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Abstract

Background: Our previous genome-wide association study (GWAS) on milk fatty acid traits in Chinese Holstein
cows revealed, the SNP, BTB-01556197, was significantly associated with C10:0 at genome-wide level (P = 0.0239). It
was located in the down-stream of 5-hydroxytryptamine receptor 1B (HTR1B) gene that has been shown to play an
important role in the regulation of fatty acid oxidation. Hence, we considered it as a promising candidate gene for
milk fatty acids in dairy cattle. In this study, we aimed to investigate whether the HTR1B gene had significant
genetic effects on milk fatty acid traits.

Results: We re-sequenced the entire coding region and 3000 bp of 5′ and 3′ flanking regions of HTR1B gene. A
total of 13 SNPs was identified, containing one in 5′ flanking region, two in 5′ untranslated region (UTR), two in
exon 1, five in 3′ UTR, and three in 3′ flanking region. By performing genotype-phenotype association analysis with
SAS9.2 software, we observed that 13 SNPs were significantly associated with medium-chain saturated fatty acids
such as C6:0, C8:0 and C10:0 (P < 0.0001 ~ 0.042). With Haploview 4.1 software, linkage disequilibrium (LD) analysis
was performed. Two haplotype blocks formed by two and ten SNPs were observed. Haplotype-based association
analysis indicated that both haplotype blocks were strongly associated with C6:0, C8:0 and C10:0 as well (P < 0.0001
~ 0.0071). With regards to the missense mutation in exon 1 (g.17303383G > T) that reduced amino acid change
from alanine to serine, we predicted that it altered the secondary structure of HTR1B protein with SOPMA. In
addition, we predicted that three SNPs in promoter region, g.17307103A > T, g.17305206 T > G and g.17303761C > T,
altered the binding sites of transcription factors (TFs) HMX2, PAX2, FOXP1ES, MIZ1, CUX2, DREAM, and PPAR-RXR by
Genomatix. Of them, luciferase assay experiment further confirmed that the allele T of g.17307103A > T significantly
increased the transcriptional activity of HTR1B gene than allele A (P = 0.0007).

Conclusions: In conclusion, our findings provided first evidence that the HTR1B gene had significant genetic effects
on milk fatty acids in dairy cattle.
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Background
Milk fat, a vital nutritional ingredient of milk, is consid-
ered as one of the economic traits of milk production in
dairy cattle [1]. Triglyceride synthesized by fatty acids
and α-glycerophosphate in mammary epithelial cells is
the main component of milk fat [2]. Fatty acids contain
saturated fatty acids (SFAs) and unsaturated fatty acids
(UFAs). In SFAs, C12:0, C14:0, C16:0 increases low-
density lipoprotein cholesterol and risk of cardiovascular
diseases [3], while C15:0, C17:0 are inversely associated
with cardiometabolic risk [4]. UFAs are beneficial for re-
ducing the risk of heart and other diseases [5, 6]. Many
previous studies have shown that the phenotypic vari-
ation of milk fatty acid compositions were genetically
controlled and the heritability estimates were around
0.14 ~ 0.33 for SFAs and 0.08 ~ 0.29 for UFAs in Hol-
stein cattle [7–11].
One of genome-wide significant SNPs, BTB-01556197

associated with C10:0 (P = 0.0239) identified in previous
GWAS [12], was located in the down-stream of 5-
hydroxytryptamine receptor 1B (HTR1B) gene. The bo-
vine HTR1B gene has merely one exon spanning 4305
bp and was involved in the c-AMP signaling pathway
that was related to PI3K-Akt pathway, a well-known
pathway for fat synthesis and metabolism [13]. Hence,
we considered the HTR1B gene as a promising candidate
for milk fatty acid traits in dairy cattle. In the present
study, we aimed to further preform association analysis
in a different Chinese Holstein population to confirm
the genetic effects of HTR1B on milk fatty acids and to
identify potential functional genetic variations.

