome was performed using the SureSelectXT HumanAllExonV5+UTR
Reagent Kit (Agilent Technologies Inc, Santa Clara, CA, USA) and sequenced using HiSeq
2500 (Illumina Inc., San Diego, CA, USA). Fragments were aligned to hg19 reference
genome using Burrows-Wheeler Alignment (BWA) (v.0.6.1-r104) [69], samtools (v.1.6) [70],
and variant calling was performed with GATK (Genome Analysis Toolkit, v. 2.8) [71].

http://www.bioconductor.org
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PLINK (v. 1.9) [72] and BEDTools (v.2.25.0) [67] were used to confirm the family
relationship between samples. Only reads with Phred ≥ 30 and bases with at least 20×
reads in all members of the family were considered. Variant annotation was performed
with ANNOVAR (22 June 2016) [73].

Rare (MAF ≤ 0.01) and novel variants were selected according to the databases:
1000 Genomes Project [74] (http://www.1000genomes.org/, accessed on 2 February

2017), NHLBI GO ESP 6500 exomes (http://evs.gs.washington.edu/EVS/, accessed on
2 February 2017) and ExAC project (http://exac.broadinstitute.org/, accessed on 2 Febru-
ary 2017) [75]. Only nonsynonymous de novo (homozygous loci for the reference allele
in the parents) and rare variants were selected (missense, nonsense, splice-site SNVs and
frameshift indels). The genes affected by the selected variants were compared to a gene list
with the 25% genes most intolerant to mutation according to the RVIS scoring method [76].
Exome data is available at PRJNA525890.

2.7. Regression Models

All linear regression analyses were done using the normal distribution of errors in
the R core base package. Dependent variables used were represented by phenotype scores
measured at the baseline of the clinical trial study and the independent variables were sex,
age, and vulnerability scores.

3. Results
3.1. Participants Characteristics

The presented psychosocial, genetic, and epigenetic data was obtained for the current
study from a clinical sample participating in a recently published randomized clinical
trial [41]. There are n = 67 mother and child pairs being considered here, engaged before
the trial’s randomization phase.

The range for maternal schooling was 16% with incomplete primary education to
incomplete high school, 52% with complete high school, and 32% with higher education.
Most of the families were from B, C, and D social classes, with only one family from social
class A (higher); 56% from class B; 29% class C, 15% class D (lower) [77]. During gestation,
37 women (54%) did not report any kind of stress; however, 27 (39%) had 1 to 3 stressful
events. Medical complications (gestational diabetes, preeclampsia, and more than 12 kg
gain during gestation) were present in 38 women (55%), however, most of them had only
one type (28 women, 41% of the total). The toxic environmental exposure was reported
in 12 women (18%), six women reported alcohol exposure, 5 women reported smoking
during gestation, and 1 reported drug use, therefore we did not consider those variables
to search principal components. A family history of psychiatric disorders was present
in 43 families (62%). There were 7 families (10%) that reported other cases of ASD in
the family. Depression and Schizophrenia were the most prevalent disorders among the
families. The first was reported in 32 relatives (from 24 families), and the second in 12
(from 11 families). The paternal age at birth was assessed and 41 families (62%) presented
this information with an average value of 33.42 (SD ± 7.73).

3.2. Finding Components of Vulnerability

Considering as important exposure factors the ones represented in more than 30% of
the respondent mothers’ sample, we performed a PCA analysis. Two principal components
(PCs) had eigenvalues >1, explaining up to 60% of the variance (Table 1).

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
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Table 1. Principal Component Analysis of environmental factors.

