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a b s t r a c t

Purpose: To establish dynamic prediction models by machine learning using daily multi-
dimensional data for coronavirus disease 2019 (COVID-19) patients.
Methods: Hospitalized COVID-19 patients at Peking Union Medical College Hospital from
Nov 2nd, 2022, to Jan 13th, 2023, were enrolled in this study. The outcome was defined as
deterioration or recovery of the patient's condition. Demographics, comorbidities, labo-
ratory test results, vital signs, and treatments were used to train the model. To predict the
following days, a separate XGBoost model was trained and validated. The Shapley additive
explanations method was used to analyze feature importance.
Results: A total of 995 patients were enrolled, generating 7228 and 3170 observations for
each prediction model. In the deterioration prediction model, the minimum area under the
receiver operating characteristic curve (AUROC) for the following 7 days was 0.786 (95% CI
0.721e0.851), while the AUROC on the next day was 0.872 (0.831e0.913). In the recovery
prediction model, the minimum AUROC for the following 3 days was 0.675 (0.583e0.767),
while the AUROC on the next day was 0.823 (0.770e0.876). The top 5 features for
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deterioration prediction on the 7th day were disease course, length of hospital stay, hy-
pertension, and diastolic blood pressure. Those for recovery prediction on the 3rd day were
age, D-dimer levels, disease course, creatinine levels and corticosteroid therapy.
Conclusion: The models could accurately predict the dynamics of Omicron patients’ con-
ditions using daily multidimensional variables, revealing important features including
comorbidities (e.g., hyperlipidemia), age, disease course, vital signs, D-dimer levels,
corticosteroid therapy and oxygen therapy.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

Coronavirus disease 2019 (COVID-19) has been themost serious global public health crisis in recent years, withmany cases
of multiple organ dysfunction syndrome (MODS) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
leading to a major challenge of severe depletion of healthcare resources and many patient deaths. Similar to all critically ill
patients, the key to rescuing critically ill COVID-19 patients is to identify the signs of deterioration early.

Although numerous studies have tried to predict the risks borne by COVID-19 patients, there are still unmet challenges.
Most previous studies used patient status at some fixed time point (usually at admission) (Assaf et al., 2020; Gao et al., 2020)
or used only a limited dimension of longitudinal clinical status, e.g., only laboratory tests (Kogan et al., 2022), to predict the
risk of deterioration or death. However, a patient outcome is determined by the interaction of viral invasion and replication
process, immune response intensity, underlying physical condition, disease progression, state of organ dysfunction, and the
timing, manner, and intensity of clinical treatments, which are constantly evolving. Due to limitations in their designs, neither
predictive models using fixed time cross-sectional variables nor models using time series of limited factors can scientifically
and completely reflect the dynamic changes of patients in the real world.

Therefore, our study collected data on the daily course, including the patient's inflammatory response, the underlying
physical condition, the state of organ dysfunction, and the timing, manner, and intensity of clinical intervention after these
Omicron patients started receiving care, to accurately portray the evolution of the patient's condition as these factors
continued to interact and to develop dynamic prediction models (deterioration model and recovery model) to provide an
earlier warning of changes in the patient condition and to identify key predictive features.

2. Method

2.1. Overview

We conducted a cohort study on datasets that contained times series data from electronic medical records of COVID-19
patients, whose overall workflow is illustrated in Fig. 1. Our goal was to establish a dynamic model for predicting the
change in patients' conditions (mild, moderate, severe, critical, and death) using daily multidimensional data for COVID-19
patients. Two types of prediction models were constructed based on changes in patients’ conditions: prediction of deterio-
ration and prediction of recovery. After filling of missing data, dataset construction (including label of classification), variable
engineering, feature selection, and comparison of different machine learning algorithms, the best algorithm was chosen to
build the final model.

2.2. Study design and population

This was a single-centre retrospective cohort study conducted at Peking Union Medical College Hospital from November
2nd, 2022, to January 13th, 2023, and included hospitalized COVID-19 patients (Fig. 1a). Confirmed cases were determined by
positive COVID-19 nucleic acid or antigen tests or clinical symptom onset. Pregnant patients were excluded.

The baseline was defined as the day of infection onset (Fig. 1b). For patients who visited the hospital after infection, the
onset day was defined as the date when the symptoms first occurred. For patients who became infected during the hospital
stay, the day of positive nucleic acid testing was used as the onset day. This study ended on January 13th, 2023. For patients
who had already been discharged or died before this date, the observation end time was defined as the time of discharge or
death. For patients who were still in the hospital on this date, the observation end time was defined as this day.