Results
SNPs identification
A total of 13 SNPs (Table 1) was identified, including
one (g.17307103A > T) in 5′ flanking region, two
(g.17305206 T > G and g.17303761C > T) in 5′ untrans-
lated region (UTR), two (g.17303383G > T and
g.17303042C > G) in the exon 1, five (g.17302291C > G,
g.17302078G > T, g.17301689 T > C, g.17301647G > T
and g.17299803A > G) in 3′ UTR, and three
(g.17298882A > G, g.17296725C > T and g.17296695 T >
C) in 3′ flanking region. Of note, g.17303383G > T in
exon 1 was a missense mutation resulting in an amino
acid replacement from alanine (GCC) to serine (TCC).
The detailed information, and genotypic and allele fre-
quencies of the 13 SNPs were shown in Table 1.

Associations between the SNPs with 23 milk fatty acids
traits
By performing association analysis on the SNPs with 23
kinds of milk fatty acids with SAS9.2, significant genetic
associations were observed (Additional file 1: Table S1).
The SNP, g.17307103A > T, was significantly associated

with C6:0, C8:0, C10:0, C16:1, C16 index and C17 index
(P = 0.0003 ~ 0.042). Both g.17305206 T > G and
g.17303761C > T were significantly associated with C6:0,
C10:0, C12:0, C14:0, C18:1cis-9, C18 index, SFA, UFA
and SFA/UFA (P < 0.0001 ~ 0.036), and they were signifi-
cantly associated with three (C8:0, C16:1 and C20:0; P <
0.0001 ~ 0.0213) and two (C17:0, P = 0.0358; and
C17 index, P = 0.0148) milk fatty acid traits, respectively.
Six SNPs were significantly associated with seven milk
fatty acid traits, namely, g.17303383G > T (C6:0, C8:0,
C10:0, C14:0, C16:1, C16 index, and C17 index; P =
0.0003 ~ 0.0145), g.17303042C > G (C8:0, C10:0, C14:0,
C16:1, C17:0, C16 index, and C17 index; P < 0.0001 ~
0.0286), g.17302291C > G (C6:0, C8:0, C10:0, C17:0, SFA
and SFA/UFA; P = 0.0172 ~ 0.0387), g.17302078G > T
(C6:0, C8:0, C10:0, C14:0, C16:1, C16 index and C17
index; P < 0.0001 ~ 0.0277), g.17299803A > G (C6:0, C8:
0, C10:0, C14:0, C16:1, C16 index and C17 index; P =
0.001 ~ 0.0305), and g.17296725C > T (C6:0, C8:0, C10:0,
C14:0, C16:1, C16 index and C17 index; P < 0.0001 ~
0.0122). The g.17301689 T > C showed strong associa-
tions with C6:0, C8:0, C10:0, 16:1, C16 index and
C17 index (P = 0.0002 ~ 0.0204). The g.17301647G > T,
showed strong associations with C6:0, C10:0, C12:0,
C14:0, C17:0, C18:1cis-9, C17 index, SFA, UFA and
SFA/UFA (P < 0.0001 ~ 0.0445). The g.17298882A > G
was significantly associated with C14:0, C17:0, C17:1,
C18:1cis-9, C20:0, SFA, UFA and SFA/UFA (P < 0.0001
~ 0.049). The g.17296695 T > C was significantly associ-
ated with C6:0, C8:0, C10:0, C14:0, C16:1, C17:0, C16
index and C17 index (P < 0.0001 ~ 0.0492). While no sig-
nificant association was observed for C11:0, C13:0, C14:
1, C15:0, C16:0, C18:0 and C14 index (P > 0.05). After
multiple-testing, eight SNPs were still significantly asso-
ciated with five milk fatty acid traits, namely,
g.17305206 T > G (C6:0, C8:0, C10:0,UFA; P < 0.0001),
g.17303761C > T (C6:0; P < 0.0001), g.17303042C > G
(C8:0; P < 0.0001), g.17302078G > T (C8:0; P < 0.0001),
g.17301647G > T (C6:0; P < 0.0001), g.17298882A > G
(C20:0; P < 0.0001), g.17296725C > T (C8:0; P < 0.0001)
and g.17296695 T > C (C8:0; P < 0.0001).
Correspondingly, the additive (a), dominance (d), and

allele substitution (α) effects of the identified SNPs were
calculated (Additional file 2: Table S2), and the results
showed that 11 SNPs had strong genetic effects on C6:0,
C8:0, C10:0, C12:0, C14:0, C16:1, C17:0, C18:0, C18:1cis-
9, C18 index, C20:0, C16 index, C17 index, SFA, UFA
and SFA/UFA (P < 0.05).

