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Adipose tissue is a metabolic organ that plays a central role in controlling systemic 
energy homeostasis. Compelling evidence indicates that immune system is closely 
linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In 
obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently 
leads to dysfunction of adipose tissue as well as whole body energy homeostasis. 
Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort 
to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between 
adipocytes and resident invariant natural killer T (iNKT) cells is a major component of 
defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids 
loaded on CD1d as antigens, whereas most other immune cells are activated by peptide 
antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid 
antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, 
we provide an overview of the molecular and cellular determinants of obesity-induced 
adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte 
interaction in maintaining adipose tissue homeostasis as well as the consequent modu-
lation in systemic energy metabolism. We also briefly discuss future research directions 
regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue 
inflammation.

Keywords: adipocytes, invariant natural killer T cells, obesity, inflammation, CD1d

inTRODUCTiOn

White adipose tissue (WAT) is a central controller of lipid and glucose homeostasis that communi-
cates locally and with distant tissues. The mass of WAT expands or reduces dynamically in response 
to nutritional states. WAT actively senses nutritional changes and accordingly stores extra energy 
in the form of triglycerides or supplies nutrients to other organs (1, 2). Generally, WAT expands 
both by hyperplasia (an increase in mature adipocyte number) and hypertrophy (an increase in 
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mature adipocyte size) (3, 4). White adipocytes are the major cell 
type of WAT and normally contain a single large lipid droplet. 
White adipocytes crosstalk with multiple cell types in both local 
and remote tissues via the secretion of a variety of signaling 
molecules (1, 2).

Traditionally, the immune system has been considered central 
to the elimination of pathogenic microbes and toxic or allergenic 
molecules that threaten the normal homeostasis of the host.  
A more recent addition to the broad discussion of immunity in 
health and diseases is the role of the interplay between immune 
response and metabolism (5). In particular, the roles of this 
interplay in obesity and metabolic diseases have been suggested 
by the findings that the immune program is intimately linked 
to physiological and pathological changes in WAT (6–9). One 
example is the inappropriately active and/or overactive immune 
responses in WAT in obesity and its related metabolic diseases. 
Along with enhanced WAT expansion, obesity induces both 
quantitative and qualitative changes in WAT immunity, which 
potentiates the dysfunction of adipose tissue as well as systemic 
energy homeostasis (10–12).

Among the resident immune cells in WAT, invariant natural 
killer T (iNKT) cells are regarded as one of the key players linking 
dynamic changes in adipocyte metabolisms to WAT homeostasis 
(13). In the following review, we briefly discuss different molecu-
lar and cellular factors involved in the control of WAT immunity 
in obesity. In particular, we emphasize the roles of the interaction 
between iNKT cells and adipocytes in maintaining WAT homeo-
stasis as well as whole body energy metabolism.

wAT iMMUniTY in OBeSiTY

Obesity is defined as the massive expansion of WAT due to the 
imbalance between caloric intake and energy expenditure. In 
adult obesity, WAT expansion features by dramatic increases in the 
number of hypertrophic adipocytes that are significantly related 
to detrimental changes in WAT, including hypoxia, oxidative 
stress, and insulin resistance (3, 4). Obesity is strongly associated 
with interrelated metabolic diseases, including insulin resistance, 
type 2 diabetes, and cardiovascular disease, which impose a high 
social burden in terms of quality of life (3, 4). Given that WAT is 
the major organ for energy storage and mobilization, most previ-
ous obesity-related studies focused on finding abnormalities in 
adipocyte physiology and metabolism in effort to understand the 
link between obesity and metabolic diseases (14). However, the 
recent discovery of adipokines, an array of mediators secreted 
by adipose tissue, has revised the concept of WAT being merely 
a fat storage depot (3, 4). Instead, it has become clear that WAT 
is a dynamic endocrine system that is crucial in the regulation of 
systemic energy homeostasis.

Adipokines include angiogenic proteins, metabolic regula-
tors, and inflammatory mediators. Most adipokines including 
leptin and adiponectin act as the bridge between the functional 
status of WAT and other organs, modulating systemic energy 
metabolism (3, 4). Among various adipokines, the identification 
of inflammatory mediators has clarified the connection between 
immunity and obesity and its related metabolic diseases (15). 
The first study that established the reframing of obesity as an 

inflammatory condition demonstrated the detrimental effect of 
tumor necrosis factor alpha (TNF-α), an inflammatory mediator 
secreted by adipose tissues, on insulin resistance in many animal 
models of obesity (16). Subsequent studies enforced the idea 
that alterations in WAT immunity are closely associated with 
dynamic changes in energy homeostasis in obesity and metabolic 
diseases (8, 9).