2.3. Outcome

This study used patient deterioration or recovery as the primary outcome (Fig. 1b). According to the “10th edition of the
diagnosis and treatment protocol for COVID-19” in China (Diagnosis and Treatment Protocol for, 2023), patients' conditions
were classified as mild, moderate, severe, or critical on every in-hospital day. Two dynamic prediction models were defined
1098
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Fig. 1. Workflow of study.
a. Extraction of electronic health records. Electronic health records including comorbidities, laboratory test, vital sings, medications, and other treatments were
extracted both for in-hospital visits and emergency visits. b. Outcome definition. c. Dataset construction. d. Feature engineering. e. Feature selection. f. Model
construction and evaluation. g. Model application.
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based on changes in patients’ conditions: 1) prediction of deterioration: for patients categorized as having a mild or moderate
condition at the observation time, whether the patient would deteriorate to a severe or critical condition or death in the
following 7 days was predicted; and 2) prediction of recovery: for patients categorized as having a severe or critical condition
at the observation time, whether the patient would recover to a mild or moderate condition in the following 3 days and
maintain a mild or moderate condition for at least 3 days after recovery were predicted.
2.4. Variables

The study variables were obtained from the electronicmedical record system (Fig.1a) and included both baseline variables
and time series of multidimensional variables. Baseline variables consisted of demographic information, personal history,
history of COVID-19 vaccination, and comorbidities. Daily recorded longitudinal variables included laboratory test results,
vital signs and treatments. The comprehensive variable list can be found in Supplementary Table S1.
2.5. Filling of missing data

For missing data of laboratory tests and vital signs, for each valid measurement result, if there was no value after the time
of this measurement, the valid measurement result would be filled for up to 2 days after the valid measurement. If therewas a
new valid measurement within 2 days, the filling would be terminated.
2.6. Dataset construction (including label of classification)

Since this study focused on dynamic changes occurring in patients, we generated datasets consisting of observations
(Fig. 1c). One observation was generated for each patient at midnight every day during the course of COVID-19, consisting of
all baseline and dynamic features within the previous seven/three (for deterioration and recovery prediction respectively)
days.
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For the deterioration prediction modelling procedure, only observations in which patients were in a mild or moderate
state were included. An observation was marked as a positive label of classification, if the patient would deteriorate to a
severe condition, critical condition or death in the following 7 days; otherwise, the label of observation was negative.

To predict not only whether an observation had a positive label but also on which day the positive label (deterioration)
occurred, the full observation dataset was divided into seven sub-datasets based on the occurrence time of the positive label
(referred as “prediction length”, in units of days). The negative observations in all seven sub-datasets were the same, i.e., those
with negative labels (no deterioration in the next seven days).

Similar procedures applied to recovery prediction (refer to S1.2 of the Supplementary Materials for more details on re-
covery prediction modeling).
2.7. Variable engineering and feature selection

Medication variables were merged into antiviral, corticosteroid, and vasoactive drugs (variable merging in Fig. 1d,
Supplementary Table S1). Multiresolution variables were generated from raw longitudinal variables (Fig. 1d), referring to S1.3
of the Supplementary Materials for details.

Spearman correlation analysis was used to analyze inter-feature dependencies (Supplementary Figs. S5eS10). During
feature selection, a combined approach considering both correlation from data and the definition of each variable was
adopted; only representative features were retained among strongly collinear variables (Fig. 1e for illustration,
Supplementary Figs. S11eS12 for correlations of selected variables; refer to S1.4 of the Supplementary Materials for details).
2.8. Model development and evaluation

Six widely used algorithms, including extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016), logistic regression
(LR), support vector machines (SVM), decision tree (DT), random forest (RF), and neutral network (NN), were used to develop
the prediction model. Because the missing data could not be directly used by those algorithm implementations except
XGBoost, multiple imputations were conducted according to the following steps. First, based on the original dataset, features
with more than 30% missing values were removed from the analysis, to avoid unreliable imputation. Secondly, the remaining
features with equal or less than 30% missing values were imputed by the multivariate imputation by the chained equation
(MICE) method. We then selected the best-performing XGBoost algorithm to construct the final model (Fig. 1f).