Associations between the haplotype blocks with 23 milk
fatty acid traits
Among the 13 SNPs identified in this study, two haplo-
type blocks were observed with the Haploview 4.1 soft-
ware (Fig. 1). The block 1, formed by g.17296725C > T
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and g.17296695 T > C, had two kinds of haplotypes
(H1 = TC and H2 = CT) with the frequencies of 69.6 and
30.4%, respectively. The block 2 was composed of ten
SNPs, g.17307103A > T, g.17305206 T > G,

g.17303761C > T, g.17303383G > T, g.17303042C > G,
g.17302291C > G, g.17302078G > T, g.17301689 T > C,
g.17301647G > T and g.17299803A > G, and had seven
haplotypes (H1 = AGTGCCGCTA, 34.5%; H2 =

Table 1 Detailed information of 13 SNPs identified in HTR1B gene

SNP name Location Position (UMD 3.1.1) EVA no. Genotype NO. Frequency Allele Frequency

g.17307103A > T 5′ flanking region Chr9: 17307103 rs207969357 AA 481 0.4621 A 0.6830

TT 100 0.0961 T 0.3170

TA 460 0.4419

g.17305206 T > G 5′ UTR Chr9: 17305206 rs476055046 TT 651 0.6242 T 0.8121

GG 0 0.0000 G 0.1879

GT 392 0.3758

g.17303761C > T 5′ UTR Chr9: 17303761 rs133683693 CC 113 0.1088 C 0.3503

TT 424 0.4081 T 0.6497

CT 502 0.4832

g.17303383G > T Exon-1 Chr9: 17303383 rs209984404 GG 504 0.4846 G 0.6986

TT 91 0.0875 T 0.3014

GT 445 0.4279

g.17303042C > G Exon-1 Chr9: 17303042 rs208945882 CC 499 0.4897 C 0.6977

GG 96 0.0942 G 0.3023

CG 424 0.4161

g.17302291C > G 3′ UTR Chr9: 17302291 rs136136524 CC 279 0.2680 C 0.5259

GG 225 0.2161 G 0.4741

CG 537 0.5159

g.17302078G > T 3′ UTR Chr9: 17302078 rs135063494 GG 502 0.4818 G 0.6972

TT 91 0.0873 T 0.3028

GT 449 0.4309

g.17301689 T > C 3′ UTR Chr9: 17301689 rs379078023 CC 103 0.1012 C 0.3089

TT 492 0.4833 T 0.6911

CT 423 0.4155

g.17301647G > T 3′ UTR Chr9: 17301647 rs109548495 GG 115 0.1103 G 0.3514

TT 425 0.4075 T 0.6486

GT 503 0.4823

g.17299803A > G 3′ UTR Chr9: 17299803 rs208790360 AA 499 0.4854 A 0.6989

GG 90 0.0875 G 0.3011

AG 439 0.4270

g.17298882A > G 3′ flanking region Chr9: 17298882 rs380460000 AA 2 0.0038 A 0.5019

GG 0 0.0000 G 0.4981

AG 523 0.9962

g.17296725C > T 3′ flanking region Chr9: 17296725 rs208087947 CC 503 0.4846 C 0.6985

TT 91 0.0877 T 0.3015

CT 444 0.4277

g.17296695 T > C 3′ flanking region Chr9: 17296695 rs133617481 CC 90 0.0872 C 0.2994

TT 504 0.4884 T 0.7006

CT 438 0.4244

Note: EVA European Variation Archive, UTR untranslated region
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GTCTGGTTTT, 30.3%; H3 = ATTGGCGTGA, 13.8%;
H4 = ATTGCCGTTA, 12.9%; H5 = ATTGCCGTGA,
4.4%; H6 = ATTGGCGTTA, 1.6%; and H7 = ATTGGC
GTTT, 1.5%).
Subsequently, we performed haplotype-based associ-

ation analysis with SAS9.2, and found that the haplotype
block1 and block2 were significantly associated with
nine (C6:0, C8:0, C10:0, C14:0, C16:1, 17:0, C20:0,
C16 index and C17 index; P = 0.0002 ~ 0.0476) and five
(C6:0, C8:0, C10:0, C20:0 and C17 index; P < 0.0001 ~
0.0265) milk fatty acids, respectively (Additional file 3:
Table S3). While, none of significant associations were
detected with C11:0, C12:0, C13:0, C14:1, C15:0, C16:0,
17:1, C18:0, C18:1cis-9, C18 index, C14 index, SFA, UFA
and SFA/UFA (P > 0.05). Through multiple testing, the
haplotype block1 and block2 were still significantly asso-
ciated with one (C8:0; P = 0.0002) and three (C6:0, C8:0,
C10:0; P < 0.0001) milk fatty acids, respectively.

