Evolution of enzyme functionality in the flavin-containing monooxygenases

Gautier Bailleul¹, Guang Yang¹, Callum R. Nicoll², Andrea Mattevi², Marco W. Fraaije¹, Maria Laura Mascotti^{1,3*}

These authors contributed equally: Gautier Bailleul, Guang Yang.

SUPPLEMENTARY INFORMATION

List of contents

Supplementary Fig. 1

Supplementary Fig. 2

Supplementary Fig. 3

Supplementary Fig. 4

Supplementary Table 1

Supplementary Fig. 5

Supplementary Fig. 6

Supplementary Table 2

Supplementary Fig. 7

Supplementary Fig. 8

Supplementary Fig. 9

Supplementary Fig. 10

Supplementary Table 3

Supplementary Table 4

Supplementary Table 5

Supplementary Fig. 11

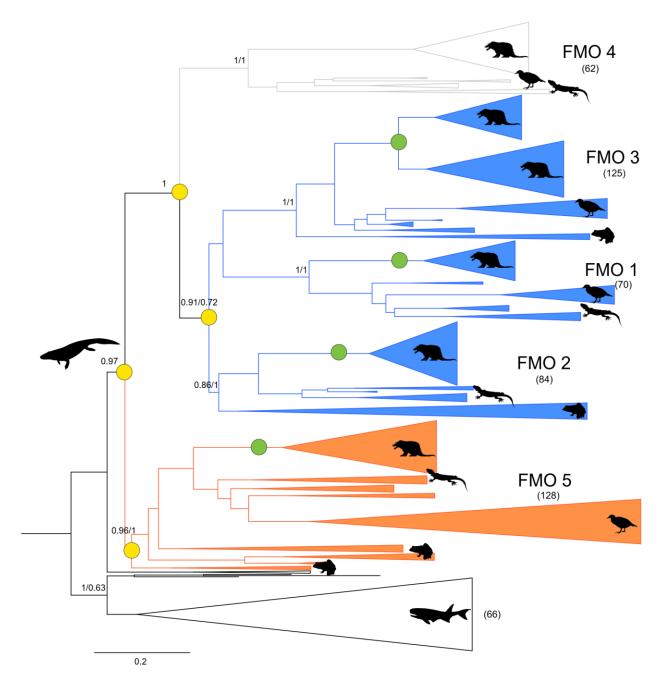
Supplementary Fig. 12

Supplementary Fig. 13

Supplementary Fig. 14

Supplementary Fig. 15

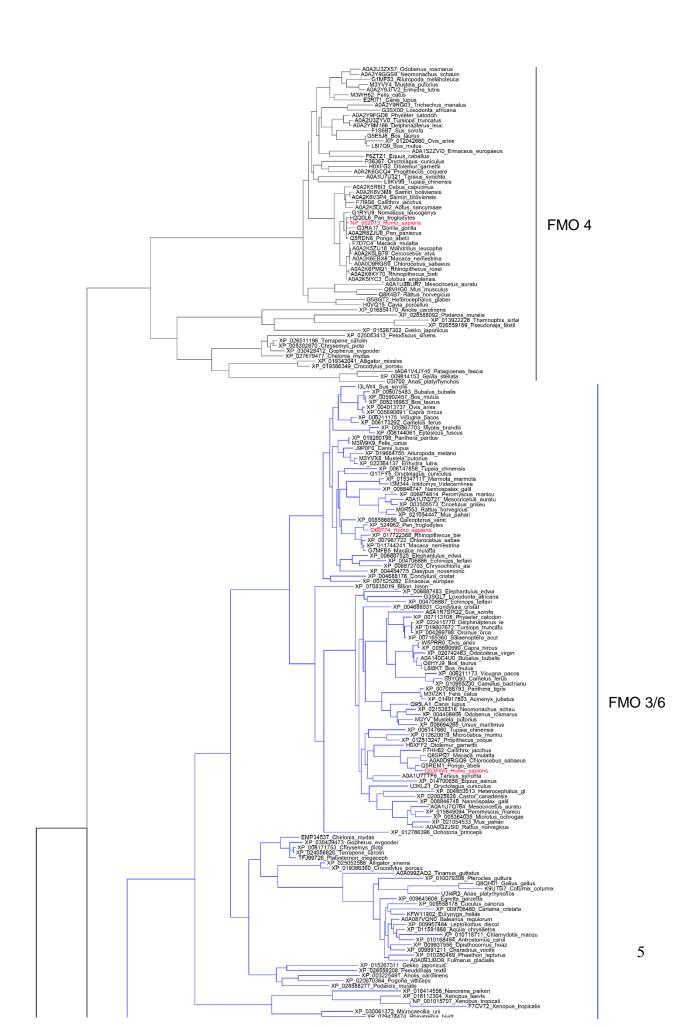
¹ Molecular Enzymology group, University of Groningen; Groningen, The Netherlands.

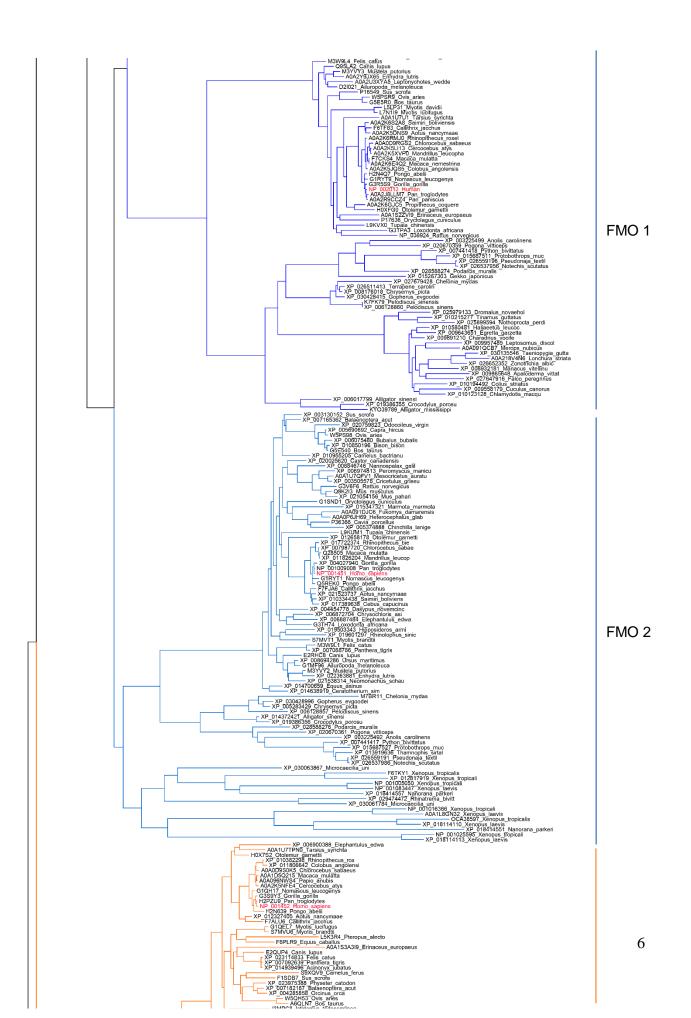

² Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia; Pavia, Italy.

³ IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis; San Luis, Argentina.

^{*}Corresponding author. Email: m.l.mascotti@rug.nl.

Supplementary Fig. 17

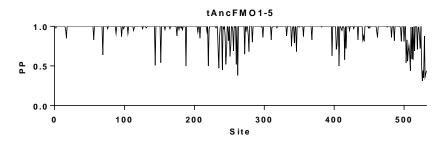

Supplementary References



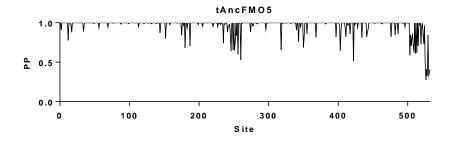
Supplementary Fig. 1

Vertebrates' phylogeny of FMOs with resurrected nodes marked. The tree was constructed in RAxML v8.2.10, 500 non-parametric bootstraps were run and best-fit model parameters were obtained with ProtTest v3.4. Bootstrap transfer was applied to obtain TBE support values. Bayesian inference was also performed in Mr. Bayes 3.2.6 using the same MSA and therefore support values (TBE/PP) are shown at the nodes corresponding to major divergences. The scale bar represents the substitutions per site. The employed MSA was trimmed at single sequence extensions and contained 536 taxa and 537 sites. Clades are collapsed and colored according to the inferred functionality, S/N oxidation in blue and BV oxidation in orange. FMO 4

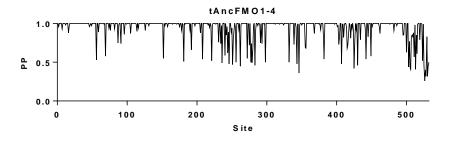
clade is colored in grey as no experimental data confirming activity is available. Below the clade names the number of contained sequences is given in brackets. Actinopterygii, coelacanthimorpha and chondrichthyes sequences populate the root and are shown in black branches. The four ancestral nodes experimentally characterized in this work are represented with yellow circles and the mammalian ancestors previously characterized by us^{1,2} are shown with green circles. The depicted silhouettes (obtained from http://www.phylopic.org/) represent the ancestral tetrapod (by Dmitry Bogdanov (vectorized by T. Michael Keesey) under CC BY-SA 3.0) and the extant mammals, aves, amphibia (by Nobu Tamura and T. Michael Keesey under CC BY-SA 3.0), lepidosauria (by Ghedo and T. Michael Keesey under CC BY-SA 3.0) and actinopterygii (ray-finned fish).



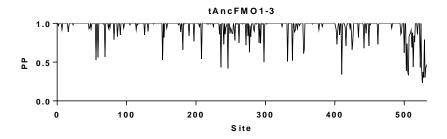
Fully annotated vertebrates' phylogeny of FMOs. The tree from Supplementary Fig. 1 is presented showing at the tip of the branches the accession codes and species names for all included sequences in the phylogeny. Clades are colored according to functionality as throughout the article. As a reference, *Homo sapiens* sequences are shown in red. The scale bar represents the substitutions per site.


>tAncFMO1-5

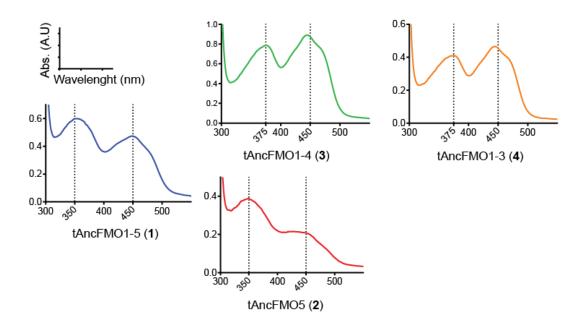
MAKRVAVIGAGASGLTAIKCCLDEGLEPTCFERSDDIGGLWRFKENPEDGRASIYKSVIINTSKEMMCYSDFPIPDD FPNYMHNSKIMEYFRMYAKHFDLLKYIRFKTTVCSVKKRPDFSTTGQWDVVTETDGKQESAIFDAVLVCTGHHTDPH LPLDSFPGIEKFKGQYFHSRDYKNPEEFQGKRVLVIGIGNSGGDIAVELSRTAKQVFLSTRRGSWILNRVSDNGYPL DMVHSTRFKNLLKHILPSSLVNWMAEKKMNQRFNHENYGLKPQHRIFSQHPMVNDDLPNRIISGTVLVKPNVKEFTE TSAIFEDGTVEENIDVVIFATGYSFSFPFLEESVLKVQNNKVSLYKYVFPPHLEKPTLAVIGLIQPLGAIMPISELQ ARWATRVFKGLNKLPSANTMMADIAKKKEEMEKRYVTSQRHTIQVDYIEYMDELASLIGVKPNLLSLFLTDPKLALE VFFGPCTPYQYRLTGPGKWDGARKAILTQWDRIIKPTKTRVLQDNSSSSSMPLLLKILGLALLSALYYFL


>tAncFMO5

MAKRVAVIGAGSSGLTAIKCCLDEGLEPTCFERSDDIGGLWRFKENPEDGRASIYKSVIINTSKEMMCFSDFPIPDD FPNYMHNSKIMEYFRMYAKHFDLLKYIRFKTTVCSVKKRPDFSTTGQWDVVTETDGKQESAIFDAVLVCTGHHTNPH LPLDSFPGIEKFKGQYFHSRDYKNPQEFQGKRVIVIGIGNSGGDLAVELSHTAKQVFLSTRRGAWILNRVSDNGYPL DVVLSTRFKNLLKQILPTSMVNRWAEKKMNARFNHENYGLKPQHRILSQHPTVNDDLPNRIISGKVLVKPNVKEFTE TAAIFEDGTVEENIDVVIFATGYSFSFPFLEDSVLKVQNNKVSLYKFVFPPHLEKPTLAIIGLIQPLGAIMPISELQ ARWATRVFKGLNKLPSANDMMADIAKKKEEMEKRYVTSQRHTIQVDYIEYMDELASLIGVKPNLLSLFLTDPKLAWE VFFGPCTPYQYRLTGPGKWDGARKAILTQRDRIIKPTKTRVLQDNNTSSSMPLLLKILGLALLSALYYFL