Variables PC 1 PC 2 PC 3 PC 4 PC 5

Variance (%) 35.1 25.3 18.2 12.5 8.9
Cumulative Variance (%) 35.1 60.4 78.6 91.1 100

Eigenvalue 1.76 1.26 0.91 0.62 0.44

Gestational Complications −0.1 0.78 −0.52 0.25 −0.23
Maternal Stress 0.7 −0.07 −0.59 −0.16 0.36

Maternal Schooling 0.74 −0.1 0.24 0.62 0.02
Social Class 0.82 0.08 0.12 −0.36 −0.41

Psychiatric Family History −0.17 −0.8 −0.47 0.15 −0.3

PC1 has a higher correlation with Maternal Stress, Maternal Education, and Social
Class, while PC2 has a higher correlation with Psychiatric Family History and Gestational
Complications (bold in Table 1). In this analysis, we can also see that PC3 appears with
an eigenvalue of almost 1 and it adds 18% to the first two for a cumulative variance of
78%, however, none of the variables were correlated equal or greater than 0.7 with PC3.
Figure 1a shows PC1 and PC2 projection in a biplot. The first PC was interpreted as a
Psychosocial stress Vulnerability component (PV), while the second PC was interpreted
as a Biological Vulnerability component (BV).
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Figure 1. PCA identification of Psychosocial stress Vulnerability (PV) and Biological Vulnerability (BV) components.
(a) PCA Biplot, corresponding percentage variances, and average PC1 and PC2 values (dashed lines). Original vari-
ables contributions are estimated by their eigenvectors (arrows): 1-Maternal Stress; 2-Maternal Schooling; 3-Social Class;
4-Gestational Complications; 5-Psychiatric Family History. Group A and B are represented by an asterisk and dot, respec-
tively (b) Definition of above (A, red) and below (B, blue) PV average groups. Vertical lines mark A and B separation and
a buffer zone in between. An arbitrary subsample had their exome examined (magenta in both panels). Whole-exome
sequenced samples are represented in magenta.

We defined two groups: above (A, n = 29) and below (B, n = 38) average PC1 values
(red and blue groups in Figure 1b, respectively). Aiming robustness, instead of a hard
split between the groups around the average value, a buffer zone was defined, and their
grouping was purposely mixed alternately (subjects between vertical lines in Figure 1b).
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Statistical analysis did not show any significant differences between A and B groups
regarding the clinical variables (Table S2). Evidently, the groups presented differences
related to exposure to psychological and social stressors, the main contributors to PC1
(Maternal Stress, p-value = 3.1 × 10−4; Maternal Schooling, p-value = 2.1 × 10−7, and
Social Class, p-value = 9.8 × 10−5). Although there was no difference regarding gestational
complications, the group with higher psychosocial stress scores presented lower family
history scores (p-value = 0.0340).

3.3. Methylation Analysis

Methylation analysis was performed with two different aims, the first was to search
biological differences between individuals assign to different gradients of vulnerability
according to our PC analysis, and the second was to assess AA as a proxy of postnatal
stress exposure. To investigate if the differences observed in PV were also reflected in
the children methylomes, we searched for DMPs between above (group A) and below
(Group B) average PV values on PC1 (Figure 1b). After the probe exclusion described in the
Methods section, 428,560 CpGs sites remained for further analysis. A total of 11,879 DMPs
(corrected p-value < 0.05) were identified when comparing A and B groups. To verify if
these DMPs could be altered in the brain, we searched on the BECon datasets [78], which
presents a correspondence analysis between blood and 3 brain regions (BA7, BA10, and
BA20). A total of 11,384 (96%) and identified CpGs with at least a correlation |r| ≥ 0.5
(BA7 = 384 CpGs, B10 = 416 CpGs and B20 = 362 CpGs), with a low CpGs overlap among
brain regions (Figure S1), resulting in 964 (~8%) CpGs with correspondence between blood
and brain.

Differences in children’s methylomes suggest the presence of CpG regions that vary
according to differences measured in mother-based PV. To support these findings, we
compared our results with public datasets, one regarding VMRs, which represent methy-
lated regions that vary according to genetic and environmental factors. Comparison of
DMPs with all VMR datasets currently openly available showed that our set is enriched
for VMRs, and the majority was best explained by environmental and genetic influences
(Table 2). Using the DMPs present in the VMRs database, we performed an unsupervised
hierarchical clustering analysis which yielded a clear two groups pattern that recovered
the original A and B partition (Figure 2).