Changes of the HTR1B protein secondary structure and
function caused by the missense mutation
g.17303383G > T
Using SOPMA software, we predicted that the missense
mutation in exon 1, g.17303383G > T, changed the
HTR1B protein secondary structure, including α-helix
(46.90 to 41.44%), extended strand (13.40 to 16.38%), β-
turn (2.48 to 1.74%), and random coil (37.22 to 40.45%)

with the allele from G to T. While, the HTR1B protein
function was not altered by the missense mutation with
the scores 0.25 (SIFT) and − 1.42 (PROVEAN).

Changes of transcriptional activity caused by
g.17307103A > T, g.17305206 T > G and g.17303761C > T
By searching the TFBSs of the two SNPs in 5′ UTR and
one SNP in 5′ flanking region with Genomatix, we dis-
covered that the allele T of g.17307103A > T created two
TFBSs for HMX2 (Hmx2/Nkx5–2 homeodomain tran-
scription factor) and PAX2 (Zebrafish PAX2 paired do-
main protein), and the allele G of g.17305206 T > G
created a TFBS for FOXP1ES (Alternative splicing vari-
ant of FOXP1, activated in ESCs). For g.17303761C > T,
the allele C created two TFBSs for MIZ1 (Myc-interact-
ing Zn finger protein 1, zinc finger and BTB domain
containing 17) and CUX2 (Cut-like homeobox 2, di-
meric binding site), and the allele T created two TFBSs
for DREAM (Downstream regulatory element-antagonist
modulator, Ca2 + −binding protein of the neuronal cal-
cium sensors family that binds DRE sites as a tetramer)
and PPAR-RXR (PPAR/RXR heterodimers, DR1 sites).
The detailed results were shown in Table 2.
Further, we utilized the luciferase assay (Fig. 2) to con-

firm the above prediction results. The luciferase activ-
ities of the construct T of g.17307103A > T was
observed significantly higher than those of the blank

Fig. 1 Linkage disequilibrium (LD) among the 13 SNPs of HTR1B gene

Cao et al. BMC Genomics          (2021) 22:575 Page 4 of 10



control (P < 0.0001), the empty vector PGL4.14 (P =
0.0022), and the construct A (P = 0.0007), indicating that
the allele T of g.17307103A > T increased the transcrip-
tional activity of HTR1B compared with allele A. How-
ever, the luciferase activities of four constructs (T and G
of g.17305206 T > G, and C and T of g.17303761C > T)
were not strongly changed than those of the blank and
empty vector, implying that g.17305206 T > G and
g.17303761C > T did not significantly alter the transcrip-
tional activity of HTR1B gene.

Discussion
According to our previous GWAS results and biological
functions, the HTR1B gene has been identified as one of
novel promising candidates for milk fatty acids in dairy
cattle [12]. In the present study, we firstly confirmed that
the HTR1B gene showed significant genetic effects on
medium-chain saturated fatty acids in dairy cattle, pro-
viding a basis for further verification.
Previous studies reported that protein secondary struc-

ture could be used to build safe starting cores to gener-
ate the complete protein fold [14], and to set structural
constraints for protein threading [15, 16]. Studies re-
ported that the missense mutations caused by the se-
quence variations were related to the protein function to
account for the phenotype variations [17–20]. Here, we
identified a missense mutation (g.17303383G > T), and it
changed the protein secondary structure by prediction
with the SOPMA. While we used SIFT and PROVEAN
softwares to detect that the missense mutation did not
alter the HTR1B protein function. Hence, the significant
associations of g.17303383G > T with milk fatty acids
might be due to the LD with the true causal mutations.
Regulatory region, including promoter, enhancer, silen-

cer, and insulator etc. [21], are important for the gene regu-
lation and expression [22]. Transcription factors (TFs) are
the sequence-specific DNA-binding proteins that regulate
gene expression in all organisms [23, 24], and approxi-
mately 10% are implicated in diverse diseases in human
[25]. In eukaryotes, multiple TFs cooperatively bind regula-
tory DNA to temporally and spatially control gene expres-
sion [26]. Generally speaking, 5’ UTR plays regulatory roles
in the gene expression through binding transcription fac-
tors or unknown regulatory mechanisms. Hence, we wish
to investigate if the SNPs in the 5’ UTRs changed the ex-
pression of HTR1B gene. It has been well-known that

