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Background: Tobacco smoking and being overweight could lead to adverse health

effects, which remain an important public health problem worldwide. Research indicates

that overlapping pathophysiology may contribute to tobacco addiction and being

overweight, but the neurobiological interaction mechanism between the two factors is

still unclear.

Methods: The current study used a mixed sample design, including the following

four groups: (i) overweight long-term smokers (n = 24); (ii) normal-weight smokers (n

= 28); (iii) overweight non-smokers (n = 19), and (iv) normal-weight non-smokers (n

= 28), for a total of 89 male subjects. All subjects underwent resting-state functional

magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) was used to

compare internal cerebral activity among the four groups. Interaction effects between

tobacco addiction and weight status on ReHo were detected using a two-way analysis

of variance, correcting for age, years of education, and head motion.

Results: A significant interaction effect between tobacco addiction and weight status

is shown in right superior frontal gyrus. Correlation analyses show that the strengthened

ReHo value in the right superior frontal gyrus is positively associated with pack-year.

Besides, the main effect of tobacco addiction is specially observed in the occipital lobe

and cerebellum posterior lobe. As for the main effect of weight status, the right lentiform

nucleus, left postcentral gyrus, and brain regions involved in default mode network

(DMN) survived.

Conclusions: These results shed light on an antagonistic interaction on brain ReHo

between tobacco addiction and weight status in the right superior frontal gyrus, which

may be a clinical neuro-marker of comorbid tobacco addiction and overweight. Our

findings may provide a potential target to develop effective treatments for the unique

population of comorbid tobacco addiction and overweight people.
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overweight, interaction
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INTRODUCTION

Smoking and being overweight could lead to adverse health
effects and the associated diseases, such as cardiovascular
diseases, type II diabetes, and cancers remain an important
public health problem (1). Every year, comorbid tobacco smoking
and obesity cause 10 times more deaths than the opioid
epidemic (2). Men had a much higher prevalence of ever-
smoking and current smoking (67.39 and 48.77%) than women
(3.74 and 2.93%) in China (3). Nicotine, a main component of
tobacco, is the primary reason for tobacco addiction. Tobacco
addiction is a chronic, relapsing mental disorder characterized
by impaired inhibitory control and compulsive tobacco seeking
and smoking (4). Overweight is most commonly identified
using anthropometric measurements, such as body mass index
(BMI), which ranges from 25 to 29.9 kg/m2 (5). Overweight
status may reflect a prodrome to obesity and is associated
with an increased risk of premature mortality compared with
healthy BMI controls (5). Impulsivity and compulsivity are
multidimensional constructs that are increasingly recognized
as high weight determinants (6). Together, it has been shown
that tobacco addiction and overweight have a close link in
both epidemiology and neurobehavior (7–9). Nonetheless, few
researchers have directly investigated the interaction between
long-term smoking and weight condition at the neurobiological
level. Understanding the neural mechanism of comorbid tobacco
addiction and overweight may help to facilitate the development
of target therapeutic strategies for this special population.

The nature of addiction is frequently considered as either a
voluntary behavior or a biological vulnerability (10). Current
evidence suggests that tobacco use exerts its initial reinforcement
effect by activating the reward network in the cerebrum.
This process was debated as a “personal lifestyle choice”
(10). Continuously, tobacco abuse impairs brain function
by disturbing the ability of self-control, which turns initial
voluntary action into the automatic and compulsive behavior
that characterizes addiction (10, 11). A meta-analysis found that
substance addiction subjects (e.g., tobacco, cocaine, and alcohol)
showed decreased gray matter volume in the orbitofrontal cortex
(OFC), insula, anterior cingulate (ACC), and striatum (12).
A recent study on smoking cessation suggested that repeated
tobacco exposure could “hijack” natural reward circuitry by
increasing the desire to obtain tobacco, and smoking cessation
would restore striatal resting-state functional connectivity (13,
14). Moreover, serious tobacco addiction could affect brain
regional spontaneous activity in the higher functional cortex,
such as the superior frontal gyrus and precentral gyrus (15).
Combined, the reward circuit and executive control system play
an important role in the development of tobacco addiction.

