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Abstract
Ganglioside GM1 is a member of the ganglioside family which has been used in many countries and is thought of as a promising
alternative treatment for preventing several neurological diseases, including cerebral ischemic injury. The therapeutic effects
of GM1 have been proved both in neonates and in adults following ischemic brain damage; however, its clinical efficacy in
patients with ischemic stroke is still uncertain. This review examines the recent knowledge of the neuroprotective properties
of GM1 in ischemic stroke, collected in the past two decades. We conclude that GM1 may have potential for stroke treatment,
although we need to be cautious in respect of its complications.
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Introduction

Considerable interest lies in the evaluation of ganglioside

GM1, an important member of the ganglioside family.

Ganglioside GM1 became of great importance to scientists

in the early 1970s after its role was established as a func-

tional tissue receptor for the cholera toxin1. Since then,

scientists aimed to identify further functions of ganglio-

sides, which became the subject of numerous global con-

ferences. Furthermore GM1 has been shown to increase the

activities of neurotrophic factors, thereby promoting pro-

tective effects on the neural system by encouraging neural

stem cell survival and proliferation2, facilitating the stabi-

lity and regeneration of axons, and by further preventing

neurodegeneration3–6. GM1 supplementation could also

afford a protective intervention in high altitude cerebral

edema by suppressing oxidative stress and inflammatory

response7. Because treatment with intravenous ganglioside

was found to cause an acute inflammatory polyneuropathy

also known as Guillain–Barré syndrome (GBS), GM1 was

withdrawn from Europe8. However, this complication was

not common9 and GM1 continued to be available in Asian

countries, including China, where GM1 has long and

widely been used in various nervous system diseases,

mostly without occurrence of GBS or other severe compli-

cations10–13. Recent findings have suggested that GM1

may be related to the outcomes in the stroke progress by

regulation of cell death and survival14. Our team has been

working on stroke research for many years. We have pre-

viously reviewed and explored the role of GM1 in

ischemic stroke15. In this paper, we will update the
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information for a better understanding of this field. The

literature search was conducted using Medline. The follow-

ing search terms were used: “Ganglioside GM1,”

“Monosialotetrahexo -sylganglioside,” “ischemic stroke,”

“ischemic brain injury,” and “stroke”. The keywords used

in the Medline search were cross-referenced and the liter-

ature search was limited to English language publications

on the subject. All relevant articles were included after a

careful evaluation.

GM1 in Animal Studies

In Neonatal Ischemic Brain Injury

Neonates with hypoxic ischemic encephalopathy (HIE) is

susceptible to develop cerebral white matter injury (WMI),

a major cause of neonatal death and long-term disability16.

The expression of GM1 has been found to exhibit an obvious

decline at 48 h after hypoxic ischemia in lipid rafts of p 7

neonatal rats17. Myelin sheath damage, the main feature of

WMI, was efficiently improved by GM1 treatment and even-

tually prevented secondary brain injury. The nerve repair

and myelination benefit from GM1 possibly involves help-

ing the connection of paranode proteins with lipid rafts,

promoting myelin basic proteins synthesis, thus stabilizing

paranode structures, and eventually repairing the damage to

the myelin sheath14,17. Recently, monosialotetrahexosylgan-

glioside GM1 administration was found to largely attenuate

the neurological impairment manifestations in P 10 rats sub-

jected to hypoxic ischemia by protecting against neuronal

apoptosis (Figure 1)18.

In Adult Ischemic Brain Injury

Difference in the decrease of GM1 in neonates following

HIE, in a recent study by Whitehead et al.19, which aimed

to examine the spatial profile of ganglioside species using

matrix-assisted laser desorption/ionization imaging, found

that GM1 d18:1 (one of the GM1 moieties, which differs

in carbon chain length within the sphingosine base) signal

was up-regulated within the ipsilateral cortex, striatum and

hippocampus, peaked by seven days post middle cerebral

artery occlusion (MCAO), and dropped within the ipsilateral

hemisphere within brain areas where tissue viability had

been lost in adult mice. GM1 d20:1 was up-regulated at 24

h and peaked by three days post-MCAO within the ipsilateral

cortex and in the hippocampi of both sides of the hemi-

sphere. By seven days post-MCAO, GM1 d20:1 was

restricted to regions surrounding the infarct core, as deter-

mined by Cresyl violet staining. This trend is similar to the

results of an endothelin-1 (ET-1) subcortical stroke with the

Figure 1. The mechanism of GM1 on ischemic brain injury.
HIE: hypoxic ischemic encephalopathy; MCAO: middle cerebral artery occlusion; NMDAR: N-methyl-D-aspartate receptor;
MCa: mitochondrial calcium; CaM: calmodulin; Asp: aspartate; Glu: glutamate; ER: endoplasmic reticulum
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Alzheimer’s disease model, in which Wistar rats were

injected with both ET-1 and beta-amyloid (Ab), and much

more serious damage was in the brain of the animal20. Both

GM1d18:1 and d20:1 demonstrated a significant increase

three days after administration of ET-1 and Ab compared

with a sham group. However, following stroke alone (only

ET-1 injection) there was a decrease in GM1 after injury.