To develop this model, on each sub-dataset (defined by prediction length), one separate prediction model was trained and
evaluated using 1000 bootstrap iterations. The area under the receiver operating characteristic (ROC) curve (AUROC)was used
as the performance evaluation metric. The AUROC was strictly evaluated on validation sets in the bootstrap method to avoid
estimation caused by overfitting. In every bootstrap iteration, we randomly sampled with replacements to form a training set
and used the remained unselected as validation set (Fig. 1f). The means and standard deviations of the AUROCs were
calculated based on 1000 bootstrap iterations.

For case study and feature inspection, patients for eachmodel were randomly divided into training and validation sets in a
7:3 ratio. The training set was used for variable inspection, while the validation set was used for a case study. In the case study,
the optimal threshold was chosen by ensuring a sensitivity�0.6 for both the deterioration and recovery prediction models
(Fig.1g). Model-based predictive probabilities and actual changes in disease conditionwere drawn to visualize the individual-
level application of the model. To inspect features, the Shapley additive explanations (SHAP) method and dependency plot
were used to analyze the relationship between features and outcomes. A Venn plot and box plot of SHAP values were
employed to illustrate the interaction effects between important comorbidities and the relationship between important
comorbidities and the outcome.
2.9. Statistical analysis

Continuous variables are presented as medians and interquartile ranges (IQRs), which were compared using the Kruskal-
Wallis test. Categorical variables are expressed as numbers and percentages (%). Pearson's c2 test or Fisher's exact test were
used for categorical data, as appropriate. All p values were 2-tailed, and a p value < 0.05 was considered statistically sig-
nificant. Statistical analyses were performed in Python 3.9 and R4.2.2.
3. Results

3.1. Study population

A total of 995 patients were eligible for inclusion in this study. Themedian age of the cohort was 67 years. According to the
most severe condition during the disease course, 507 patients were mild or moderate, 308 patients were severe, 110 patients
were critical, and 70 patients died. The baseline characteristics are shown in Table 1. A total of 604 patients were eligible for
the deterioration prediction model, and 445 patients were eligible for the recovery prediction model.
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3.2. Dataset construction and variable selection

A total of 7228 and 3170 observations were included for the deterioration and recovery prediction models, respectively. A
total of 192 variables were selected for the deterioration model, and 88 variables were selected for the recovery model. The
full list of selected variables can be found in Supplementary Tables S2eS3. The correlation of the selected variables, which
appears at least once in the top 10 important variables in different prediction lengths, are much lower than those before
feature selection (Supplementary Figs. S11eS12).

3.3. Model evaluation

The results of different algorithms are shown in Table 2. Of the considered machine learning algorithms, the XGBoost
performed better than other algorithms in most prediction lengths in both deterioration and recovery prediction. To improve
the usability of clinical application, as not all variables were available every day, we selected the algorithm XGBoost to build
the final model on the dataset without multiple imputation.

For the deterioration prediction models, bootstrap validation showed that the AUROC of a prediction one day in advance
was 0.872 (95% confidence interval (CI) 0.831e0.913), while that of a prediction seven days in advance was 0.786 (95% CI
0.721e0.851), with a daily AUROC exceeding 0.786 throughout the entire predictionwindow (Fig. 2a, Supplementary Fig. S13,
Table S4). On the model developed by random splitting, the optimal thresholds were 0.298, 0.230, 0.231, 0.232, 0.212, 0.209,
and 0.202 for predicting the next 7 days.

In case study of deterioration prediction task, patient b1 in the test set experienced a deterioration event at t ¼ 15 (Fig. 2
b1). As the observation time approached the event time (from t ¼ 9 to t ¼ 15 in Fig. 2 b1), the model could predict the risk
more accurately. For patient B2, the model correctly predicted low risk for the next 7 days, regardless of the observation time
(Fig. 2 b2).

For the recovery prediction models, bootstrap validation showed that the AUROC of a prediction one day in advance was
0.823 (95% CI 0.770e0.876), while that of a prediction three days in advance was 0.675 (95% CI 0.583e0.767) (Fig. 2c,
Supplementary Table S4). On the model developed by random splitting, the optimal thresholds were 0.292, 0.235, and 0.201
for predicting the next 3 days.