Similarly, consuming foods with high in fat and sugar
also sensitizes the dopaminergic mesocorticolimbic nervous
system (16, 17). Being overweight is related to impair
executive functions, such as reward valuation, decision-making,
and inhibitory control, which is considered the reason for
the difficulties sustaining a healthy diet. Growing evidence
demonstrates that such abnormalities are accompanied by
disruptions in functional brain networks, particularly those that

support reward valuation, self-regulation, and self-control (18,
19). In a food cue–induced functional MRI study, BMI was
associated with the increased functional connectivity in fronto-
striatal circuits and default mode networks (DMNs) (9). Subjects
with high BMI also tended to smaller, immediate rewards rather
than larger, delayed rewards comparing with normal weight
subjects, which motivated overconsumption of food and lead to
excessive weight gain (20, 21). Together, previous studies suggest
deficiencies in self-control and reward valuation could impact
decisions on diet and lead to overweight.

Growing evidence has suggested that both tobacco addiction
and overweight have effect on reward circuit and executive
control system (22). Brain functional studies have found altered
brain activity in the prefrontal cortex in both the main effects of
tobacco addiction (smokers vs. non-smokers) and the main effect
of weight status (overweight vs. normal weight), demonstrating
an additive effect of tobacco addiction and overweight (15,
23, 24). Moreover, Alice V. Ely’s study demonstrated that BMI
impacted activation in the right dorsolateral prefrontal cortex
(dlPFC) in response to smoking cues, with significantly reduced
response in overweight smokers compared with normal-weight
smokers (1). However, existing studies have just focused on
the influence of tobacco addiction or being overweight on
brain activity, respectively. The interaction between the two
factors was ignored in this process (4, 24). More important,
weight gain is considered one of the main reasons for stopping
smoking cessation treatments because the long-term reward
neuroadaptations induced by tobacco (25) as well as biological
susceptibility may contribute to the rewarding value of highly
palatable food in the absence of tobacco (22). Therefore, assessing
the interaction effects and neural mechanism of the tobacco
addiction-overweight comorbidity is quite necessary.

Regional homogeneity (ReHo) is a relatively new method for
measuring local resting functional connectivity, which has been
demonstrated a promising biomarker in variousmental disorders
(23, 26–28). ReHo is a voxel-based method to estimate cerebral
activity of the given voxel and its closest neighbors by means of
measuring similarity or synchronicity between time series using
Kendall’s coefficients (29). Several researchers have demonstrated
that the ReHo value could reflect the difference between
individuals with substance addiction and healthy controls (23, 30,
31). Chen’s study found decreased ReHo value in right superior
frontal gyrus, bilateral precuneus, and bilateral middle cingulum
gyrus among long-term smokers compared with healthy controls
(23). To sum up, it has been shown that ReHo is relatively
efficient both theoretically and practically. Besides, the ReHo
value in subjects with tobacco addiction-overweight comorbidity
has not yet been quantified.

In this study, we recruited four groups, such as overweight
smokers, normal-weight smokers, overweight healthy controls,
and normal-weight healthy controls. The aim of our study was
that (i) estimate whole brain ReHo value to measure intrinsic
brain activity and explore whether an interaction exists between
tobacco addiction and weight status. (ii) Assess whether tobacco
addiction diagnosis and weight status affected certain brain
regions. (iii) Conduct correlation analysis to explore the links
between such affected brain areas and the degree of tobacco
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addiction and overweight. In this current study, we assumed
that the interaction between tobacco addiction and weight
status would show altered brain activity in reward network and
executive control network, and such changes would be associated
with the degree of tobacco addiction and overweight.

METHODS AND MATERIALS

Participants
The potential participants were men from the local community
recruited through advertisements. A total of 89 male subjects
(aged 20–55 years) were recruited for this study, including
four groups: (i) overweight long-term smokers (n = 24); (ii)
normal-weight smokers (n = 28); (iii) overweight non-smokers
(n = 19), and (iv) normal-weight non-smokers (n = 28). Long-
term smokers were defined as individuals who smoked at least
10 cigarettes daily in the past 2 years, and met the DSM-V
criteria for tobacco use disorder, and had no period of smoking
abstinence longer than 3 months (4, 10). We used Fagerström
Test for Nicotine Dependence (FTND) to measure the severity
of tobacco addiction and collected clinical information related
to smoking, such as smoking on set, duration, and cigarettes
per day (32). Non-smokers were included subjects who smoked
less than five cigarettes in their lifetime (33). According to their
BMI, participants were separated into a normal weight group
(BMI < 25.0) and overweight group (BMI arrange 25–29.9) (34).
The exclusion criteria for all participants were as follows: (i)
existence of neuropsychiatric diseases; (ii) systemic diseases (such
as, diabetes, hypertension, and cerebrovascular disease); (iii)
current use of psychotropic medications or concurrent substance
abuse, such as alcohol and heroin; (iv) evidence indicating that
overweight differs substantially from obesity and the two weight
conditions have different effects on brain activity (34).