Table 2 Changes of transcription factor binding sites (TFBSs) caused by the SNPs in the 5′ UTR and flanking region of HTR1B

SNP Sequence TF Full name

g.17307103A >
T

CCCCAACGCGATTC
CCTCCTT

CCCCAACGCGTTTC
CCTCCTT

HMX2 Hmx2/Nkx5–2 homeodomain transcription factor

PAX2 Zebrafish PAX2 paired domain protein

g.17305206
T > G

TTTTGAAGTTTTTTTT
TTTTTT

TTTTGAAGTTTGTT
TTTTTTTT

FOXP1ES Alternative splicing variant of FOXP1, activated in ESCs

g.17303761C >
T

ACCTCGCCCTCGAC
CTCTCGC

MIZ1 Myc-interacting Zn finger protein 1, zinc finger and BTB domain containing 17 (ZBTB17)

CUX2 Cut-like homeobox 2, dimeric binding site

ACCTCGCCCTTGAC
CTCTCGC

DREAM Downstream regulatory element-antagonist modulator, Ca2 + −binding protein of the neuronal cal-
cium sensors family that binds DRE (downstream regulatory element) sites as a tetramer

PPAR-
RXR

PPAR/RXR heterodimers, DR1 sites

Notes: TF transcrition factor

Fig. 2 Luciferase assay analysis of the recombinant plasmids in
HEK293 cells. Blank: Blank cells. PGL4.14: Empty vector. A and T:
Plasmids of g.17307103A > T. T and G: Plasmids of g.17305206 T > G.
C and T: Plasmids of g.17303761C > T. **: P < 0.01
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transcription factors (TFs) play an important role in gene
expression and transcriptional regulation [27, 28]. Previous
studies found that both 5’ UTR and 5’ flanking region can
combine with TF, and some SNPs within these regions
may change the TF-binding thereby leading to changes in
gene transcription activity and eventually affecting related
traits [29–31]. In this study, we predicted that three SNPs
(g.17307103A >T, g.17305206 T >G and g.17303761C >T)
changed the TFBSs. While only g.17307103A >T actually
changed the transcriptional activity of HTR1B gene. The al-
lele T of g.17307103A >T was predicted to create two
TFBSs for HMX2 and PAX2. The hmx homeobox-
containing TF gene family, containing contains hmx2 [32],
is highly conserved across species [33–36]. HMX2 is in-
volved in a feedback loop of EGF signaling and located in
upstream of the PAX5 of the utricular maculae to affect the
inner ear development in zebrafish [37, 38]. The pax gene
family encodes DNA binding TFs that control vital steps in
embryonic development and differentiation of specific cell
lineages in human [39]. PAX2 as a TF can promote the ex-
pression of ADAM10 to negatively regulate the epithelia to
mesenchyme transition in human [40]. According to the
significant associations and transcriptional activity caused
by g.17307103A >T, we suggested that g.17307103A >T
might be a potential causal mutation regulating the HTR1B
gene expression by altering the binding sits for the TFs
HMX2 and PAX2 to impact the milk fatty acid traits in
dairy cattle. Further investigation is needed to validate the
regulatory of specific transcription factors.
Regarding the expression of the HTR1B gene in multiple

tissues, based on the RNA-seq database, Cattle Gene Atlas
(http://cattlegeneatlas.roslin.ed.ac.uk/) [41], we observed
that the HTR1B gene was expressed in 82 tissues/ cell
types, including mammary gland, while HTR1B gene was
moderately expressed in mammary gland.

Conclusions
In this study, we confirmed the significant genetic effects
of the HTR1B gene on milk fatty acids using post-
GWAS strategy, and identified a potential functional
mutation in 5′-flanking region, g.17307103A > T, that al-
tered the transcriptional activity of HTR1B. Our findings
provided valuable molecular information for genetic im-
provement programs in dairy cattle.