In the case study of the recovery prediction task, patient d1 in the test set had a recovery event at t ¼ 8, which lasted until
t ¼ 10 (Fig. 2 d1). As the observation time approached the event time, the model was able to predict the risk more accurately.
For patient d2, the model correctly predicted low risk for the next three days, regardless of the observation time (Fig. 2 d2).

3.4. Feature inspection

The features with an important impact on predicting deterioration 1e7 days in advance were comorbidities, disease
course, temperature, respiratory rate, and blood pressure (Supplementary Figs. S14eS21). Those that had an important
impact on predicting recovery 1e3 days in advance were age, recent condition, disease course and observation time, treat-
ments, and lymphocyte, D-dimer, and creatine levels (Supplementary Figs. S22eS25).

Fig. 3a illustrates the important features, taking the prediction of deterioration in the next 7 days as an example. In Fig. 3b,
dependency plots of the important continuous variables from Fig. 3a are presented. Similarly, Fig. 3c and d report important
variables and dependency plots for predicting recovery in the next 3 days.

Regarding the deterioration predictionmodel, the population distribution between important comorbidities and box plots
of their SHAP values can be seen in Fig. 4.

4. Discussion

In this research, we retrospectively collected data on 995 hospitalized Omicron patients in China during the outbreak from
Nov. 2022 to Jan. 2023. Based on the multidimensional longitudinal clinical data series of each patient, we established and
internally validated prediction models for dynamically predicting the following at any observed time during the disease
course: 1) the risk of deterioration from mild or medium to severe or critical in the next 7 days and 2) the possibility of
recovery from severe or critical to mild or medium in the following 3 days. Additionally, within the explainable machine
learning framework, some important features were identified, including both baseline comorbidities and dynamic clinical
manifestations until the observation time. The models developed can be integrated as a tool system to assist clinicians in the
ICU in dynamically evaluating the possibility of condition changes in the medium term (7 days or 3 days), thus potentially
helping improve the prognosis of Omicron-infected hospitalized patients.

Although predicting the risks of COVID-19 patients bymachine learning has been intensively studied since 2020, our work
went beyond existing frontiers by introducing multidimensional daily clinical data series as predictors, establishing models
using an ensemble machine learning approach to dynamically predict deterioration or recovery during the disease course,
and validating the models to prove their effective discrimination capabilities.

Kogan et al. first developed a dynamic machine learning model for alerting of the imminent deterioration of hospitalized
COVID-19 patients using longitudinal values of eight routinely collected laboratory test results (Kogan et al., 2022). However,
the patient's clinical condition changes could not only be determined by daily laboratory test results but also need to consider
1101



Table 1
Baseline characteristics of included Omicron patients.

Characteristics Total Mild/Moderate (n ¼ 507) Severe (n ¼ 308) Critical (n ¼ 110) Death (n ¼ 70) P value

Gender (Male) 568 (57.1) 269 (53.1) 176 (57.1) 81 (73.6) 42 (60) <0.001
Age median (IQR) 67 (53,79) 64 (49,77) 68.5 (57,79) 66.5 (50.2,76) 79 (65.2,86) <0.001
Hospitalization total duration median (IQR) 8 (4,15) 7 (3,15) 9 (6,15) 12 (5,23) 4 (2,9.8) <0.001
Duration of infectivity median (IQR) 16 (5,24) 14 (3,24) 18 (8,23) 20 (7,28.8) 11 (4.2,19.2) <0.001
Obesity 24 (2.4) 13 (2.6) 5 (1.6) 5 (4.5) 1 (1.4) 0.388
Smoker <0.001
Missing 172 (17.3) 80 (15.8) 38 (12.3) 31 (28.2) 23 (32.9)
Yes 233 (23.4) 113 (22.3) 72 (23.4) 31 (28.2) 17 (24.3)

Vaccinated <0.001
Missing 65 (6.5) 57 (11.2) 4 (1.3) 3 (2.7) 1 (1.4)
Yes 106 (10.7) 50 (9.9) 43 (14) 10 (9.1) 3 (4.3)