One hallmark characteristic of WAT immunity in obesity 
is chronic low-grade inflammation, which leads to a modest 
increase in circulating pro-inflammatory factors (8, 9). In a lean 
state, WAT immunity is skewed toward the anti-inflammatory 
phenotype, which supports tissue expansion (3, 4). In obesity, 
nutritional stresses promote the secretion of inflammatory 
cytokines and acute-phase reactants including TNF-α, interleu-
kin (IL)-6, and serum amyloid A in WAT. Although WAT simul-
taneously increases the release of anti-inflammatory cytokines, 
including IL-4, IL-10, and IL-2 to counteract the unfavorable 
effects of inflammation, WAT immunity eventually shifts toward 
an inflammatory state, leading to prolonged inflammation in 
obesity (8, 9, 13).

KeY PLAYeRS OF wAT inFLAMMATiOn  
in OBeSiTY

White adipose tissue is a heterogeneous organ composed of 
white adipocytes, mural endothelial cells, fibroblasts, and 
various immune cells, including macrophages, T cells, B cells, and 
NKT cells. These cells are engaged in maintaining the well-being 
of adipocytes, clearance of apoptotic cells, and retaining healthy 
physiological functions of WAT. Particularly, obesity-induced 
multiple insults, including epigenetic malfunction, hypoxia, and 
oxidative stress have complex impacts on adipose tissue inflam-
mation by altering inter-cellular interaction between adipocytes 
and immune cells. For instance, recent studies have underscored 
the important roles of epigenetic modulators in the progression 
of adipokine dysregulation and subsequent adipose tissue inflam-
mation (17, 18). In obese WAT, hypoxia and oxidative stress work 
in concert to promote dysfunction of adipocytes and lead to the 
stimulation of inflammatory signaling pathways in neighboring 
immune cells (19–22).

Among various cells in WAT, adipocytes act as both sensors 
and messengers that form an early warning network of WAT 
immunity (Figure  1). In response to excessive nutritional 
overload, adipocytes undergo both metabolic and immunologic 
reprogramming, which includes dramatic changes in metabolite 
and lipid compositions (23, 24). Following reprogramming, adi-
pocytes alert neighboring immune cells to eliminate such stresses 
through the secretion of an array of cytokines and presentation of 
certain types of antigens that reflect dynamic alterations in WAT 
under stressful conditions (25–28).

Macrophages are another key player in adipose tissue inflam-
mation. These cells are the primary source of pro-inflammatory 
cytokines in obese WAT (8, 9). Monocytes differentiate into 
classically activated macrophages (M1) or alternatively activated 
macrophages (M2) according to the stimuli. M1 macrophages 
are pro-inflammatory, whereas M2 macrophages are anti-inflam-
matory (29). The balance between M1 and M2 macrophages is 
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FigURe 1 | Dynamic changes in white adipose tissue (WAT) immunity in obesity. In the progression of obesity, WAT faces multiple stresses, including hypoxia, 
oxidative stress, and epigenetic malfunction. Particularly, adipocytes become enlarged in the process of absorbing excess nutrients, which is accompanied by 
adipocyte death and leakage of lipid metabolites. Also, obesity-induced DNA hypermethylation in adipocytes leads to the suppression of genes involved in  
adipocyte function including peroxisome proliferator-activated receptor gamma (PPARγ) and adiponectin. In response to such changes, WAT immunity skews 
toward pro-inflammatory state. Among cells residing in WAT, M1-type macrophages secrete a variety of cytokines, such as TNF-α and interleukin (IL)-1β that  
activate JNK, IKK, and SOCS, leading to suppression of insulin signaling in WAT. Adipose invariant natural killer T (iNKT) cells have anti-inflammatory roles as a  
part of defense mechanism to resolve pro-inflammatory responses. Adipose iNKT cells are mainly activated by lipid antigens loaded onto adipocyte CD1d and 
secrete Th2-type cytokines, such as IL-4, IL10, and IL-2. Those cytokines drive the polarization of monocytes toward M2 type macrophages and activate regulatory 
T cells, contributing to an alleviation of the pro-inflammatory responses in WAT.
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crucial to maintain WAT homeostasis, and the disturbance in this 
balance triggers the pathologic dysfunction of WAT (Figure 1). 
In obesity, the proportion of M1 macrophages is significantly 
increased compared to M2 macrophages, which confers a vicious 
cycle of WAT inflammation through having multiple impacts on 
other cells (29–31).