Table 2. Comparison of 11,879 DMPs with VMRs databases.

Database Total Overlap p-Value FE

Islam et al., 2019
[23]

Different tissues 139,662 4549 <1 × 10−4 1.23
Informative 8140 295 <1 × 10−4 1.59

meQTL 4980 143 0.16 1.09

Hachiya et al.,
2017 [19] VMRs EWAS 269 17 <1 × 10−4 2.31

Garg et al., 2018
[25]

B-Cells 4367 214 <1 × 10−4 1.85
Environmental 804 27 0.12 1.28

Fibroblasts 4788 149 0.05 1.15
Glia Cells 6990 221 2.1 × 10−3 1.21
Neurons 7075 230 1 × 10−4 1.27
T-Cells 8940 396 <1 × 10−4 1.72
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Figure 2. Heatmap of VMR-enriched DMPs. Each line represents the z-score normalized M-value of a CpG site (higher and
lower methylation color-coded as blue and red, respectively). Clusters found in methylomics unsupervised analysis (upper
bar, Group A in dark red an Group B in dark blue) coincide with above and below average groups of PC1.

Analyzing our DMPs with rVarbase [66], which contains regulatory regions harboring
annotated SNPs, there was an overlap of 2285 CpGs, although without enrichment when
compared to random groups (p = 1). Using these 2285 overlapping CpGs, we observed that
in group B (1326 CpGs), hypermethylated CpGs were more localized in active promoters
and gene enhancers, whereas in group A (959 CpGs) they were more localized in bivalent
promoters and enhancers (X2-test, p-value < 0.05, Table S3).

To investigate the pathways associated with DMPs, we performed the Functional
Modules Analysis using the FEM package, which uses the properties of protein-protein
interactions to build modules, then it performs gene set enrichment analysis for pathways
within the modules. This resulted in 3 modules of functionally related genes (Table S4
and Figure 3), with two of these modules being enriched for genes from immune system
pathways functions and stress response (Table S5).
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To investigate the postnatal stress burden, we used the epigenetic age, following 
Horvath’s method [36]. As we are using it as a proxy of postnatal stress exposure, we 
expected that individuals assign to different gradients of vulnerability according to our 
PC analysis will not have AA differences. We calculated the methylation age and observed 
that both groups presented higher epigenetic age than chronological age, without a statis-
tically significant difference between the groups (p = 0.087) (Figure 4a–c). The same was 
observed for Age Acceleration (p = 0.342) (Figure 4d). Although not statistically signifi-
cant, when comparing the values of PC1, which resumes the psychosocial stress variables, 
we found that it was (weakly) positively correlated to epigenetic age acceleration (cor = 
0.19, p = 0.13, Figure 4f). 

Figure 3. The functional epigenetic module of seed gene. (a) Module (BCL2A1), (b) Module (UNC19),
and (c) ROBO3. Each dot is a gene and edges are the interaction in the PPI network, colors represent
hypermethylation (blue) and hypomethylation (yellow) CpG sites in group B compared to group
A samples. Gray dots are genes that showed no statistical significance in the comparison between
groups or not represented in the initial analysis.

