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Abstract: Osteoblasts and osteoclasts are major cellular components in the bone microenvironment
and they play a key role in the bone turnover cycle. Many risk factors interfere with this cycle
and contribute to bone-wasting diseases that progressively destroy bone and markedly reduce
quality of life. Melatonin (N-acetyl-5-methoxy-tryptamine) has demonstrated intriguing therapeutic
potential in the bone microenvironment, with reported effects that include the regulation of bone
metabolism, acceleration of osteoblastogenesis, inhibition of osteoclastogenesis and the induction of
apoptosis in mature osteoclasts, as well as the suppression of osteolytic bone metastasis. This review
aims to shed light on molecular and clinical evidence that points to possibilities of melatonin for
the treatment of both osteoporosis and osteolytic bone metastasis. It appears that the therapeutic
qualities of melatonin supplementation may enable existing antiresorptive osteoporotic drugs to treat
osteolytic metastasis.

Keywords: apoptosis; bone mass protection; bone metastasis; immunomodulation; melatonin;
osteoclastogenesis; osteoclasts; osteoporosis

1. Introduction

The endogenous hormone melatonin (N-acetyl-5-methoxytryptamine) has long been
recognized for its regulation of circadian and circannual functions [1]. Melatonin is mainly
secreted by the pineal gland, but is also synthesized by extrapineal tissues and organs,
including skin, the thymus, spleen, liver, bone marrow, and lymphocytes. As melatonin
exhibits not only endocrine, but also autocrine or paracrine effects [2,3], it is considered
to be an important regulator of the human immune system [3]. By activating the high-
affinity G-protein-coupled melatonin MT1/2 receptors in target cells of the hypothalamic
suprachiasmatic nucleus and the retina, melatonin regulates endocrine circadian rhythms
and thus the sleep–wake cycle [4]. Activation of the MT1/2 receptors inhibits the adenylate
cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP
response element-binding protein (CREB) pathway and the guanylate cyclase (GC)/cyclic
guanosine monophosphate (cGMP)/protein kinase G (PKG) pathway, while both receptors
activate the phospholipase C (PLC) pathway, which increases production of the signaling
molecules inositol trisphosphate (IP3) and diacylglycerol (DAG); IP3 triggers the release
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of intracellular calcium (Ca2+) via IP3 receptors, while DAG recruits and activates protein
kinase C (PKC) [4,5]. Signaling cascade events that occur after the release of intracellular
Ca2+ into the cytoplasm include the opening of receptor/ion channels and activation
of the Ca2+/calmodulin-dependent kinase cascade [6]. PKC activation is necessary for
angiotensin II-mediated, renal efferent arteriole vasoconstriction [7], phosphorylation of
rat proximal tubule Na+-ATPase, which increases proximal tubule sodium reabsorption [8],
and the modulation of aldosterone synthesis, with evidence controversially showing that
PKC activation can both stimulate and inhibit aldosterone production [9]. Melatonin also
affects nuclear signaling by binding to nuclear receptors, such as retinoid-related orphan
receptor (ROR) receptors, which mediate metabolic processes, immunological functions
and circadian outputs [4]. In particular, evidence suggests that RORα mediates the indirect
(peripheral) effects of melatonin on immunomodulation, cellular proliferation, and bone
differentiation, while membrane melatonin receptors appear to modulate the constitutive
activity of RORα [10].

Melatonin supplementation has demonstrated therapeutic potential in the bone mi-
croenvironment [11], although this supporting evidence has been criticized for its absence,
or because of its low to very low quality [12–14]. This review describes experimental
and clinical evidence relating to melatonin-associated acceleration of osteoblastogenesis,
inhibition of osteoclastogenesis and induction of apoptosis in osteoclasts, as well as the
suppression of osteolytic bone metastasis. These features suggest further avenues for
research into the potential use of this molecule in the treatment of osteoporosis.