>tAncFMO1-4

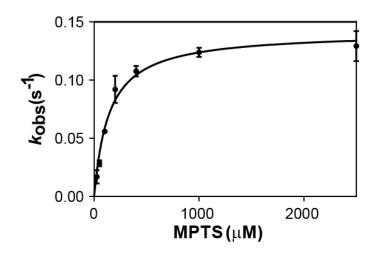
MAKRVAVIGAGVSGLTSIKCCLDEGLEPTCFERSDDIGGLWRFTENPEDGRASIYKSVITNTSKEMMCYSDFPFPED FPNYMHNSKFLEYLRMYAKHFDLLKYIQFKTTVCSVKKRPDFSTTGQWDVVTETDGKQESAIFDAVMVCTGHHTDPH LPLDSFPGIEKFKGQYFHSREYKNPEEFQGKRVLVIGIGNSGGDIAVELSRTAKQVFLSTRRGSWVLSRVSDNGYPL DMVFTTRFQNLLRNILPSSLVNWMTEKKMNQWFNHENYGLVPQNRILSQHPVVNDDLPSRIICGTVVVKPNVKEFTE TSAIFEDGTVEENIDVVIFATGYSFSFPFLEESVIKVENNKVSLYKYVFPPHLEKPTLAVIGLIQPLGAIMPTAELQ ARWATRVFKGLCKLPSANTMMADIAKKKEKMIKRFVTSQRNTIQTDYIEYMDELASFIGVKPNILSLFLTDPKLALE VFFGPCTPYQYRLTGPGKWDGARNAILTQWDRILKPTKTRVLQDDSSSNSMPFLLKILGLALLSALYYFL


>tAncFMO1-3

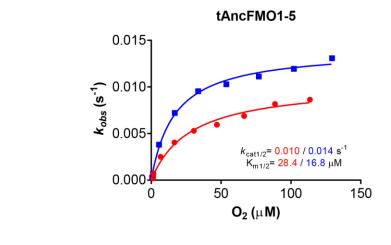
MAKRVAVIGAGVSGLTSIKCCLDEGLEPTCFERSDDIGGLWRFTENVEDGRASIYKSVITNTSKEMMCYSDFPFPED FPNYMHNSKFLEYLRMYAKHFDLLKYIQFKTTVCSVKKCPDFSTTGQWDVVTETDGKQESAIFDAVMVCTGHHTDPY LPLDSFPGIEKFKGQYFHSREYKNPEGFQGKRVLVIGMGNSGADIAVELSHTAKQVFLSTRRGSWVMSRVSDNGYPW DMVFTTRFQNLLRNVLPSSIVNWMTEKKMNQWFNHENYGLVPQNRTLMKEPVFNDDLPSRIICGTVVVKPNVKEFTE TSAIFEDGTVEENIDVVIFATGYTFSFPFLDESVIKVENNKVSLYKYVFPPHLEKPTLAVIGLIQPLGAIMPTAELQ ARWATRVFKGLCKLPSANTMMEDIAKKKEKKIKWFGTSQSNTLQTDYIEYMDELASFIGAKPNILSLFLTDPKLALE VFFGPCTPYQYRLTGPGKWDGARNAILTQWDRILKPTRTRVLQNDSSSNSVPFLLKILGLALLSALYYFL

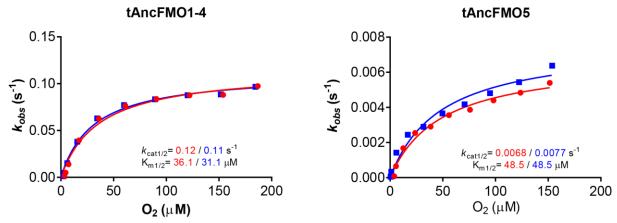
Supplementary Fig. 3

Reconstructed tAncFMOs. Fasta sequences of the reconstructed tAncFMOs selected for experimental characterization. Scatter graphs show the posterior probability (PP) values corresponding to *maximum a posteriori* (MAP) states per reconstructed site. The overall accuracy values (\overline{PP}) for the reconstructions are: tAncFMO1-5= 0.95, tAncFMO5= 0.97, tAncFMO1-4= 0.94 tAncFMO1-3= 0.95.


Supplementary Fig. 4

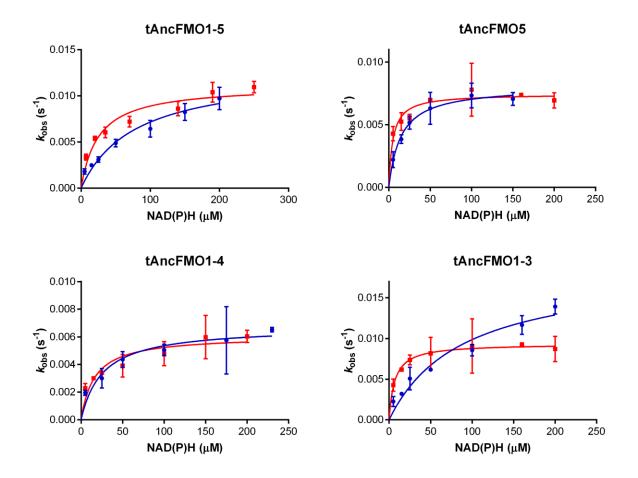
UV-visible spectra of the resurrected FMOs. Spectra were recorded at room temperature after enzyme purification in a Jasco V-660 spectrophotometer.


Enzymo	Melting temperature (T _m) / °C						
Enzyme	no NAD(P)+	100 equivalents NADP+	100 equivalents NAD+				
tAncFMO1-5	60	60	60				
tAncFMO5	58	57	58				
tAncFMO1-4	60	60	61				
tAncFMO1-3	65	65	65				

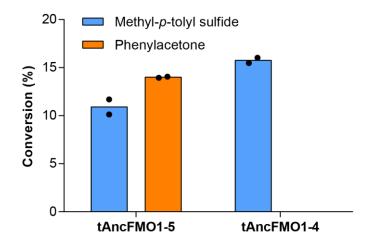

Supplementary Table 1

Melting temperatures of the tAncFMOs. Melting temperatures (T_m) , with and without NAD(P)⁺, were measured in duplicates by the ThermoFAD³ technique for all tAncFMOs. CFX96 Real-Time PCR System from Bio-Rad was used. Each sample contained 10 μ M tAncFMO, in presence or absence of 1 mM NAD(P)⁺, and topped-up to a final volume of 10 μ l with the storage buffer.

Steady-state kinetics for tAncFMO1-4 towards methyl-p-tolyl sulfide (MPTS). NADPH was employed as hydride donor. $K_{\rm M}=142\pm16~\mu{\rm M},~k_{\rm cat}=0.14\pm0.01~{\rm s}^{-1}$. The observed rates were obtained by following the absorbance change at 340 nm. Data are presented as mean values and error bars correspond to SD (n= 3 independent experiments). Source data are provided as a Source Data file.