Simultaneously, WAT also promotes anti-inflammatory 
responses in effort to alleviate pathologic dysfunction of adipose 
tissue (8, 9). In WAT, there are many types of cells involved in 
anti-inflammatory responses, including M2 macrophages, 
eosinophils, regulatory T (Treg) cells, and iNKT cells. Depletion 
of anti-inflammatory cells in animal models of obesity acceler-
ates WAT inflammation and consequently aggravates metabolic 
disorders including insulin resistance (26, 32–36). These studies 
suggest that, despite of a dominant role of pro-inflammatory 
response, anti-inflammatory response is still required to dampen 
WAT inflammation.

DiSTinCT CHARACTeRiSTiCS OF nKT 
CeLLS

NKT cells are innate-like T lymphocytes that function similarly to 
innate cells, displaying less specificity and more rapid activation 
compared to adaptive immune cells (37, 38). NKT cells can be acti-
vated by exogenous or endogenous lipid antigens, and by cytokines 
produced by antigen-presenting cells (APCs). Upon activation, 
NKT cells rapidly secrete a variety of cytokines. Moreover, NKT cells 
express cytotoxic granules containing perforin and granzyme, and 
induce apoptosis of target cells (37). NKT cells are largely catego-
rized into three types: iNKT cells (type I), diverse NKT cells (dNKT, 
type II), and NKT-like cells (37). Although both type I and type II 
NKT cells recognize lipid antigens loaded on the MHC class I-like 
family protein CD1d, they are activated by distinct types of lipid 
antigens via the expression of different repertoires of T-cell receptors 
(37, 38). For instance, iNKT cells express a conserved semi-invariant 
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TCR and are potently stimulated by α-galactosylceramide (α-GC), 
a marine sponge-derived glycolipid (39). Type II NKT cells express 
a broader TCR repertoire and sulfatide is one of the major antigens 
for these cells (40, 41). Among subsets of the NKT cell population, 
iNKT  cells have been suggested to modulate WAT immunity in 
both lean and obese individuals (25, 26, 34, 35, 42). One of the 
interesting features of iNKT  cells is their remarkable functional 
plasticity with both pro- and anti-inflammatory characteristics. 
Upon activation signaling, iNKT cells secret either robust Th1-type 
or Th2-type cytokines according to the nature of activating stimuli 
and types of APCs and cytokines (43).

ADiPOCYTeS AS PROFOUnD APCs  
FOR inKT CeLLS

While conventional naïve T cells are mostly localized to immune 
organs, iNKT cells reside in many tissues, with a relatively high 
abundance in the liver and WAT (25, 44). Along with iNKT cells, 
such tissues appear to have distinct pools of APCs that rapidly  
process and present lipid antigen to confer tissue-specific function 
to iNKT cells. Generally, dendritic cells, macrophages, and B cells 
are considered “professional” APCs as they express various com-
ponents required for lipid antigen synthesis and presentation. They 
function as the major APCs that modulate the differentiation and 
activity of iNKT cells in lymphatic organs, including the thymus 
and spleen (38, 43). “Non-professional” APCs are not conven-
tional APCs, but express CD1d. Interestingly, iNKT cells residing 
in metabolic tissues are promptly activated by non-professional 
APCs (25, 44). Among the APCs in WAT, adipocytes seem to be a 
efficient non-professional APCs with the highest levels of CD1d in 
parallel with expression of other factors required for lipid antigen 
presentation (13, 25). As obesity is closely associated with major 
changes in the lipid repertoire of adipocytes, considerable atten-
tion has been directed to the role of adipocyte-derived lipids in 
the control of WAT inflammation (45–47). Owing to the primary 
function of adipocytes being endocrine cells, most studies related 
to obesity have focused on the link between the immune system and 
secreted lipids (45, 46). However, given that adipocytes express the 
highest level of CD1d among the resident APCs in WAT and since 
lipid metabolites can act as “antigenic” lipids after being loaded on 
CD1d, it is very likely that endogenous lipid metabolites derived 
from adipocytes may act as antigenic lipids (13, 25). Indeed, adi-
pocyte cell line and primary adipocytes isolated from both mouse 
and human activate iNKT cells and stimulate cytokine secretion 
(26, 35). Moreover, adipocytes are able to promote cytokine secre-
tion of iNKT cells without exogenous lipid antigens, such as α-GC, 
implying the presence of adipocyte-derived lipid antigens (28, 35). 
Very recently, we and other groups have reported the in vivo role 
of adipocytes as APCs by the use of an adipocyte-specific CD1d 
knockout (CD1dADKO) mouse model (25, 28). In these studies, lean 
CD1dADKO mice exhibit reduced number of iNKT cells in WAT and 
have different cytokine profiles in adipose iNKT cells compared to 
control mice in obesity (25).