Hypertension 258 (25.9) 90 (17.8) 112 (36.4) 21 (19.1) 35 (50) <0.001
Coronary heart disease 103 (10.4) 25 (4.9) 51 (16.6) 9 (8.2) 18 (25.7) <0.001
Hyperlipidemia 115 (11.6) 48 (9.5) 52 (16.9) 7 (6.4) 8 (11.4) 0.003
Hypoalbuminemia 22 (2.2) 3 (0.6) 10 (3.2) 1 (0.9) 8 (11.4) <0.001
Homeostatic imbalance 77 (7.7) 18 (3.6) 35 (11.4) 12 (10.9) 12 (17.1) <0.001
Immune system disease 14 (1.4) 10 (2) 4 (1.3) 0 (0) 0 (0) 0.452
Respiratory system disease 479 (48.1) 168 (33.1) 180 (58.4) 72 (65.5) 59 (84.3) <0.001
Neurological disease 89 (8.9) 34 (6.7) 36 (11.7) 7 (6.4) 12 (17.1) 0.005
Endocrine disease 296 (29.7) 122 (24.1) 113 (36.7) 29 (26.4) 32 (45.7) <0.001
HIV 3 (0.3) 0 (0) 3 (1) 0 (0) 0 (0) 0.134
Digestive failure 260 (26.1) 115 (22.7) 98 (31.8) 26 (23.6) 21 (30) 0.027
Common Orthopedic disorder 140 (14.1) 65 (12.8) 49 (15.9) 12 (10.9) 14 (20) 0.216
Hematological disease 149 (15) 69 (13.6) 42 (13.6) 18 (16.4) 20 (28.6) 0.009
Urogenital disease 221 (22.2) 85 (16.8) 71 (23.1) 33 (30) 32 (45.7) <0.001
Cancer 242 (24.3) 134 (26.4) 71 (23.1) 19 (17.3) 18 (25.7) 0.209
Lung cancer 50 (5) 23 (4.5) 17 (5.5) 6 (5.5) 4 (5.7) 0.914
Hematological malignancies 44 (4.4) 30 (5.9) 10 (3.2) 2 (1.8) 2 (2.9) 0.145
T_stage (Hematological malignancies ¼ 0) 0.004
Missing 54 (27.3) 21 (20.2) 19 (31.1) 6 (35.3) 8 (50)
Tis 2 (1) 0 (0) 1 (1.6) 0 (0) 1 (6.2)
T1 44 (22.2) 20 (19.2) 21 (34.4) 3 (17.6) 0 (0)
T2 32 (16.2) 18 (17.3) 9 (14.8) 2 (11.8) 3 (18.8)
T3 30 (15.2) 21 (20.2) 6 (9.8) 1 (5.9) 2 (12.5)
T4 36 (18.2) 24 (23.1) 5 (8.2) 5 (29.4) 2 (12.5)

N_stage (Hematological malignancies ¼ 0) 0.108
Missing 65 (32.8) 28 (26.9) 22 (36.1) 6 (35.3) 9 (56.2)
N0 61 (30.8) 29 (27.9) 25 (41) 3 (17.6) 4 (25)
N1 29 (14.6) 19 (18.3) 6 (9.8) 3 (17.6) 1 (6.2)
N2 25 (12.6) 19 (18.3) 3 (4.9) 2 (11.8) 1 (6.2)
N3 18 (9.1) 9 (8.7) 5 (8.2) 3 (17.6) 1 (6.2)

M_stage (Hematological malignancies ¼ 0) 0.439
Missing 37 (18.7) 16 (15.4) 14 (23) 3 (17.6) 4 (25)
M0 105 (53) 56 (53.8) 35 (57.4) 8 (47.1) 6 (37.5)
M1 56 (28.3) 32 (30.8) 12 (19.7) 6 (35.3) 6 (37.5)

Clinical_stage (Hematological malignancies ¼ 0) <0.001
Missing 54 (27.3) 20 (19.2) 24 (39.3) 4 (23.5) 6 (37.5)
0 2 (1) 0 (0) 1 (1.6) 0 (0) 1 (6.2)
I 31 (15.7) 16 (15.4) 14 (23) 1 (5.9) 0 (0)
II 21 (10.6) 7 (6.7) 9 (14.8) 2 (11.8) 3 (18.8)
III 37 (18.7) 28 (26.9) 5 (8.2) 3 (17.6) 1 (6.2)
IV 53 (26.8) 33 (31.7) 8 (13.1) 7 (41.2) 5 (31.2)
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multidimensional variables on each day, including viral infection reflected by the disease course, the patient's underlying
condition and organ dysfunction reflected by vital signs and laboratory tests, and the timing, manner, and intensity of clinical
treatments. Predictive models can only produce scientific, accurate and up-to-date results if risk forecasts are updated daily
with the full set of factors.