Supplementary Fig. 6

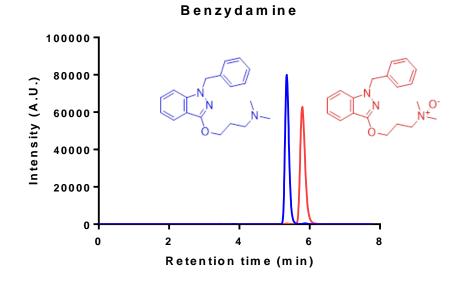
Steady-state kinetics for O_2 . 3-12 μ M of enzymes were mixed with air-saturated buffer containing excess of NADPH (0.6 mM) and substrate (phenylacetone for tAncFMO5 and methyl-p-tolyl sulfide for the other Ancs at 2.5 mM concentration). The k_{obs} was calculated using the OxyTrace⁺ Windows[®] software. All assays were repeated twice in two single measurements (red and blue traces). Source data are provided as a Source Data file.

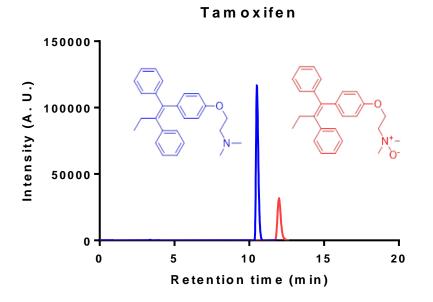

Steady-state kinetics									
	Substrate	tAncFMO1-5	tAncFMO5	tAncFMO1-4	tAncFMO1-3				
Kcat (S ⁻¹)	O ₂	0.012 ± 0.002	0.0072 ± 0.0005	0.12 ± 0.01	n.d.				
Κ _M (μ M)	02	22.6 ± 5.8	48.5 ± 0.1	33.6 ± 2.5	n.d.				
Kcat (s ⁻¹)	phenylacetone	< 0.01	n.d.	0.14 ± 0.01	n.d.				
<i>K</i> _M (μM)	or methyl- <i>p</i> -tolyl sulfide	n.d.	n.d.	142 ± 16	n.d.				
Kcat (S ⁻¹)	NADPH	n.d.	n.d.	0.16 ± 0.01	n.d.				
<i>K</i> _M (μM)	NADER	n.d.	n.d.	15.7 ± 1.8	n.d.				
Kcat (S ⁻¹)	NADH	n.d.	n.d.	0.021 ± 0.002	n.d.				
<i>K</i> _M (μM)	INAUT	n.d.	n.d.	90.0 ± 17.6	n.d.				
<i>k_{unc}</i> (s ⁻¹)	NADH	0.011 ± 0.001	0.0075 ± 0.0004	0.0061 ± 0.0005	0.0093 ± 0.0006				
<i>k</i> _{unc} (s ⁻¹)	NADPH	0.013 ± 0.001	0.0081 ± 0.0005	0.0067 ± 0.0007	0.019 ± 0.002				

Supplementary Table 2

Kinetic parameters of tAncFMOs. Steady-state kinetic parameters are summarized for the characterized tAncFMOs. When O_2 was assayed as substrate, sufficient NADPH and organic substrate (phenylacetone for tAncFMO1-5 & tAncFMO5 and methyl p-tolyl sulfide for tAncFMO1-4 & tAncFMO1-3) were provided. Likewise, when organic substrates were tested, excess of NADPH was employed in the reaction mixtures. When the uncoupling reactions were carried out, no other substrate than the nicotinamide coenzyme was provided in the reaction mixture. Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Uncoupling rates measured for tAncFMOs with NADPH (blue) or NADH (red). The rates were measured by following the absorbance change at 340 nm. The reaction mixtures contained 2 or 4 μ M of tAncFMOs and NAD(P)H ranging from 5 μ M-200 μ M. All measurements were carried out in 50 mM KPi buffer containing 250 mM NaCl, 0.05% TritonTm X-100 reduced and 1% methanol (pH 7.5) at 25 °C. Data are presented as mean values and error bars correspond to SD (n= 3 independent experiments). Source data are provided as a Source Data file.




Conversions employing NADH as hydride donor. Two substrates were selected to test the S/N and BV oxidation activities. The reaction mixtures contained 2 μ M of enzyme, 2 mM of substrate and 100 μ M of NADH. A cofactor recycling system consisting of 5 μ M PTDH and 20 mM sodium phosphite was employed to regenerate NADH. All assays were set at 30 °C for 20 h in 50 mM KPi buffer containing 250 mM NaCl, 0.05% TritonTm X100 and 1% methanol (pH 7.5). Bars represent mean conversion values and dots the values for each experiment (n= 2 independent experiments). Source data are provided in Supplementary Table 4.

benzydamine (6)

Substrates panel for conversion assays. The BV activity was followed using cyclohexanone, phenylacetone and hepta-2-one as substrates. These were selected for their alicyclic, aromatic and aliphatic features, respectively. Two aromatic thioethers, benzyl phenyl sulfide and methyl-*p*-tolyl sulfide were picked to assess the S oxidation activity. Finally, the N oxidation reactions were determined using bulky and pharmacological relevant molecules as benzydamine and tamoxifen.

tamoxifen (7)

HPLC chromatograms of N oxidation substrates and products. Benzydamine (6) and tamoxifen (7) peaks are represented in blue and their retention times were 5.3 and 10.5 min, respectively. The benzydamine N-oxide and tamoxifen N-oxide are represented in red with retention times of 5.7 and 11.7

min, respectively. The identity of both products was confirmed employing pure chemical standards.

Supplementary Fig. 10

19

Su	ubstrate	Product			
Cyclohexanone (1) RT: 6.2 min	75 50 69 25 50 100 150 200 250	RT: 10.7 min	75 75 70 114 25 70 114 27 100 150 200 250		
Phenylacetone (2) RT: 10.9 min	75 50 100 134 25 65 100 150 200 250	RT: 11.6 min	75 75 77 79 150 25 657 100 150 200 250		
Hepta-2-one (3) RT: 6.5 min	75 100 58 50 100 150 200 250	O RT: 7.1 min	75 50 50 50 50 100 100 150 250 250		
Benzyl phenyl sulfide (4) RT: 18.8 min	75- 100- 25- 65 0- 100- 150- 200- 250- 250- 250- 250- 250- 250- 2	S 0 0 RT: 16.7 min	75 100 91 75 50 100 150 250 182 05 100 150 200 250		
Methyl-p-tolyl sulfide (5) RT: 12.0 min	75 50 100 123 25 50 100 150 200 250	RT: 15.5 min	76 139 154 50 200 250		