Therefore, this study focused on overweight status and
excluded obesity individuals; (v) because the rates of smoking in
Chinese men are much higher and the public health burden falls
predominately on this group. The current study focused on male
smokers and excluded female smokers (3); or (vi) claustrophobia
and other contraindications to magnetic resonance imaging
(MRI). The experiment was approved by the Medical Ethics
Committee of First Affiliated Hospital of Zhengzhou University,
and informed consent was obtained from each participant.

Image Acquisition
At the First Affiliated Hospital of Zhengzhou University,
MRI data were obtained using a 3.0T German Siemens
Magnetom Skyra MRI equipment with a sixteen-channel
prototype quadrature birdcage head coil. Participants were
instructed to rest with their eyes closed, keeping awake, not to
think of anything, and to keep their head motionless during
scanning. Earplugs were used to protect the hearing of subjects,
and spongy pads were used to fix their heads to minimize
head movement. No external stimuli were exerted during
image acquisition. Resting-state functional images were collected
using an echo-planar imaging sequence. The parameters were
repetition time (TR)/echo time (TE) = 2,000/30ms, flip angle =
80 degrees, matrix size= 64× 64, field of view= 240× 240mm,

voxel size = 3.4 × 3.4 × 4mm, slices = 36, and slice thickness
= 4mm, a total of 180 volumes. All slices along the AC-PC line
were acquired with a total scan time of 360 s.

Data Analyses
The Data Processing and Analysis of Brain Imaging (DPABI
v3.0) (http://rfmir.org/dpabi) toolbox was used to preprocess
the functional imaging data. Preprocessing comprised format
conversion (DICOM to NIFTI), discarding the first 5 volumes,
slice-timing, and realignment (cut off < 2.5mm or 2.5 degrees).
No subjects were excluded in this step. The functional images
were spatially normalized to the standard Montreal Neurological
institute (MNI) template and resampled to 3 × 3 × 3mm.
Subsequently, to remove any residual effects of motion and
other non-neuronal factors, nuisance covariates, such as 24
head motion parameters and signals of global signals, white
matter, and cerebrospinal fluid were regressed out. Then, linear
detrending and temporal band-pass filtering (0.01–0.08Hz) were
performed to remove low- and high-frequency noise. Finally,
scrubbing further eliminated the influence of head motion
and noise.

The ReHo value was calculated to measure the similarity of
the time series of a given voxel to its nearest 27 voxels (29).
The Kendall’s coefficient of concordance (KCC) value of each
voxel was calculated to acquire an individual KCC map or ReHo
map. To avoid the impacts of individual variations, whole-brain
equalization was performed to normalize ReHo maps for further
statistical analysis. Finally, the ReHo maps were smoothed with a
Gaussian kernel of full-width at half-maximum of 6 mm.

Statistical Analyses
Demographic and clinical data were analyzed using a two-sample
T-test. Differences were considered significant at p < 0.05. Using
the full factorial model in SPM12, a two-way analysis of variance
(ANOVA) was performed for whole brain ReHo comparisons
to analyze the interaction effects between the addiction group
(smokers and non-smokers) and weight status (normal weight
and overweight), with age, years of education, and mean FD
as covariates [Gaussian random field theory (GRF) corrected,
p voxel < 0.005, and p cluster < 0.05]. Each identified cluster
where the ReHo value was found to be significant for the interact
effect of tobacco addiction and weight status was set as the
region of interest (ROI). The post-hoc analysis was conducted to
compare groups difference by two-sample T-test and to correct
for multiple comparisons (p < 0.05/4 for interaction effect
analyses and Bonferroni corrected).

Correlation Analyses
Correlation analyses were conducted to investigate the
relationship between the ReHo value alterations in ROI
and tobacco addiction severity (pack-year and FTND score) in
the two smoking groups, as well as the relationship between
ReHo value and BMI in the two overweight groups, separately.
We used Spearman’s correlation as a more robust measure for
ReHo-clinical correlation (35).
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TABLE 1 | Demographic and clinical characteristics of subjects.