In nature, iNKT cells recognize a vast range of lipid antigens, 
which includes microbial lipids and self-lipid antigens. Generally, 
such lipid antigens are composed of sugar moieties linked to a 
lipid backbone that can either be based on a ceramide or a 

diacylglycerol (48–51). Recently, several reports demonstrated 
that obesity induces the activation of enzymes involved in 
ceramide synthesis in conjunction with the elevation of cellular 
ceramides in mouse and human WAT (52, 53). Ceramide is found 
in high concentrations within cell membranes and is used as a pre-
cursor molecule for the synthesis of glycolipids. Given that many 
self-lipid antigens contain ceramide backbones and that these 
antigens are more potent than antigens based on diacylglycerol, 
an increase in ceramide-mediated glycolipids might contribute 
to the enrichment of lipid antigen pools in adipocytes as well as 
subsequent activation of adipose iNKT cells (54). However, the 
structural basis of adipocyte-derived antigens including types of 
lipid backbone and sugar moieties has not been fully explored 
and is a promising avenue of investigation. Also, further analyses 
of the effects of nutrient stresses on characteristics of adipocyte-
derived lipid antigens that modulate expansion of iNKT  cell 
population and specific Th1 or Th2 cytokine profiles could have 
promising therapeutic potential concerning WAT inflammation.

ADiPOSe inKT CeLLS AnD THeiR ROLeS 
in wAT inFLAMMATiOn

White adipose tissue harbors a distinct pool of cells of the immune 
system (Figure 1). The characteristics of the cells are often governed 
by adipose tissue-specific cues including antigens. In lean WAT, adi-
pose iNKT cells account for 1–20% of the resident T-cell pool (34). 
The majority of adipose iNKT cells are tissue-resident lymphocytes, 
whereas a small portion of the cells is infiltrated into WAT (42). 
Adipose iNKT cells produce anti-inflammatory cytokines, such as 
IL-4 and IL-10, and regulate the function of M2 macrophages and 
Treg cells, which contribute to the maintenance of WAT homeostasis 
(Figure 1). Recent reports described several characteristics unique 
to adipose iNKT cells. The transcriptome of adipose iNKT cells dif-
fers from the transcriptome of iNKT cells residing in other tissues 
(42). Among surface markers defining iNKT cells, the expression 
of CD4 and NK1.1 is relatively low in adipose iNKT cells (42). Also, 
adipose iNKT cells are less dependent on promyelocytic leukemia 
zinc finger (PLZF), a key transcription factor responsible for iNKT 
activation (42). Adipose iNKT cells express little PLZF compared 
to other iNKT cells and the quantity of adipose iNKT cells is not 
affected in Plzf+/− mice (42). Instead, the levels of T-bet, GATA-3, 
and E4BP4 are high in adipose iNKT cells (42). Finally, adipose 
iNKT cells seem to be chronically activated, while iNKT cells in 
the rest of body are in a poised state that requires an additional 
signal for rapid cytokine production (42). Such a distinct activation 
state of adipose iNKT cells results from special microenvironments, 
including lipid antigens, cytokines, and adipokines in WAT.