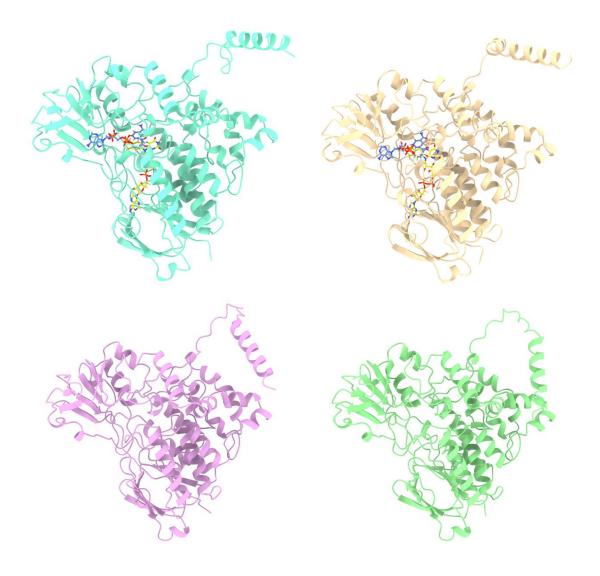
Supplementary Table 3

Selected substrates to evaluate the BV oxidation (1-3) and the S oxidation (4-5) activities. The structures of the expected products on the left. Structures are accompanied by the corresponding MS spectra used to confirm the identity of the analytes. RT: retention times.

			BV ox	idation			S oxidation				N oxidation			
Enzyme	Heptan-2-one Phe		Phenyl	acetone	Cyclohe	exanone	Benzyl phe	enyl sulfide	Methyl-p-to	olyl sulfide	Tamoxifen		Benzy	damine
	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2
tAncFMO1-3	0	0	0	0	0	0	77	78	99	99	48	44	99	99
tAncFMO1-4	0	0	0	0	0	0	53	48	99	99	58	52	44	49
tAncFMO1-5	25	21	23	24	4	6	0	0	32	44	29	31	9	12
tAncFMO5	8	9	17	16	4	6	0	0	37	46	1	1	4	8
mAncFMO2	0	0	0	0	0	0	66	55	57	66	1	1	99	99
mAncFMO1	0	0	0	0	0	0	73	77	62	83	99	92	99	99
mAncFMO3-6	0	0	0	0	0	0	61	51	81	71	27	25	99	99
tAncFMO1-4 4x	0	0	0	0	0	0	27	30	37	34	9	8	26	23
tAncFMO1-4 4'x	0	0	3	5	0	0	0	0	44	46	14	18	28	25
tAncFMO1-4 12x	0	0	3	6	0	0	0	0	20	22	1	1	0	6
tAncFMO1-4 16x	0	0	12	6	0	0	0	0	60	49	0	0	7	6
tAncFMO1-4 N275H	0	0	0	0	0	0	97	95	100	100	89	80	95	92
tAncFMO1-4 N426H	0	0	0	0	0	0	100	100	100	100	79	63	80	78
tAncFMO1-4 N275H+N426H	0	0	0	0	0	0	100	100	100	100	59	50	56	49
tAncFMO1-4 T60I	0	0	0	0	0	0	20	28	100	100	48	54	34	39
tAncFMO1-4 S222N	0	0	0	0	0	0	38	30	100	100	54	61	40	42
tAncFMO1-4 T60I+N275H+N426H	3	1	20	14	0	0	32	36	100	100	51	50	40	37
Alt-tAncFMO1-5	58	52	11	12	17	20	33	31	84	87	19	19	6	12
Alt-tAncFMO1-4	0	0	0	0	0	0	93	96	100	100	73	84	51	48

Supplementary Table 4.

tAncFMOs conversion results. The catalytic activities of tetrapods, mammalians, alternative states and mutated tAncFMOs were assessed with the panel of substrates presented in Supplementary Fig. 8. Substrate conversions were done in duplicates using 1.0-5.0 mM substrate (1% methanol), 0.1 mM NADPH, 2.0 μM enzyme, 5.0 μM phosphite dehydrogenase and 20 mM sodium phosphite. All reactions were prepared in 50 mM KPi, 250 mM NaCl, 0.05 % TritonTm X-100 reduced, pH 7.5. The final reaction volume was adjusted to 1.0 ml and put into 4 ml vials before being incubated at 30 °C with shaking, for 16 h. Conversions of phenylacetone, heptan-2-one, cyclohexanone, benzyl phenyl sulfide and methyl-*p*-tolyl sulfide were analyzed by GC-MS while benzydamine and tamoxifen conversions were monitored by HPLC. Values are given in percentages, with R1 and R2 corresponding to independent experiments (n= 2 independent experiments).