Therefore, thanks to the complete range of variables, we were able to extend the deterioration prediction range from two
to four days to seven days, compared with the study by Kogan et al. Using higher dimension parameters, our models’ AUROCs
(0.872, 0.801, 0.807 and 0.819 from the following 1e4 days, respectively) exceeded their internal validated result (0.80 in 2
days/0.79 in 4 days).

In addition, forecasting whether the patient's condition could be improved in the next few days is useful for those who
already have a severe condition. However, to our knowledge, this has not yet been reported. Although the AUROC of recovery
in the next 3 days was limited (0.675) in this study, the AUROC of recovery on the next daywas satisfactory (0.823), paving the
way for refined recovery assessment research in the future.
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Table 2
Six algorithms’ AUROC (95% Confidence Interval) of deterioration and recovery prediction.

Prediction Model prediction length
(days)

XGBoost Logistic
Regression

Support Vector
Machines

Decision Tree Random Forest Neutral
Network

Deterioration Prediction
Model

1 0.899 (0.867,
0.930)

0.839 (0.809,
0.870)

0.840 (0.809, 0.878) 0.855 (0.820,
0.878)

0.828 (0.793,
0.869)

0.833 (0.797,
0.876)

2 0.823 (0.783,
0.855)

0.835 (0.788,
0.871)

0.836 (0.788, 0.874) 0.787 (0.741,
0.826)

0.800 (0.748,
0.838)

0.808 (0.755,
0.846)

3 0.819 (0.764,
0.857)

0.793 (0.731,
0.829)

0.801 (0.741, 0.837) 0.789 (0.737,
0.843)

0.800 (0.744,
0.841)

0.799 (0.723,
0.855)

4 0.832 (0.784,
0.878)

0.794 (0.759,
0.831)

0.805 (0.762, 0.842) 0.795 (0.725,
0.850)

0.818 (0.782,
0.850)

0.806 (0.758,
0.847)

5 0.799 (0.743,
0.850)

0.753 (0.697,
0.801)

0.759 (0.719, 0.817) 0.765 (0.715,
0.843)

0.794 (0.749,
0.836)

0.764 (0.696,
0.825)

6 0.799 (0.735,
0.845)

0.754 (0.673,
0.814)

0.756 (0.690, 0.801) 0.765 (0.690,
0.821)

0.799 (0.737,
0.858)

0.764 (0.689,
0.837)

7 0.800 (0.739,
0.866)

0.764 (0.681,
0.827)

0.763 (0.690, 0.818) 0.741 (0.637,
0.802)

0.804 (0.738,
0.870)

0.768 (0.671,
0.853)

Recovery Prediction
Model

1 0.811 (0.766,
0.850)

0.793 (0.750,
0.837)

0.806 (0.763, 0.849) 0.725 (0.671,
0.815)

0.792 (0.736,
0.835)

0.794 (0.730,
0.848)

2 0.751 (0.690,
0.814)

0.727 (0.652,
0.792)

0.738 (0.672, 0.814) 0.660 (0.568,
0.745)

0.740 (0.668,
0.825)

0.728 (0.674,
0.802)

3 0.649 (0.580,
0.717)

0.621 (0.529,
0.728)

0.643 (0.567, 0.732) 0.558 (0.412,
0.665)

0.650 (0.568,
0.724)

0.625 (0.504,
0.737)

Prediction length (days): duration between observation and positive outcome within prediction window.
The italic bold number means the best mean AUROC at the prediction length of prediction model.
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Within the explainable machine learning framework, we identified important factors associated with deterioration or
recovery of patients’ conditions in the next few days.

Age and disease course were important predictors for both models. There is a consensus that younger people are more
likely to recover, so no further elaboration is needed. In particular, we found that the first 10 days of the disease course should
be of great concern, given that patients had a higher risk of deterioration or were more likely to recover during this period.
The early stage of the disease is essential for the body's immune response, and Lucas et el. Indicated that major differences in
immune phenotypes between moderate and severe disease become apparent after day 10 of infection (Lucas et al., 2020). In
addition, a long disease course usually indicates delayed viral clearance, leading to vascular damage and impaired tissue
repair (Merad et al., 2022); therefore, the first 10 days of the disease course are noteworthy for physicians, and timely in-
terventions are crucial to the patient's prognosis.

In the deterioration prediction model, the most important predictive features were vital signs, including body tempera-
ture, respiratory rate, and blood pressure, which could reflect the patient's disease condition in real time and were more
sensitive than the lagging laboratory results.