Methods
Animals and phenotypic data
A total of 1065 Chinese Holstein cows was used in this
study that were different from those in our previous GWAS
[12]. They were from 44 sire families with an average of 24
daughters per sire and collected in the 23 dairy farms of the
Beijing Sanyuanlvhe Dairy Farming Center (Beijing, China).
We collected milk samples of these 1065 cows to measure
milk fatty acids in the laboratory of Beijing Dairy Cattle

Center (www.bdcc.com.cn). By gas chromatograph, the
contents of 16 kinds of main milk fatty acids were directly
detected, including SFA: C6:0, C8:0, C10:0, C11:0, C12:0,
C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C20:0; and UFA:
C14:1, C16:1, C17:1 and C18:1cis-9. Based on these pheno-
type values, we obtained four index traits (C14 index,
C16 index, C17 index and C18 index) calculated with the
formulas: cis−9 unsaturated

cis−9 unsaturatedþsaturated �100 [42], and summarized
the SFA, UFA, SFA/UFA.

Gas chromatograph
Total milk fat were extracted from approximately 2ml of
each milk sample. Fatty acids have high boiling points, so
they are unstable and easy to crack at high temperatures.
The high temperature in gas chromatographic analysis will
cause the loss of fatty acids, so pre-treatment is required.
Therefore, when analyzing fatty acids and fats, especially
fatty acid components, to reduce the boiling point and im-
prove stability, we react the fatty acids or fats with metha-
nol to prepare fatty acid methyl esters and then perform
gas chromatography analysis.
The measurement conditions of the gas chromato-

graph are as follows: the injector temperature is 260 °C;
carrier gas (helium) flow rate is 45 mL/min; split ratio is
100:1; chromatographic column conditions: keep at
100 °C for 10 min, heat up at 6 °C /min to 160 °C and
hold for 10 min, heat up at 5 °C /min to 200 °C and hold
for 20 min, heat up at 4 °C /min to 240 °C and hold for
12 min; the detector temperature is 260 °C.

SNP identification and genotyping
We extracted genomic DNA from the blood samples of
1065 cows and the semen samples of 44 sires using TIA-
Namp Blood DNA Kit (Tiangen, Beijing, China) and
salt-out procedure, respectively. DNA quantity and qual-
ity were measured by NanoDrop™ ND-2000 Spectropho-
tometer (Thermo Scientific, Hudson, DE, USA) and
2.0% agarose gel electrophoresis.
A total of 15 pairs of primers (Additional file 4: Table S4)

were designed for PCR amplification using the Primer 3.0
(http://primer3.wi.mit.edu/) based on the sequences of all
the exons, and 3000 bp of 5′ and 3′ flanking regions of the
bovine HTR1B gene (Gene ID: 317707), and were synthe-
sized in the Beijing Genomics Institute (Beijing, China). By
using the DNA samples of the abovementioned 44 sires
with the same concentration of 50 ng/μl, two DNA pools
were constructed and 22 sires were included in each pool.
Then, PCR amplification was performed with abovemen-
tioned 15 pairs of primers and PCR procedure was as fol-
lows: initial denaturation at 94 °C for 5min; annealing at
94 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s, for 35 cycles
and final extension at 72 °C for 7min. By sequencing PCR
products, we identified potential polymorphic sites.
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Then, 1065 cows were individually genotyped by using
matrix-assisted laser desorption/ionization time of flight
mass spectrometry (MALDI-TOF MS, Sequenom Mas-
sARRAY, Bioyong Technologies Inc. HK). As for each
identified SNP, PCR amplification was first performed
with sequence-specific extension primers, then 1 base
was extended targeting two alleles of the identified SNP.
According to different mass-to-charge ratios of two al-
leles, different mass spectrum peaks could be observed
to detect the genotype of each SNP.