	tAr	cFMO1	-5	
Site	MAP state	PP	Alt state	PP
69	Y	0.64	F	0.36
144	L	0.51	М	0.49
152	D	0.54	N	0.42
188	L	0.50	I	0.49
220	I	0.50	V	0.50
234	V	0.69	М	0.21
235	Н	0.47	F	0.33
240	K	0.45	Q	0.23
251	L	0.62	М	0.30
256	А	0.69	G	0.24
260	М	0.52	L	0.48
262	Q	0.38	R	0.32
278	F	0.68	L	0.32
339	E	0.75	D	0.25
403	N	0.71	S	0.26
407	A	0.50	E	0.40
415	E	0.58	K	0.38
417	E	0.72	А	0.21
503	V	0.54	A	0.24
507	N	0.76	D	0.23
508	S	0.64	N	0.31
509	S	0.44	Т	0.28
511	S	0.59	N	0.34
513	M	0.58	V	0.32
515	L	0.69	F	0.28
519	I	0.71	V	0.21
526	S	0.31	A	0.27
527	А	0.44	S	0.30
528	$_{ m L}$	0 0 5		
	П	0.35	V	0.27
531	F	0.40	L	0.27
531	F t.	0.40 ncFMO	L 5	0.30
531 Site	F take	0.40 ncFMO	L Alt state	0.30 PP
531 Site 12	F t MAP state S	0.40 ncFMO! PP	L Alt state	0.30 PP 0.22
531 Site 12 180	# t# MAP state S Q	0.40 AncFMO! PP 0.78 0.68	L Alt state A E	PP 0.22 0.24
531 Site 12 180 187	# TF MAP state S Q V	0.40 PP 0.78 0.68 0.71	Alt state A E I	PP 0.22 0.24 0.29
531 Site 12 180 187 251	F	0.40 PP 0.78 0.68 0.71 0.65	Alt state A E I L	PP 0.22 0.24 0.29 0.32
531 Site 12 180 187 251 256	F	0.40 PP 0.78 0.68 0.71 0.65 0.60	Alt state A E I V	PP 0.22 0.24 0.29 0.32 0.37
531 Site 12 180 187 251 256 260	F	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53	L 5 Alt state A E I L V L	PP 0.22 0.24 0.29 0.32 0.37 0.47
531 Site 12 180 187 251 256 260 350	F	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69	L 5 Alt state A E I L V L I I	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31
531 Site 12 180 187 251 256 260	F MAP state S Q V M A M V	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53	L 5 Alt state A E I L V L	PP 0.22 0.24 0.29 0.32 0.37 0.47
\$ite 12 180 187 251 256 260 350 403	F MAP state S Q V M A M V N	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65	L Alt state A E I V L I S	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33
\$ite 12 180 187 251 256 260 350 403 422	F MAP state S Q V M A M V N T	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52	L 5 Alt state A E I L V L I S S K	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26
\$ite 12 180 187 251 256 260 350 403 422 503	F MAP state S Q V M A M V N T V	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.69	L Alt state A E I L V L I S K A	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26
\$ite 12 180 187 251 256 260 350 403 422 503 508	F MAP state S Q V M A M V N T V N	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59	L Alt state A E I V L I S K A S	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26
\$ite 12 180 187 251 256 260 350 403 422 503 508 511	F MAP state S Q V M A M V N T V N S	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.69 0.61 0.62 0.71	L Alt state A E I V L I S K A S N	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26 0.27 0.28 0.30 0.29
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513	F MAP state S Q V M A M V N T V N S M	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.69 0.61 0.62 0.71 0.73	L Alt state A E I V L I S K A S N V	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26 0.27 0.28 0.30 0.29 0.22
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515	F MAP state S Q V M A M V N T V N S M L	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.69 0.61 0.62 0.71	L Alt state A E I V L I S K A S N V F	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26 0.27 0.28 0.30 0.29
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515 519	F MAP state S Q V M A M V N T V N S M L I	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.69 0.61 0.62 0.71 0.73	L Alt state A E I L V L I S K A S N V F V	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.33 0.26 0.27 0.28 0.30 0.29 0.22
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526	F MAP state S Q V M A M V N T V N S M L I S	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33	L Alt state A E I L V L I S K A S N V F V A	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.38 0.26 0.27 0.28 0.30 0.29 0.22
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527	F MAP state S Q V M A M V N T V N S M L I S A L F	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37	L Alt state A E I L V L I S K A S N V F V A S V L L L V L L L L L L L L	PP 0.22 0.24 0.29 0.32 0.37 0.47 0.31 0.27 0.28 0.30 0.29 0.22 0.25 0.28
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528	F MAP state S Q V M A M V N T V N S M L I S A L F	0.40 AncFMO! PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 CFMOI	L Alt state A E I L V L I S K A S N V F V A S V L L L V L L L L L L L L	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.33 0.26 0.27 0.28 0.30 0.29 0.22 0.25 0.28
\$ite 12 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528 531	F MAP state S Q V M A M V N T V N S M L I S A L F TAMAP state	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 CFMO1-	L Alt state A E I L V L I S K A S N V F V A S V L L L V L L L L L L L L	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.38 0.26 0.27 0.28 0.30 0.29 0.22 0.25 0.28 0.25 0.29
\$\frac{\sqrt{\text{site}}}{12}\$ 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528 531 \$\frac{\text{site}}{56}\$	F MAP state S Q V M A M V N T V N S M L I S A L F TAMAP state	0.40 PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 CFMO1- PP 0.53	L Alt state A E I L V L I S K A S N V F V A S V L T A R	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.36 0.27 0.28 0.29 0.22 0.25 0.28 0.25 0.29 PP 0.46
\$\frac{\sqrt{\text{site}}}{12}\$ 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528 531 \$\frac{\text{site}}{56}\$ 69	F MAP state S Q V M A M V N T V N S M L I S A L F TAM MAP state K Y	0.40 AncFMO! PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 ACFMO! PP 0.53 0.58	L Alt state A E I L V L I S K A S N V F V A S V L T A F V A S F T T T T T T T T T T T T	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.28 0.25 0.25 0.29 PP 0.46 0.43
\$\frac{\sqrt{\text{site}}}{12}\$ 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528 531 \$\frac{\text{site}}{6} 69 87	F MAP state S Q V M A M V N T V N S M L I S A L F TAT MAP state K Y F	0.40 AncFMO! PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 CFMO! PP 0.53 0.58 0.75	L Alt state A E I L V L I S K A S N V F V A S V L A S R A S L L L L L L L L L L L L	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.38 0.26 0.27 0.28 0.30 0.29 0.22 0.25 0.28 0.25 0.29 PP 0.46 0.43 0.20
\$\frac{\sqrt{\text{site}}}{12}\$ 180 187 251 256 260 350 403 422 503 508 511 513 515 519 526 527 528 531 \$\frac{\text{site}}{56}\$ 69	F MAP state S Q V M A M V N T V N S M L I S A L F TAM MAP state K Y	0.40 AncFMO! PP 0.78 0.68 0.71 0.65 0.60 0.53 0.69 0.65 0.52 0.59 0.61 0.62 0.71 0.73 0.28 0.41 0.33 0.37 ACFMO! PP 0.53 0.58	L Alt state A E I L V L I S K A S N V F V A S V L T A F V A S F T T T T T T T T T T T T	PP 0.22 0.24 0.29 0.37 0.47 0.31 0.27 0.28 0.25 0.25 0.29 PP 0.46 0.43

181	E	0.51	G	0.41
192	I	0.66	М	0.27
208	K	0.54	А	0.37
221	L	0.52	М	0.44
236	Т	0.49	S	0.43
244	R	0.62	K	0.36
246	I	0.48	V	0.35
251	L	0.47	I	0.42
256	T	0.50	A	0.22
262	Q	0.45	R	0.29
272	V	0.55	I	0.30
277	I	0.50	T	0.23
280	Q	0.70	G	0.26
283	V	0.46	I	0.41
291	R	0.75	C	0.26
293	I	0.74	L	0.26
298	V	0.50	M	0.29
332	S	0.50	T	0.49
339	E	0.73	D	0.43
343	I	0.48	L	0.39
346	E	0.36	Q	0.35
355	Y	0.69	H	0.33
356	V	0.68	I	0.32
382	A	0.54	S	0.26
403	N	0.73	S	0.27
407	A	0.48	E	0.46
416	M	0.72	L	0.20
425	R	0.42	S	0.26
430	T	0.42	V	0.32
442	F	0.54	L	0.22
442	I	0.58	L	0.30
500	K	0.63	R	0.37
503	V	0.44	A	0.21
506	D	0.41	N N	0.34
511	N	0.57	S	0.32
513	M	0.41	V	0.40
515	F	0.41	L	0.25
526	S	0.26	A	0.24
527	A	0.40	S	0.27
528	L	0.32	V	0.23
531	F	0.45	L	0.32
331		cFMO1	L	0.52
Site	MAP state	PP	Alt state	PP
56	K K	0.53	R	0.46
59	I	0.56	V	0.44
69	Y	0.57	F	0.43
82	M	0.79	L	0.43
152	D	0.73	E	0.45
181	G	0.66	E	0.43
197	A	0.77	S	0.20
208	K	0.77	A	0.37
236	Т	0.43	S	0.35
246	V	0.43	I	0.34
277	T	0.42	S	0.29
291	R	0.75	C	0.25
293	I	0.74	L	0.26
298	V	0.50	M	0.39
332	T	0.51	S	0.49
339	D	0.52	E	0.49
355	Y	0.61	H	0.39
	<u> </u>	1 0 • 0 ±		0.00