In obesity, WAT undergoes dramatic changes in the immune 
system favoring a pro-inflammatory environment. Notably, the 
number of adipose iNKT  cells significantly declines in parallel  
with elevation of inflammation in WAT (26, 34, 55). Recent 
reports from several groups including ours have shown that 
iNKT-cell-deficient mouse models (Jα18−/− and CD1d−/− mice, 
which are deficient in iNKT cells and both iNKT cells and type 
II NKT cell, respectively) are more susceptible to obesity, adipose 
tissue inflammation, as well as insulin resistance on a high-fat diet 
regimen (26, 34). These phenotypes are reversed by the adoptive 
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transfer of iNKT  cells or specific activation of iNKT  cells with 
α-GC, supporting the protective role of iNKT  cells in obesity 
(26, 34). Furthermore, the impaired induction of arginase-1, an 
M2 macrophage marker gene, was reported in CD1d−/− mice 
(33). Collectively, these studies reveal that adipose iNKT  cells 
are crucial to maintain WAT homeostasis due to their ability to 
secrete anti-inflammatory cytokines. Thus, the dramatic decrease 
in adipose iNKT would constitute an important initiator of the 
microenvironment favorable for inflammation in WAT. However, 
whether adipose iNKT cells act only as anti-inflammatory cells 
in obesity is debatable. Other studies suggest that iNKT  cell 
deficiency leads to a decrease in obesity-induced adipose tissue 
inflammation and insulin resistance (56, 57). For instance, Satoh 
et al. demonstrated that CD1dADKO mice exhibit improved insulin 
sensitivity and adipose tissue inflammation (28). There are also 
other reports suggesting that iNKT cells are dispensable for adi-
pose tissue inflammation as well as systemic energy homeostasis 
(58, 59). Multiple factors could be attributable to such a difference 
in adipose iNKT polarization in relation to obesity and adipose 
tissue inflammation. These factors include the type of diet, dura-
tion of diet intervention, types of control mouse groups, and gut 
microbiota (25, 26, 28, 34, 56). Particularly, the potential effect of 
gut microbiota on adipose iNKT cells appears to be interesting. 
A very recent study demonstrated that glucagon-like peptide-1 
(GLP-1), a gut hormone that is used to treat obesity and diabetes, 
activates adipose iNKT cells and enhances the secretion of anti-
inflammatory cytokines including IL-10 in WAT (60). Like other 

gut hormones, serum GLP-1 level is sensitively modulated by the 
composition of gut microbiota in response to changes in the nutri-
tional status (61). Thus, it is probable that different composition 
of gut microbiota among different laboratories would impact on 
GLP-1-adipose iNKT axis, accounting for the differences in the 
function of adipose iNKT cells that have been reported in obesity.

FUTURe ReSeARCH DiReCTiOnS in 
ADiPOSe inKT CeLLS

White adipose tissue is characterized by a unique immune 
system that dynamically responds to nutritional stresses. With 
respect to iNKT  cells, WAT provides a special microenviron-
ment that is enriched in profound APCs and diverse activating 
stimuli (lipid antigens) and cytokines. Although recent reports 
have demonstrated the distinct characteristics and physiological 
roles of adipose iNKT cells, the interconnected mechanisms of 
interplay between adipose iNKT  cells and other cells in WAT 
need to be elucidated (Figure 2). The kinds of endogenous lipid 
antigens presented by adipocytes and the underlying molecular 
mechanisms that mediate dynamics of lipid antigen presentation 
by adipocytes remain to be determined (Figure 2A). Although it 
has been reported that several regulators of adipocyte differentia-
tion including peroxisome proliferator-activated receptor gamma 
and CCAAT/enhancer-binding protein (C/EBP)-β and -δ control 
CD1d expression, the regulatory mechanisms of other necessary 
machineries involved in lipid antigen synthesis and presentation 

FigURe 2 | Potential mechanisms involved in the interplay between adipocytes and adipose invariant natural killer T (iNKT). iNKT cells play a crucial role in 
dampening obesity-induced white adipose tissue (WAT) inflammation. In particular, adipocytes act as major antigen-presenting cells that regulate the activity and the 
number of iNKT cells in WAT. However, the regulatory mechanisms that modulate interplay between adipocytes and adipose iNKT cells in obesity are still unclear.  
(A) Function of adipose iNKT cells is influenced by (1) “lipid antigens” loaded on CD1d and (2) “co-stimulatory molecules.” In obesity, a variety of factors can lead  
to dynamic changes in both types of lipid antigens and combination of costimulatory molecules, resulting in alteration of the functionality of adipose iNKT cells.  
(B) In addition to cytokine production, iNKT cells have the ability to directly or indirectly induce apoptosis. iNKT cells can express fasL and activate NK cells to kill 
target cells. NK cells activated by IFN-γ secrete perforin/granzyme to promote cell death processes. One of the characteristics of obese WAT is an increase in the 
number of hypertrophic adipocytes that are susceptible to apoptosis. Therefore, it would be interesting to determine whether adipose iNKT cells can contribute to 
obesity-induced death of hypertrophic adipocytes in WAT.
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