To investigate the postnatal stress burden, we used the epigenetic age, following
Horvath’s method [36]. As we are using it as a proxy of postnatal stress exposure, we
expected that individuals assign to different gradients of vulnerability according to our PC
analysis will not have AA differences. We calculated the methylation age and observed that
both groups presented higher epigenetic age than chronological age, without a statistically
significant difference between the groups (p = 0.087) (Figure 4a–c). The same was observed
for Age Acceleration (p = 0.342) (Figure 4d). Although not statistically significant, when
comparing the values of PC1, which resumes the psychosocial stress variables, we found
that it was (weakly) positively correlated to epigenetic age acceleration (cor = 0.19, p = 0.13,
Figure 4f).
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3.4. Whole-Exome Analysis

To investigate if individuals assign to different gradients of vulnerability according to
our PC analysis are not a consequence of the presence of rare variants of higher impact,
we performed a whole-exome analysis on a subset of children and their both parents
(8 from A and 25 from B) that were already available in our laboratory. Of the 6625 selected
deleterious variants (of which 1966 are on the 25% most intolerant RVIS list), 5512 are in
patients in group B (RVIS: 1547, de novo: 18) and 2,578 in patients in group A (RVIS: 736,
de novo: 8). X2-test found no difference between groups (p-value > 0.05).

3.5. Regression Analyses

Using phenotypes as dependent variables, we built linear regression models using
sex, age acceleration, the two PV groups, and PC scores, to understand their predictive
power regarding clinical severity and functionality since they have been associated with
clinical severity and prognostic [19,28,79]. Clinical severity and functionality were esti-
mated by Child Autism Ratio Scale (CARS) and Vineland scores, respectively. We also
built models introducing the father’s age as covariable to represent a different source
of the genetic contribution [80]. However, no significant model was associated with the
phenotypes investigated.

First, we used the moderation analysis using the interaction between groups, and age
acceleration. No significant model was observed using these parameters in the moderation
analysis. However, using the variables without the moderation effect, the model was
built to predict CARS based on age acceleration, groups, and sex, resulting in a significant
regression equation (F(3, 62) = 2.889, p-value = 0.043), with an R2 = 0.12. In this model,
only grouping was a significant predictor (Table 3). A small variation of severity can be
explained by this model: being in group A decreased the CARS score to 3.79 on average.
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Table 3. Multiple regression models parameters.

Coeff. Estimation Sd. Error t-Value Pr (>|t|)

Intercept 35.2 2.1 16.92 <2 × 10−16 ***
AA 0.33 0.55 0.6 0.55

Group (0 = B, 1 = A) −3.8 1.6 −2.38 0.02 *
Sex (0 = female, 1 = male) 3 2 1.48 0.14

* p-value ≤ 0.05, *** p-value ≤ 1 × 10−3.

Considering a dimensional approach, we performed moderation analysis with the PC
scores instead of groups. Using the vulnerability scores, we built two models, one with only
PC1 and PC2 and the other using the 3 PCs (PC1, PC2, and PC3) to have more than 70% of
variability explained. The moderation analysis using the first model, sex, PC1, PC2, and age
acceleration, resulted in a significant regression equation (F(8, 54) = 2.149, p-value = 0.047),
with an adjusted R2 = 0.13 only considering the Vineland score as the outcome. The signifi-
cant variables were AA:PC1 and AA:PC2 (Table 4). In the second model, applying the 3 first
PCs, Vineland Total Score was significantly predicted (F(16, 46) = 2.761, p-value = 0.0036
and adjusted R2 = 0.31) mostly by PC3, Sex, AA:PC2, AA:PC3 and AA:PC1:PC3 variables
(Table 4). In regards to this model using 3 PCs, moderation analysis using CARS as a
dependent variable did not produce a significant model (F(16, 49) = 1.74, p-value = 0.071
and adjusted R2 = 0.15).

Table 4. Summary of moderation analysis.