In terms of comorbidities, this study confirmed the well-known findings that hypertension, coronary heart disease and
diabetes are essential to the severity of COVID-19. More interestingly, hyperlipidemia was found to be a risk factor for
worsening in the next 1e7 days. Additionally, the importance of hyperlipidemia was independent of some potential known
confounders (Fig. 4). A previous cross-sectional study found that the presence of atherosclerotic dyslipidemia (low high-
density lipoprotein and high triglyceride levels) during infection was independently associated with a worse prognosis in
COVID-19 infection (Masana et al., 2021), and we also found that hyperlipidemia strongly impacted the deterioration of
COVID-19 patients. High cholesterol can facilitate the SARS-CoV-2 host cell infection process mediated by viral spike protein
(SARS-2-S) and angiotensin-converting enzyme 2 (ACE2) receptor attachment by increasing plasma membrane lipid raft
density and directly binding viral proteins (Radenkovic et al., 2020;Wei et al., 2020). Dias et al. found that the use of a DGAT-1
(a key enzyme in triacylglycerol synthesis) inhibitor during SARS-CoV-2 infection decreased the viral load in monocytes by
reducing lipid droplet biogenesis (Dias et al., 2020). Therefore, hyperlipidemia deserves as much attention as other
comorbidities.

In the recovery prediction model, the important predictive features also included D-dimer levels, oxygen inhalation,
extracorporeal membrane oxygenation (ECMO), and corticosteroid therapy.

Patients with normal D-dimer levels were more likely to improve. Our team identified coagulopathy in patients with
COVID-19 in early 2020 (Zhang, Xiao, et al., 2020), and abnormal D-dimer values were found to be independently associated
with critical illness, thrombotic events, acute kidney injury, and all-cause mortality (Berger et al., 2020). With normal
fibrinogen and platelet levels, elevated circulating D-dimer (reflecting pulmonary vascular bed thrombosis with fibrinolysis)
was an important early feature of severe pulmonary intravascular coagulopathy in COVID-19 (McGonagle et al., 2020).
Therefore, monitoring of patients’ D-dimer levels is important in clinical practice, and the conditional use of prophylactic
anticoagulation for critically ill patients has been recommended by guidelines (Cuker et al., 2022; Therapeutics and COVID,
2023).
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Fig. 2. Model performance at population and individual level.
a/c. prediction length: duration between observation and positive outcome within prediction window. ROC: Receiver-operating characteristic curve. ROCs of
other prediction lengths were shown in supplementary material. b. The blue dotted line represents the risk threshold, dividing the graph into two regions. Red
represents high risk, and green represents low risk. The star points represent predicted values. The red dotted line perpendicular to the x-axis represents
occurrence of target outcome at that day. b1 and b2 represent different individual, respectively. d. The blue dotted line represents the risk threshold, dividing the
graph into two regions. Green represents high risk, and red represents low risk. The star points represent predicted values. The red dotted line perpendicular to
the x-axis represents occurrence of target outcome at that day. d1 and d2 represent different individual, respectively.