Demographics Smokers Non-smokers Comparison

OW-SM (n = 24) NW-SM (n = 28) OW-noS (n = 19) NW-noS (n = 28) SM vs. noS OW vs. NW

Age (year) 31.80 ± 1.16 31.29 ± 1.05 33.05 ± 1.39 31.68 ± 1.24 t = −0.596 (P = 0.552) t = 0.718 (P = 0.474)

Education (year) 15.30 ± 0.32 15.54 ± 0.25 14.56 ± 0.68 16.32 ± 0.61 t = −0.395 (P = 0.694) t = −1.960 (P = 0.053)

Age onset of smoking 18.30 ± 0.67 19.39 ± 0.56 — — — t =-1.262 (P = 0.213)

Smoking years 13.54 ± 1.17 11.82 ± 1.09 — — — t = 1.077 (P = 0.287)

Pack-year 14.34 ± 1.68 10.08 ± 1.50 — — — t = 1.859 (P = 0.064)

Cigarettes/day 20.50 ± 1.61 16.11 ± 1.58 — — — t = 1.940 (P = 0.058)

FTND 3.83 ± 0.47 3.54 ± 0.38 — — — t = 0.494 (P = 0.623)

BMI 27.24 ± 0.39 22.03 ± 0.34 27.00 ± 0.42 22.73 ± 0.67 t = −0.038 (P = 0.969) —

Data represent mean ± SEM; FTND, Fagerström Test for Nicotine Dependence; peak-year, years of smoking × cigarettes smoked per day/20; BMI, body mass index; OW-SM,

overweight smokers; NW-SM, normal-weight smokers; OW-noS, overweight non-smokers; and NW-noS, normal-weight non-smokers.

RESULTS

Demographic and Clinical Data
Long-term smokers and non-smokers included in the study have
no significant differences in age, years of education, mean FD,
and BMI. Normal weight individuals and overweight individuals
have no significant differences in age, years of education, and
mean FD, either. Normal weight smokers did not differ from
overweight smokers in FTND, smoking onset, and lifetime
smoking (pack-year). The detailed demographic information is
displayed in Table 1.

Interaction Effects
An interaction effect of tobacco addiction × overweight is
showed in the right superior frontal gyrus (peak MNI: 15, 9,
60; cluster size: 50; and peak F value: 22.31), GRF corrected, p
voxel < 0.005, and p cluster < 0.05. Planned post-hoc analysis
for the right superior frontal gyrus shows significantly increased
ReHo value in overweight long-term smokers compared with
normal weight long-term smokers (t = 3.768, p < 0.0001, and
Bonferroni corrected). While the ReHo value in overweight non-
smokers is decreased related to normal weight non-smokers (t
= −3.242, p = 0.002, and Bonferroni corrected). Normal weight
long-term smokers show decreased ReHo value comparing with
normal weight non-smokers (t = −3.540, p = 0.001, and
Bonferroni corrected). Besides, overweight long-term smokers
show increased ReHo value comparing with overweight non-
smokers (t = 3.392, p = 0.002, and Bonferroni corrected)
(Table 2; Figure 1). Moreover, correlation analysis finds that
ReHo value in the right superior frontal gyrus is positively
correlated with pack-year (r = 0.387, p = 0.007, and Bonferroni
corrected). No significant linear correlations are found with
FTND scores and BMI.

Main Effects
The main effect of tobacco addiction is showed in the right
cerebellum posterior lobe, right precentral gyrus, left inferior
frontal gyrus, right lingual gyrus, left fusiform gyrus, left occipital
inferior gyrus, and left calcarine (GRF corrected, p voxel< 0.005,
and p cluster< 0.05). As for the main effect of weight status, right

TABLE 2 | Significant group differences in regional homogeneity (ReHo).