Model: Vineland~AA * PC1 * PC2 + Sex

Coeff. Estimation Sd. Error t-Value Pr (>|t|)

Intercept 44.4 2.6 16.75 <2 × 10−16 ***
AA 1.25 0.84 1.49 0.14
PC1 2.2 1.2 1.82 0.07
PC2 0.7 1.7 0.43 0.67

Sex (0 = female, 1 = male) 4 2.7 1.50 0.14
AA:PC1 −1.04 0.43 −2.43 1.87 × 10−2 *
AA:PC2 −1.63 0.79 −2.05 4.49 × 10−2 *
PC1:PC2 −0.7 1.4 −0.52 0.6

AA:PC1:PC2 0.85 0.84 1.00 0.32

Model: Vineland~AA * PC1 * PC2 * PC3 + Sex

Intercept 42.15 2.51 16.80 <2 × 10−16 ***
AA 0.69 0.84 0.82 0.42
PC1 1.11 1.11 1.00 0.32
PC2 2.32 1.73 1.34 0.19
PC3 −9.12 2.89 −3.16 2.82 × 10−3 **

Sex (0 = female, 1 = male) 7.71 2.70 2.85 6.46 × 10−3 **
AA:PC1 −0.47 0.43 −1.10 0.28
AA:PC2 −2.62 0.84 −3.11 3.19 × 10−3 **
PC1:PC2 −0.96 1.42 −0.68 0.50
AA:PC3 5.13 1.43 3.58 8.26 × 10−4 ***
PC1:PC3 3.39 1.95 1.74 0.09
PC2:PC3 −2.80 2.34 −1.20 0.24

AA:PC1:PC2 1.05 0.81 1.29 0.20
AA:PC1:PC3 −2.93 1.00 −2.93 5.25 × 10−3 **
AA:PC2:PC3 1.41 0.95 1.49 0.14
PC1:PC2:PC3 −0.97 2.16 −0.45 0.65

* p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 1 × 10−3.

4. Discussion

In the present work, we showed how adverse environmental exposure during gesta-
tion and genetics could contribute to ASD vulnerability and including a biological measure



Genes 2021, 12, 1433 14 of 21

as a proxy of adverse environmental exposure after birth we also presented their contribu-
tion to ASD clinical severity.

We searched among a clinically homogeneous group of ASD patients, principal compo-
nents of ASD vulnerability, considering psychiatric family history representing a polygenic
contribution and different gestation environmental exposure as entered features. Two final
components explained 60% of the variability: one psychosocial (named PV, correlated
with psychological stress factors and socioeconomic problems exposition) and the other
biological (named BV, correlated with gestation problems and psychiatric family history).
We arbitrarily divided the samples into two groups (A and B, above and below PV average
respectively), but we cannot see a clear separation between groups, and the formed sub-
groups were mainly a consequence of the psychosocial exposure component reinforced by
statistically differences when comparing Maternal Stress, Maternal Schooling and Social
Class between groups. So, even individuals in group B having more familial history than
in group A, which implies a larger polygenic genetic background [38,81], the subgroups
were not represented by extremes of genetic background and environmental exposure as
previously suggested [82]. It is important to note that out of 7 individuals with positive
familial ASD history, 3 were in group B and 4 in group A, so we are not forming subgroups
of simplex and complex ASD as already described in the literature [83]. Moreover, in the
whole-exome analysis, we could not find differences in the burden of de novo and very rare
variants with the higher impact between groups.

Genetic and environmental exposures were entered features used to achieve a dimen-
sion reduction so we expected that VMRs (variable methylated regions), polymorphic
methylation sites that have been aggregated in genomic regions associated with Genetic,
Environmental and GxE effects and independent of age would be enriched in any methy-
lome comparison. Accordingly, differentially methylated positions between groups divided
by PC1 were enriched by genetic VMRs or those representing the GxE interaction, that
is, associated with SNPs (informative VMRs, and VMRs in EWAS studies) [20,23]. As
we are looking at differentially methylated positions, we cannot affirm that one group
has more G, E, or GxE VMRs than the other, but a different pattern provided by the CpG
cluster analysis reinforces biological differences between groups. Moreover, there was
an absence of DMP enrichment in rVarbase regulatory elements, but the presence of dif-
ferent elements in both groups suggests that these regions may be affected by common
genomic variations in important regulatory regions in different ways. Additionally, DNA
hypermethylation in bivalent domains was observed in group A with higher psychosocial
stress vulnerability, epigenetic changes in bivalent domains under stress or environmental
exposures were observed in cancer cells [84,85]. The differentially expressed DMPs were
enriched in databases related to 2 different tissue VMRs (saliva and blood), and in Cells
B, T, Fibroblasts, Glia, and Neuron VMRs, which means that these VMRs should not be
associated with tissue-specific programming [23,25]. The fact that VMRs are age invariable
and the enriched VMRs are not tissue-specific, is important to support their hole in the
vulnerability components, considering that our methylation array has been performed
when kids were 7 years of age. But it is important to note that enrichment in glial and
neuron VMRs together with correspondence analysis between blood and brain suggest
that the variation of these CpGs may also have a role in gene expression alterations in brain
tissue [25].