356	V	0.66	I	0.34
403	N	0.73	S	0.27
410	A	0.34	N	0.34
449	I	0.71	L	0.26
462	E	0.73	K	0.22
500	R	0.62	K	0.39
506	N	0.33	K	0.22
511	N	0.69	S	0.26
513	V	0.44	I	0.31
526	S	0.23	A	0.22
528	L	0.30	V	0.21
531	F	0.42	L	0.31

Supplementary Table 5.


Ambiguously reconstructed sites in tAncFMOs. Ambiguously reconstructed sites are defined as those for which the second-best state shows a PP > 0.2 (*i.e.*: PP of the MAP state < 0.8).

Supplementary Fig. 11

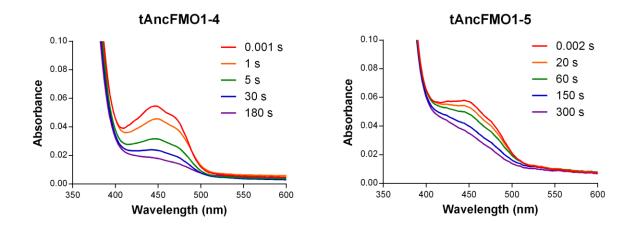
Homology models of tAncFMO1-5 and tAncFMO1-4. Both YASARA (top) and AlphaFold2 (bottom) were used to generate structural models for tAncFMO1-5 and tAncFMO1-4. tAncFMO1-4 is shown in aquamarine and plum, respectively. tAncFMO1-5 is shown in pale orange and pale green, respectively. Molecules of FAD and NADPH are shown in yellow and blue, respectively. As their binding sites are highly conserved among FMOs enzymes, they could be modelled using as references the crystallographically determined structures of the mammalian FMOs. We note that both YASARA and AlphaFold2 models are very similar as outlined by root-mean-square values between their Cα atoms below 1 Å. Images were generated using ChimeraX 1.2.5.

а

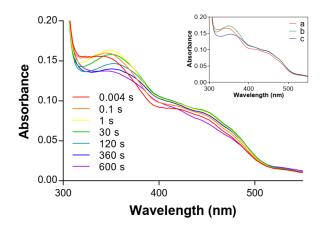

 tAncFMO1-5
 F
 M
 N
 S
 L
 L
 Q
 I
 S
 N
 E
 E
 Y
 H
 V
 L
 L
 K
 I
 N
 S
 L

 tAncFMO1-4
 L
 V
 S
 C
 V
 I
 E
 T
 A
 C
 K
 I
 F
 N
 T
 F
 I
 N
 L
 D
 N
 F

 Position
 78
 83
 90
 94
 98|43
 46
 81
 82
 97|15
 17
 20
 26
 30
 42
 49
 86
 96|07
 11
 15


 300
 400
 400
 500
 500
 500

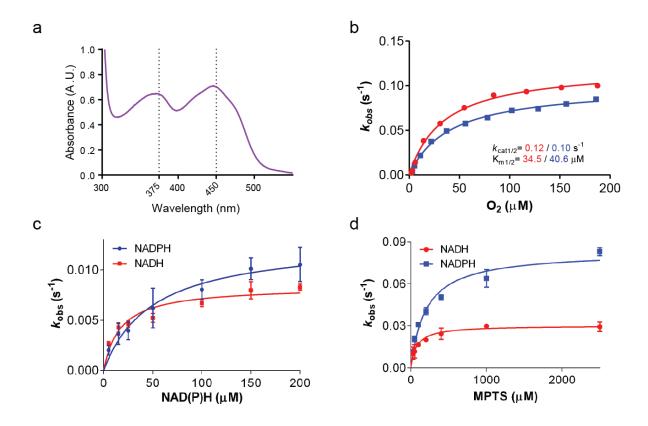
b


	ASR			Degre	e of cons	ervation		
Site	tAnci	FMO1-5	tAncFMO1-4			BV	S-& N-	Structural Input
	MAP	PP	MAP	PP	Consurf	lineage	lineage	
12	A	1.00	V	0.98	4	_	-	Core - FAD-binding domain
44	K	1.00	Т	1.00	6	_	-	Surface - FAD-binding domain
60	I	1.00	Т	1.00	8	I	T/S	Core - FAD-binding domain
74	I	1.00	F	0.94	7	I	(variable)	Surface - FAD-binding domain
222	N	1.00	S	0.98	7	N	S	Surface - 80 residue insertion
235	Н	0.47	F	0.97	1	-	-	Core - 80 residue insertion
263	R	1.00	W	0.98	5	-	-	Surface - 80 residue insertion
272	K	0.65	V	0.55	3	-	_	Surface - 80 residue insertion
275	Н	1.00	N	0.72	7	Н	(variable)	Surface - 80 residue insertion
283	М	0.80	V	0.46	7	M/T	V/I	Core - 80 residue insertion
290	N	1.00	S	0.98	8	N	(variable)	Surface - 80 residue insertion
294	S	1.00	С	1.00	7	S	(variable)	Surface - 80 residue insertion
381	I	1.00	Т	0.85	7	I	T/G	Core - FAD-binding domain
417	E	0.72	I	0.88	2	_	-	Surface - FAD-binding domain
420	Y	1.00	F	0.81	7	Y	F/G	Surface - FAD-binding domain
426	Н	1.00	N	0.77	6	_	-	Surface - FAD-binding domain