Statistical analysis
First, we used the Haploview 4.1 software (Broad Institute
of MIT and Harvard, Cambridge, MA, USA) to identify the
LD extent among the identified SNPs of the HTR1B gene.
Subsequently, we performed single SNP-based and

haplotype-based association analysis. We traced the ped-
igrees of the 1065 Chinese Holstein cows back to three
generations, as a result, a total of 3335 individuals were
included for association analysis, which kinship matrix
(A-matrix) were constructed with SAS9.2 (SAS Institute,
Cary, NC, USA). Then, associations between the identi-
fied SNPs and haplotype blocks with 23 milk fatty acid
traits were performed by SAS9.2 on the basis of the fol-
lowing mixed animal model:

Y ijklm ¼ μþ Gi þ hj þ lk þ al þ b�Mm þ eijklm

Here, Yijklm is the phenotypic value of each milk fatty acid
trait; μ is the overall mean; Gi is the fixed effect correspond-
ing to the genotype or haplotype combination; hj is the fixed
effect of farm (j= 1 ~ 23); lk is the fixed effect of stage of lac-
tation (k = 1 ~ 4); al is the random polygenic effect; Mm is
the fixed effect of age at calving (m = 1~ 293); b is the re-
gression coefficient of covariate M; and eijklm is the random
residual. Bonferroni correction was performed according to
the number of multiple tests, in which the adjusted signifi-
cance levels of P < 0.05 for the single SNP and haplotype-
based analysis were 0.0002 and 0.0011, respectively.
Further, we calculated the additive effect (a), dominant

effect (d), and substitution effect (α) of SNP on the milk
fatty acid traits according to the formulas [43]: ɑ

¼ AA−BB
2 ; d ¼ AB− AAþBB

2 ; and α ¼ ɑþ dðq−pÞ , in which,
p and q were the frequencies of A and B, respectively;
and AA, AB and BB were the least square means of fatty
acids corresponding to the genotypes.

Prediction of the secondary structure and function
changes of the HTR1B protein
We used the NPSA SOPMA SERVER program (https://
npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_
sopma.html) to predict whether the identified missense
mutation in coding region changed HTR1B protein sec-
ondary structure, and set the parameters with similarity

threshold (8), and number of states (4-Helix, Sheet,
Turn, Coil). Also, we used the SIFT (http://sift.bii.a-star.
edu.sg/) and PROVEAN (http://sift.jcvi.org/index.php) to
investigate whether the missense mutation altered the
protein function. The score thresholds of the SIFT and
PROVEAN were 0.05 [44] and − 2.5 [45], respectively.
When the score is below the threshold, the protein func-
tion is considered changed.

Prediction of the changes of transcription factor binding
sites (TFBSs)
We predicted whether the SNPs in 5′ UTR and flanking
region of the HTR1B gene impacted on TFBSs by using
the Genomatix suite v3.9 (http://www.genomatix.de/cgi-
bin/welcome/welcome.pl?s=d1b5c9a9015b02bb3b1a806
f9c03293f).

Construction of recombinant plasmid, cell culture and
luciferase assay
We constructed six luciferase reporter gene fragments with
Kpn1 and Nhel restriction sites at the 5′ to 3′ termini
(Figs. 3 and 4), which contained alleles A and T of
g.17307103A >T, T and G of g.17305206T >G, and C and

Fig. 3 Sketches of recombinant plasmids. The nucleotides in red
highlight referred to the SNP
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T of g.17303761C >T. The six fragments were synthesized
in Genewiz (Suzhou, China), and were cloned into the
pGL4.14 Luciferase Assay Vector (Promega, Madison,
USA). Subsequently, the plasmids were purified by Endo-
free Plasmid DNA Mini Kit II (OMEGA, omega bio-tek,
Norcross, Georgia, USA), and then were sequenced to con-
firm the integrity of each construct’s insertions.
Human Embryonic Kidney (HEK)-293 T cells were cul-

tured in Dulbecco’s modified Eagle’s medium (DMEM) in-
cluding 10% heat-inactivated fetal bovine serum (FBS;
Gibco, Life Technologies) at 5% CO2 and 37 °C. We seeded
approximately 2 × 105 cells per well into 24-well plates, and
transfected the cells using Lipofectamine 2000 (Invitrogen,
CA, USA). For each well, we transfected 500 ng of the con-
structed plasmid DNA along with 10 ng of pRL-TK renilla
luciferase reporter vector (Promega), and conducted three
replicates for each construct. The cells were cultured for
about 36-48 h after transfection and then were measured
the activities of firefly and renilla luciferases using a Dual-
Luciferase Reporter Assay System (Promega) with a Modu-
lus microplate multimode reader (Turner Biosystems, CA,
USA). Finally, average statistics of three replicates were cal-
culated as the normalized luciferase data (firefly/renilla).
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