In addition to our DMPs being enriched in genomic regions related to genetic and
environmental effects, gene enrichment from immune system pathways functions and
stress response, already associated with environmental exposition and ASD, were found
when analyzing differently methylated gene promoters from epigenetic functional modules.
During pregnancy complications as metabolic disorders like insulin resistance, obesity,
and chronic hypertension are associated with systemic inflammation [86]. Obesity leads
to a persistent state of low-grade inflammation through the recruitment and secretion
of pro-inflammatory cytokines by hypertrophic adipocytes. Moreover, excessive body
fat and hyperglycemia are sources of oxidative stress [87]. Psychosocial exposure also
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is associated with inflammation and oxidative stress [34]. Since the epigenetic clock
was not calculated when individuals were born, it probably reflects stress accumulated
throughout the whole life and not only during gestation. According, the AA was associated
with PC1, but there is a lack of differences in the epigenetic clock between the groups.
Methylation analysis showed that the DMPs were enriched in VMRs influenced by genetic
or environmental factors that participate in pathways important to ASD, supporting our
vulnerability components and suggesting that individuals with similar symptoms may
have differences in their biological basis

To achieve our second goal, we used regression analysis considering CARS and
Vineland measured at seven years old as outcomes and formed groups, vulnerability
components, and AA as a proxy of adverse environmental factors after birth as predictors.
In a categorical view, groups were associated with CARS at seven years of age, whereas AA
and sex were not. In a dimensional view, PCs, AA, and sex showed interactions associated
with Vineland. Evidence for this is clearer when we apply the regression analyses using
vulnerability score as a numeric variable represented by PC1, PC2, and later PC3 loads.
Using only the first two PCs as independent variables, Vineland Total Score could be
associated with the vulnerability score moderated by AA, suggesting that vulnerability
scores calculated through risk factors could explain in part the variation in Vineland Total
Score. The property of vulnerability score as a continuum is more pronounced using the
model with the three PCs loads. This model resulted in an association with Vineland Total
Score with a larger adjusted R2, meaning that the variation of these variables can better
explain the variation of Vineland Total Score.

This article has a relatively small sample of only Brazilian young patients with severe
ASD and it may not reflect the total ASD population. A previous study showed that ASD
with and without ID share underlying mechanisms, although they have unique etiologic
components [88]. It is a transversal study done with data that relied on the quality of the
information provided by the patients’ relatives. Part of the individuals had to be excluded
due to missing information from the questionnaires. Another limitation is that the specific
timing of stress exposure was not measured. Even considering these limitations, we
showed how genetic and adverse gestation environmental factors could contribute to ASD
vulnerability. Showed differences in methylation sites associated with inherited common
genetic inheritance and environmental response to stress, as important pathways for ASD,
corroborating our findings. Finally, the regression analysis confirmed that components of
vulnerability including environmental influences after birth could contribute to explain
phenotypic heterogeneity.