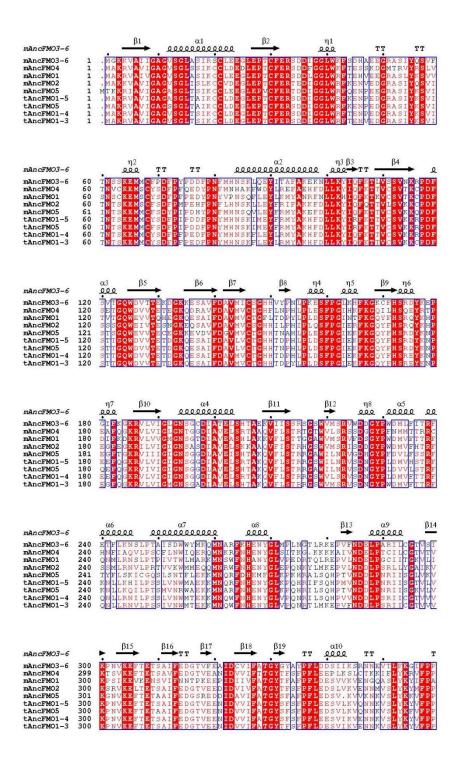
Reverse mutational strategy. a Alignment of the tAncFMO1-5 and tAncFMO1-4 showing the 45 substitutions occurred at the connecting branch in the phylogeny. **b** The upper scheme depicts the input employed for the integrated analysis: the reconstruction probabilities, the degree of conservation per site and the structural location of the sites shown as pink spheres. The table shows the detailed analysis of the 16 selected sites. The ASR column shows the MAP state of each site and its posterior probabilities in the reconstruction. The degree of conservation was computed by the ConSurf server⁴ using the multiple sequence alignment of all the gathered tetrapod sequences. The score ranges from 1 to 9 for variable to conserved sites, respectively. Structural input was based on the previously resolved crystal structures from mAncFMOs and relevant information about the structural position of residues and potential impact on catalysis. The binding domains are assigned as follows: FAD residues 2-154 and 331-442, NADPH residues 155-213 and 296-330, 80 residues insertion 214-295.

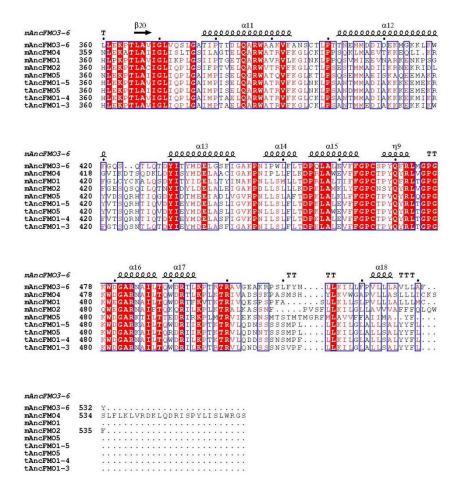
Supplementary Fig. 13

Reduction spectra of tAncFMO1-4 and tAncFMO1-5. On the left, the spectra corresponding to tAncFMO1-4 reduction is shown (k_{red} = 0.25 ± 0.016 s⁻¹). On the right, the spectra corresponding to tAncFMO1-5 (k_{red} = 0.0097 ± 1.2 x10-4 s⁻¹) is shown. Enzyme concentrations were 4 μ M and 3.5 μ M for tAncFMO1-4 and tAncFMO1-5, respectively. NADPH concentration was 100 μ M. All measurements were conducted anaerobically at 25 °C in 50 mM KPi buffer containing 250 mM NaCl and 0.05% v/v TritonTm X-100 reduced. All measurements were repeated independently three times (n= 3 independent experiments). Source data are provided as a Source Data file.


Supplementary Fig. 14

Oxygenating enzyme intermediate formation for tAncFMO1-5. The upper right insets show the deconvoluted spectra fitted into a two-step process $\mathbf{a} \xrightarrow{\mathbf{k_1}} \mathbf{b} \xrightarrow{\mathbf{k_2}} \mathbf{c}$ with $k_I = 1.5 \pm 0.1 \text{ s}^{-1}$ and $k_2 = 0.01 \pm 0.0005 \text{ s}^{-1}$. Measurements were repeated independently three times (n= 3 independent experiments). Source data are provided as a Source Data file.




Supplementary Fig. 15

Oxygenating enzyme intermediate formation for 3x-tAncFMO1-4. The upper right insets show the deconvoluted spectra fitted into a two-step process $a \xrightarrow{k_1} b \xrightarrow{k_2} c$ with $k_I = 1.36 \pm 0.43$ s⁻¹ and $k_2 = 0.0092 \pm 0.0001$ s⁻¹. Measurements were repeated independently three times (n= 3 independent experiments). Source data are provided as a Source Data file.

Spectral characterization of the 3x-tAncFMO1-4. a UV-visible spectra of the tAncFMO1-4 triple mutant with dotted lines highlighting the signature absorbance maximums. **b** Steady-state kinetics for O₂. 3 μM of the 3x-tAncFMO1-4 mutant was mixed with air-saturated buffer containing excess of NADPH (0.6 mM) and methyl-*p*-tolyl sulfide (2.5 mM). The *k*_{obs} at a certain time was calculated by OxyTrace⁺ Windows[®] software. All assays were repeated twice (red and blue). **c** Uncoupling rates measured employing NADPH (blue) or NADH (red). The observed rates in the graph were obtained by following the absorbance change at 340 nm. The reaction mixtures contained 2 μM of enzyme and a variable NAD(P)H concentration from 5 μM-200 μM. All measurements were carried out in 50 mM KPi buffer containing 250 mM NaCl, 0.05% TritonTm X-100 reduced and 1% methanol (pH 7.5) at 25 °C. Data are presented as mean values and error bars correspond to SD (n= 3 independent experiments). **d** Steady-state kinetics towards methyl-*p*-tolyl sulfide (MPTS). The reaction mixtures contained 2 μM of enzyme, 100 μM NADPH and a variable MPTS concentration from 25 μM to 2500 μM. All measurements were carried out in 50 mM KPi buffer containing 250 mM NaCl, 0.05% TritonTm X-100 reduced and 1% methanol (pH 7.5) at 25 °C. Data are presented as mean values and error bars correspond to SD (n= 3 independent experiments). Source data are provided as a Source Data file.

Multiple sequence alignment (MSA) of tAncFMOs. The MSA was obtained using the ENDscript server (https://endscript.ibcp.fr)⁵ and the structural features of mAncFMO3-6 are given as reference.

SUPPLEMENTARY REFERENCES

- 1. Bailleul, G., Nicoll, C.R., Mascotti, M.L., Mattevi, A. & Fraaije, M.W. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties. *Journal of Biological Chemistry* **296**, 100221 (2021).
- 2. Nicoll, C.R. et al. Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. *Nature Structural & Molecular Biology* **27**, 14-24 (2020).
- 3. Forneris, F., Orru, R., Bonivento, D., Chiarelli, L.R. & Mattevi, A. ThermoFAD, a Thermofluor((R))-adapted flavin ad hoc detection system for protein folding and ligand binding. *Febs Journal* **276**, 2833-2840 (2009).
- 4. Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucleic Acids Research* **44**, W344-W350 (2016).
- 5. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Research* **42**, W320-W324 (2014).