Fig. 3. Feature inspection.
b. the x-axis represents the actual values and the y-axis represents the SHAP values. Colorbar scale represents the actual values of feature, the greater the value,
the redder the color. *Interpretation: in_hos_day: Time t is days after admission; t: observation time measured by length of disease duration; pre_-
hos_disease_duration: duration of disease before admission; SBP: systolic blood pressure for the preceding 7 days; DBP_median_7: diastolic blood pressure for
the preceding 7 days; D_dimer_median_3: median D_dimer for the preceding 3 days; Crea_median_3: median creatinine for the preceding 3 days;
Corticosteriods_-3: whether corticosteriods were used 3 days before time t.
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Fig. 4. Comorbidities inspection.
a1. Venn plot of hypertension and hyperlipidemia in Deterioration Task population. a2. Boxplot of SHAP values by hypertension and hyperlipidemia in Deteri-
oration Task population. b1. Venn plot of hyperlipidemia and endocrine disease in Deterioration Task population. b2. Boxplot of SHAP values by hyperlipidemia
and endocrine disease in Deterioration Task population. c1. Venn plot of hyperlipidemia and coronary heart disease in Deterioration Task population. c2. Boxplot
of SHAP values by hyperlipidemia and coronary heart disease in Deterioration Task population. (a1). Combined with hypertension: 151; combined with
hyperlipidemia: 74; combined with hypertension and hyperlipidemia: 40; combined with neither hypertension nor hyperlipidemia: 419. (b1). Combined with
hyperlipidemia: 74; combined with endocrine disease: 156; combined with hyperlipidemia and endocrine disease: 46; combined with neither hyperlipidemia
nor endocrine disease: 420. (c1). Combined with hyperlipidemia: 74; combined with coronary heart disease:64; combined with hyperlipidemia and coronary
heart disease:22; combined with neither hyperlipidemia nor coronary heart disease: 488. (a2/b2/c2). ****: p�1.00 E-04.
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In this cohort, 41.2% of the patients received corticosteroid therapy, and 43.9% of the patients received oxygen therapy.
Corticosteroids, although RECOVERY trials proved their clinical benefits for severe COVID-19 patients (Group et al., 2021;
GroupWHOREAfC-TWet al., 2020) and are recommended by guidelines (Li et al., 2023), are still under debate regarding their
therapeutic effects. Compared to monoclonal antibodies, whose administration for specific groups only should be closely
monitored based on serum-targeting ligand levels (Bhimraj et al., 2022) and to date do not cover Omicron variants (Cao et al.,
2022), corticosteroids are highlighted for their systemic effects in the body, downregulating interferon-stimulated genes and
altering cellular interactions by acting on neutrophil maturation (Sinha et al., 2022), as delayed interferon responses and the
formation of neutrophil extracellular traps (NETs) might contribute to organ damage andmortality in COVID-19 (Barnes et al.,
2020; Zhang, Bastard, et al., 2020). However, the anti-inflammatory and immunomodulatory effects (Sinha et al., 2022) of
corticosteroids suppress immune responses and have been shown to lead to prolonged clearance of viral RNA from patients'
airways (Arabi et al., 2018), blood (Lee et al., 2004), and faeces (Ling et al., 2020) in previous studies that focused on other
viruses. This is why the CIBERESUCICOVID study found that corticosteroids might prove harmful for COVID-19 patients
(Torres et al., 2022). Thus, the use of corticosteroids is controversial, and more plausible trials are needed in this field. Our
study, as a large observational study at a national medical centre where a substantial portion of patients were given corti-
costeroids during their illness, demonstrated the benefit of corticosteroids in the improvement of severely ill patients,
informing the usage of corticosteroids for Omicron patients.

COVID-19 patients often have remarkably low oxygen saturation levels but no dyspnoea, as did patients in our cohort,
which is called “silent hypoxemia” (Tobin et al., 2020) and poses a challenge to clinicians. Hypoxemia causes damage to cells,
leading to lysis and necrosis of cells and surrounding tissues, resulting in organ dysfunction and even failure. Multiple pa-
tients in our trial received oxygen therapy after admission, confirming its efficacy in rescuing them from critical illness. Hence,
early diagnosis and timely administration of oxygen therapy is a wise strategy.

The proposed models are practical in clinical practice. In Fig. 2b and d, the simulated application results of selected pa-
tients demonstrated that the models could aid clinical decision-making by forecasting deterioration or recovery events
proactively and reliably. At the practice level, although the requirements for longitudinal multidimensional predictors seem
complex, by integrating the proposed models into the hospital information system, clinicians could obtain prediction results
automatically. Finally, all predictors in the proposed models are easily accessible during routine clinical processes, which
ensures that the models are applicable across medical centres of different levels.

This study had several limitations. First, it was a single-centre retrospective study. Validation in external centres is being
planned. Additionally, to evaluate the extent to which patients actually benefit from model-assisted decision-making, pro-
spective studies in our and external centres will be our next step. Second, limited by the granularity of clinical conditions in
the guidelines (mild, moderate, severe, and critical), this study only predicted the progression of patients' conditions from
mild/moderate to severe/critical (and vice versa) but did not predict the possibility of patients' improvement or deterioration
for any condition. As the most important goal of COVID-19 clinical care is the prevention andmanagement of severe or critical
conditions, such limitations do not impair the applicability of the models for clinical use. Third, the algorithmic bias is
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consequential and commonwhen machine learning is used to develop a medical tool (Ferryman et al., 2023), as in our study.
Wewill try to supplement the data from other medical centres in subsequent clinical practice, and keep revising the model to
fix the bias.
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