Cluster Location Peak (MNI)

(X, Y, Z)

Cluster

size

Peak F value

Interaction effect

Superior frontal gyrus

R

15, 9, 60 50 22.31

Main effect

(tobacco addiction)

Cerebellum posterior

lobe R

36, −78, −42 53 15.76

Precentral gyrus R 45, −12, 54 54 16.61

Inferior frontal gyrus L −51, 42, 15 33 19.35

Lingual gyrus R 24, −78, −6 43 17.75

Fusiform gyrus L −36, −66, −15 70 21.54

Occipital inferior

gyrus L

−30, −78, −9 25 13.81

Calcarine L −18, −63, 9 83 13.88

Main effect (weight

status)

Lentiform nucleus R 21, −15, 3 31 16.60

PCC 3, −51, 12 48 19.59

Postcentral gyrus L −51, −9, 15 32 18.17

Superior frontal gyrus

L

−18, 51, 33 46 13.74

Inferior parietal lobule

L

−60, −42, 45 45 13.64

PCC, posterior cingulate cortex; MNI, Montreal Neurological Institute; R, right; L, left.

lentiform nucleus, posterior cingulate, left postcentral gyrus,
left superior frontal gyrus, and left inferior parietal lobule are
survived (GRF corrected, p voxel < 0.005, and p cluster < 0.05)
(Table 2; Figure 2).

DISCUSSION

This study focused on the interaction between tobacco addiction
and weight status by means of a 2 × 2 factorial design. ReHo,
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FIGURE 1 | The interaction effect of tobacco addiction and weight status. (A) A significant interaction effect shown by regional homogeneity (ReHo) in right superior

frontal gyrus using two-way ANOVA (Gaussian random field theory (GRF) corrected, p voxel < 0.005, and p cluster < 0.05). (B,C) Planned post-hoc analysis of the

right superior frontal gyrus among the four groups. The vertical bar indicates the maximum and minimum across subjects. *p < 0.05/4, Bonferroni corrected. (D) The

ReHo value in right superior frontal gyrus was positively correlated with pack-year (r = 0.387, p = 0.007, and Bonferroni corrected).

a relatively new method, was used to measure local resting
functional connectivity, reflecting different brain functional
activity among four groups. Long-term smokers compared with
healthy controls displayed abnormal ReHo, especially in the
occipital lobe and cerebellum posterior lobe, irrespective of
weight status. Overweight individuals showed aberrant ReHo
in the right lentiform nucleus, left postcentral gyrus, and
brain regions involved in DMN compared with normal weight
individuals. More importantly, planned post-hoc analysis showed
that the combined effects of tobacco addiction and overweight
were less than the sum of the two factors separately, which
uncovered an antagonistic interaction on ReHo in the right
superior frontal gyrus between tobacco addiction and weight
status, and such alteration was positively correlated with pack-
year.

The antagonistic interactions between tobacco addiction and
weight status on ReHo of the right superior frontal gyrus are in
line with the hypotheses of neuronal overlaps on reward-related
brain regions between the two factors (22). Previous studies

have reported many interesting findings, such as weight gain
and increased appetite after tobacco quitting, nicotine leading to
anorexia, and smokers are usually leaner and have higher basal
metabolic rate (BMR) than non-smokers (36–41). Such findings
may suggest the interaction relationship between smoking
and weight status, and our results highlight the neurological
mechanism to explain this phenomenon. The superior frontal
gyrus, located in the upper prefrontal cortex, has been reported
to be involved in cognition and motor control, working memory,
and decision-making processes that were broadly impacted
by the dopaminergic responses to reward evaluation (42).
Individuals with food addiction showed increased activation in
the superior frontal gyrus in response to the highly processed
food cues comparing with healthy controls (43). Besides, the
superior frontal gyrus was considered as a possible target of
neuromodulation in overweight/obesity for it can significantly
predicted BMI (44, 45). Similarly, in heavy smokers, spontaneous
activity in the superior frontal gyrus was also affected by
chronic tobacco intaking (15). Combined, we infer that the
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FIGURE 2 | The main effect results (A) ReHo shows the significant main effect of tobacco addiction in the right cerebellum posterior lobe, right precentral gyrus, left

inferior frontal gyrus, right lingual gyrus, left fusiform gyrus, left occipital inferior gyrus, and left calcarine using two-way ANOVA (GRF corrected, p voxel < 0.005, and p

cluster < 0.05). (B) ReHo shows the significant main effect of weight status in the right lentiform nucleus, posterior cingulate, left postcentral gyrus, left superior frontal

gyrus, and left inferior parietal lobule using two-way ANOVA (GRF corrected, p voxel < 0.005, and p cluster < 0.05).