5. Conclusions

This paper suggests that individuals with similar symptoms and diagnoses may
present differences in their pathophysiological basis and, the variability in phenotypes in
the autism spectrum could be explained considering the vulnerability components and
postnatal environmental exposure.
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Appendix A

Social and economic factors: Maternal schooling [52] score was 1 for complete college
education, 2 for incomplete college, 3 for complete high School, 4 for incomplete high
school, 5 complete basic school, 6 incomplete basic school, and 7 for no education. Family
social class [51,52] score was no points for mothers from A and B class, 1 point for from C
and 2 points from D.

Maternal stress SCORE: Stress during gestation [14,54], familial fights, illness, or death
in the family, verbal, or physical aggression, and emotional or depression symptoms during
pregnancy [89] were evaluated. The presence of each represented 1 point in the final score
that varied from 0 (no stress) to 6 (presence of all the above).

Toxic environmental exposures SCORE: Tobacco, alcohol and drug use, exposure to
pesticides, and use of known deleterious medications during pregnancy—e.g., diazepam,
valproic acid, fluoxetine, and sertraline [13,90,91]. The presence of each was worth 0 to
2 points, depending on frequency and quantity of exposure. The total sum represented a
score from 0 to 10.

Familial Genetic risk SCORE: All psychiatric disorders reported from the proband fam-
ilies were combined in a single score [8,9]. The pathologies listed were: ASD, schizophrenia,
depression, bipolar disorder, alcohol and/or drug abuse, obsessive-compulsive disorder,
anxiety, attention deficit, and hyperactivity disorder. We used the combination of all the
disorders to represent a polygenic risk of the psychiatric disorder [18]. Each score was
balanced according to the degree of familial proximity to the proband. First-degree relatives
had weight 3, second-degree 2, and third-degree 1. We also used reliability of information
to weigh the score: if the family member was hospitalized for the psychiatric disorder
(weight 3), if they used medications or did therapy because of the disorder (weight 2), and
if none of the above (weight 1). The final score varied from 0 to 18. For Example Subject 18,
(a) mother with depression with no use of medication and no treatment for the condition;
(b) uncle with schizophrenia, hospitalized for the condition. The score was 9, calculated as
follows: 3 (1st degree relative with depression) × 1 (low reliability) + 2 (2nd degree relative
with schizophrenia) × 3 (high reliability).

Gestational complications SCORE: Eclampsia/preeclampsia, gestational diabetes, and
excess weight gain during gestation (more than 12 kg) were used to form the
score [86,87,90,92,93]. The presence of each was worth 1 point in the final score that
varied from 0 to 3.
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Appendix B. VMRs Dataset Details

1. Islam et al. [23] with a systematic comparison of genome-wide DNAm patterns
(DNAm variability, cross-tissue DNAm concordance, and genetic determinants of
DNAm across two independent early life cohorts encompassing different ages) be-
tween matched pediatric buccal epithelial cells (BECs) and peripheral blood mononu-
clear cells (PBMCs). They overlapped CpGs that were identified as (a) informative
(i.e., variable across individuals and correlated between BECs and PBMCs) (8140),
(b) differentially methylated between matched tissues (139,662), or (c) under genetic
influence (4980; i.e., number of unique CpGs associated with validated cismQTL
across two cohorts;

2. Teh et al. [20], an examination of the relative influences of genotypic, environmental,
and gene x environment interactive effects on the neonatal methylome. They studied
the variation in genome-wide DNA methylation patterns in umbilical cord sam-
ples, genotyping, and measures of in utero environmental conditions and identified
1423 interindividual variably methylated regions (VMRs) across the 237 individuals.
Methylation levels at 25% of the 1423 VMR-CpGs were best explained by genotype
alone, while the rest were best explained by G × E models.

3. Garg et al. [25] performed a screen to identify regions of common epigenetic variation
using population data derived from five different human cell types. They searched
for clusters of probes with high inter-individual variability (VMRs) and explored the
potential underlying factors associated with the regulation of VMRs using different
strategies (VMRs influenced by genetic, environmental, and GxE effects), and

4. Hachiya et al. [19] catalog of EWAS VMRs.
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