The differences in these results may be explained by the

severity of injury the animals received. These findings sug-

gest that GM1 may play a role in mediating functions of

those areas of the brain mentioned above following MCAO

in mice. Consistent with the previous studies, both high-

performance thin-layer chromatography and immunofluor-

escence microscopy revealed an increase in GM1 expression

in rat cerebral cortex after MCAO, the changes of GM1

expression being thought to be an autologous mechanism

against ischemic damage21. One possible explanation for the

differences in the GM1 expression between neonates and

adults following ischemia is that this protection mechanism

may not be sufficiently developed in neonates.

Ischemic stroke is characterized by high mortality

and significant neurological deficits in long-term

survivors22–27. Its mechanisms of neuronal cell death have

only partially been elucidated28–30, which is thought to be

the key to this serious condition. Glutamate receptor

N-methyl-D-aspartate receptor (NMDAR) is considered to

be an important regulator in the cerebral ischemia patholo-

gical processes31,32. GM1 was reported to maintain the

normal neurological functions by reducing the expression

of NMDAR subunit NMDAR1 in a MCAO rat model33. In

the present study, the authors did not measure the expression

of GM1 after focal cerebral ischemia/reperfusion, but they

found that GM1 could significantly reduce the infarct size,

and this effect was time-dependent. Specifically, GM1 deliv-

ered in a short period of 5 min or 1 h after surgery was

effective, while the administration at 2 h following MCAO

was not. Therefore, early use of GM1 was recommended for

cerebral ischemia. Besides the inhibition of NMDA, GM1

has been shown to decrease the content of mitochondrial

calcium and calmodulin and increase the expression of

aspartate and glutamate in neurons of the hippocampus

CA1 region and frontal cerebral cortex after cerebral

ischemia–reperfusion injury34. Su et al. found that GM1

(15 mg/kg) intraperitoneally administered at 20 min prior

to reperfusion modulated endoplasmic reticulum stress-

related protein levels, by increasing GRP78 and reducing

CHOP/GADD153 expression along with activation of

caspase-12 in the ischemic brain hemispheres in rats with

diabetes35.These results imply that GM1 attenuates diabetes-

associated cerebral ischemia–reperfusion injury by suppres-

sing the endoplasmic reticulum stress. GM1 has also been

shown to improve neurobehavioral performances, reduce

infarction size, and to decrease mortality rate after ischemic

brain injury by inhibiting autophagy makers36. The ratio of

LC3-I to LC3-II, P62 level, and Beclin-1 expression were all

significantly reduced after GM1 treatment, without finding

any significant adverse effects (Figure 1).

GM1 in Clinical Trials

Previous studies showed tissue-type plasminogen activator

(tPA) improved thrombolytic efficacy and long-term neuro-

logical outcomes in stroke patients37–40. However, the nar-

row therapeutic window and the potential risk of

intracerebral hemorrhage of tPA lead to the fact that only

few patients benefit from it41. Given its good neuroprotec-

tive effects in animal experiments, GM1 successfully

attracted the attention of neurologists and began to be used

in patients with acute ischemic stroke and other neurological

disorders13,42,43. The clinical application of GM1 achieved

initial benefits soon after in Parkinson’s and Alzheimer’s

patients; however, its clinical efficiency in ischemic stroke

disease still needs to be validated11,44,45. Candelise et al.

reviewed the Cochrane Stroke Group trials register9, in

which 12 clinical trials involving about 2300 patents with

definite or presumed ischemic stroke were identified and

analyzed. The results did not show any significant differ-

ences with respect to the incidence of disability and fatality

between groups. GM1 has even been banned because of the

risk of GBS in Europe countries8. Interestingly, it is still

being widely used in Asian countries for its potential neuro-

protective effects by improving behavioral outcomes in stroke

patients10–13, without any severe complications (see Table 1).

Conclusion

Overall, ganglioside GM1 treatment for ischemic stroke

needs to be implemented with caution. The related clinical

trials were conducted with several limitations. For example,

one important noticeable issue is that many severe stroke

patients were included in those trials, and more severe inju-

ries, more bad outcomes. Ethnical and regional disparities

may also account for part of the differing incidence of GBS.

It is worth mentioning that GBS was not found in the Asian

area, maybe because GBS was not reported to the local

health departments in some Asian countries. It is apparent

that additional clinical studies are needed to test the effect of

GM1, given the above-mentioned limitations. Overall, GM1

may have potential for stroke treatment.
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Table 1. GM1 in Clinical Trials.

Patients Symptoms improved or not References

Ischemic stroke
PD
AD

Not/improved
Improved
Improved

9, 10, 11, 12, 13
11, 44

45

PD: Parkinson’s Disease; AD: Alzheimer’s Disease.
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