superior frontal gyrus is the shared neurobiological substrate
in tobacco addiction and overweight. Besides, post-hoc analysis
of the right superior frontal gyrus characterized antagonistic
interaction between the two factors. Previous studies suggested
that the superior frontal gyrus was anatomically connected with
other regions in prefrontal cortex through arcuate fibers, and
was considered as a connection node between central executive
network (CEN) and DMN, which played an important role in
allocating attention efficiently (46). A recent resting-state fMRI
study has indicated that overweight could dampen the effect
of smoking on DMN-ECN circuit, and further contribute to
the circuit dysfunction (34). In line with these studies, our

research found brain functional abnormalities in superior frontal
gyrus, which might impact the dynamic interaction between
brain networks and further lead to a failure to modulate
attention and behavior. Such abnormalities may explain the
smoking cessation difficulties in comorbid tobacco addiction and
overweight individuals (47, 48). Moreover, correlation analysis
found that more serious tobacco addicts showed increased ReHo
in superior frontal gyrus, but there was no significant linear
correlation with BMI. The non-linear relationships (quadratic
effect) between resting state functional connectivity and BMI
reported in Alice V. Ely’s study suggested the non-monotonic
feature of brain activity (1).
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In addition, we noted that the factor of tobacco addiction
impacted the ReHo value especially in the inferior frontal gyrus,
occipital lobe, and cerebellum posterior lobe. The occipital lobe,
such as lingual gyrus, fusiform gyrus, is the visual cortex involved
in processing color information, face and body recognition,
and emotion perception responding to facial stimuli (49–51).
A large scale meta-analysis has demonstrated that individuals
with substance addiction, such as tobacco, alcohol, and cocaine
displayed higher gray matter volume in the right lingual gyrus
and right fusiform gyrus relative to healthy controls (12).
Previous studies observed the brain regions associated with
visuospatial attention cortex (prefrontal cortex and fusiform
gyrus) were much more active after exposure to smoking-related
images than neutral images in long-term smokers (52). These
are consistent with our findings and reflects the deficits in
visuospatial attention in long-term smokers. As for cerebellum,
growing evidence indicated that it was connected to cerebral
cortex in both anatomy and function and played an important
role in regulating emotion and decision-making (53, 54). Our
results supplement previous findings and highlight the non-
motor function of cerebellum.

As for the factor of weight status, we found that overweight
individuals showed abnormalities in brain regions that
were mainly concentrated in the right lentiform nucleus,
left postcentral gyrus, and brain regions involved in DMN
comparing with normal weight individuals. DMN implicated in
interoceptive awareness and mental imagery, and is considered
as a “cohesive connector” system in resting-state, integrating
information between- and within-network (55, 56). Our findings
show that higher BMI alters the internal cohesiveness in DMN,
affecting efficient processing of internal functions among
overweight subjects, such as the procedure of the food and
non-food related reward (57). Furthermore, lentiform nucleus,
the vital neural nucleus in basal ganglia that includes globus
pallidus and putamen, which is thought to be part of the reward
system and has an effect on reward processing and motivation
(58, 59). In our research, the functional alterations of lentiform
nucleus and DMN in overweight individuals may support the
hypothesis of “food addiction”—exposure to food alters brain
reward circuits, touching off addiction-like behavioral phenotype
of compulsive overeating, just like tobacco addiction (60–62).

There are a few limitations in our study. First, though
our study sheds new light on the neuro-biologic interactions
of tobacco addiction and weight status, the causality between
cerebral activity and development of addiction-related disorders
remains unexplainable according to cross-sectional study.
Second, as for the factor of weight status, we only recruited
overweight individuals and ignored obese individuals (BMI >

30). The relationships between obesity and tobacco addiction
need to be further explored. Third, the sample size is small

and the subjects recruited in this study were male adults, while
women were not included, so the results of this study are not
applicable to all population (63).

CONCLUSION

Overall, our findings shed light on an interaction relationship
between tobacco addiction and overweight in terms of system-
level neurobiological mechanism. Specifically, findings revealed
an antagonistic interaction on the local resting functional
connectivity in the right superior frontal gyrus between the
two factors. Such interaction maybe a clinical neuro-marker
of comorbid tobacco addiction and overweight. Future efforts
are being undertaken to develop effective treatments that target
therapeutic strategies for the special population of comorbid
tobacco addiction and overweight. In addition, these current
findings also emphasize the importance of controlling another
variable when explore the effects of substance addiction or
overweight separately in future studies.
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