2. Melatonin Metabolically Reprograms HSPC Self-Renewal, Stimulates Osteoblast
Differentiation, and Inhibits Osteoclastogenesis

The onset of darkness metabolically reprograms the BM HSPCs to reacquire their
undifferentiated state and repopulation potential, accompanied by limited proliferation,
largely in response to melatonin-induced signaling [15,16]. Thus, daily light and dark
cues and circadian rhythms regulate the differentiation and maintenance of BM-retained
HSPCs [16]. It is also established that melatonin is locally produced by bone-forming
stromal precursors in murine and human BM, and that melatonin preconditioning of
mesenchymal cells increases their survival and therapeutic efficiency [16].

Nuclear factor kappa B (NF-κB) and the metabolic protein peroxisome proliferator-
activated receptor gamma (PPARγ) appear to be the most important transcription factors
involved in melatonin-induced stimulation of osteoblast differentiation. Preclinical evi-
dence has shown that one way in which melatonin promotes osteoblast differentiation is
by enhancing the expression of the osteogenic marker, Osterix, apparently through the
protein kinase A (PKA) and PKC signaling pathways [17]. In ovariectomized (OVX) mice,
melatonin reportedly suppressed osteoclastogenesis by inhibiting receptor activator of
nuclear factor-kappa B ligand (RANKL)-induced tumor necrosis factor receptor-associated
factor 6 (TRAF6), c-Jun N-terminal kinase (JNK), protein arginine methyltransferase 1
(PRMT1), and NF-κB signaling through a receptor-independent pathway [18]. In bone
marrow monocytes (BMMs) isolated from the femurs and tibias of C57BL/6 mice, phar-
macological concentrations (1 to 100 µM) of melatonin dose-dependently suppressed
osteoclast differentiation and decreased numbers of tartrate-resistant acid phosphatase
(TRAP)-positive cells as well as the gene expression of osteoclast-specific markers, via a re-
active oxygen species (ROS)-mediated independent pathway [19]. Promisingly, melatonin
suppressed estrogen deficiency-induced osteoporosis and promoted osteoblastogenesis
in another study with OVX mice by suppressing the NLRP3 inflammasome in femoral
bone protein through the regulation of Wnt/β-catenin signaling [20]. Other research has
reported that melatonin enhanced osteogenic differentiation of human mesenchymal stem
cells (MSCs) and restored oxidative stress-induced inhibition of osteogenesis by activating
AMP-activated protein kinase (AMPK) and subsequently increasing forkhead box class
O 3a (FOXO3a) and RUNX2 protein levels [21]. Melatonin-mediated enhancement of os-
teoblastogenesis has also been observed in human MSCs, in which melatonin can decrease
PPARγ and increase RUNX expression, shifting MSCs towards osteogenesis [22]. Similarly,
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other investigations have recorded that melatonin inhibits adipogenic differentiation of
human MSCs and enhances osteoblastogenesis by suppressing PPARγ expression [23,24].
However, contrasting findings have been reported by another research group using dif-
ferentiating mouse embryo fibroblasts, in which high-dose melatonin (1 mM) treatment
for 3 days significantly increased PPARγ expression and enhanced osteoblastogenesis [25].
This aspect of melatonin treatment needs further clarification.

It has been proposed that melatonin suppresses osteoclast differentiation by down-
regulating NF-κB and subsequently reducing the induction of nuclear factor of activated
T cell cytoplasmic 1 (NFATc1), a transcription factor that is required for osteoclastogen-
esis [26]. Moreover, it appears that the anti-osteoclastogenic effect of melatonin occurs
independently of its receptors MT1 and MT2, as silencing of these receptors in mouse
bone marrow-derived macrophages failed to reverse the anti-osteoclastogenic signals of
melatonin [26]. Other in vitro evidence suggests that melatonin inhibits RANKL-induced
osteoclastogenesis by increasing the expression of Rev-erbα (a key circadian clock repres-
sor) and reducing microRNA (miR)-882 expression in Raw264.7 cells [27]. Intriguingly,
in vitro research has reported that melatonin inhibits osteoclastic activation under micro-
gravity conditions by upregulating calcitonin and downregulating RANKL in osteoblasts,
which indicates that melatonin may prevent bone loss during space flights [28].

The effects of melatonin on osteoblasts and osteoclasts may help to prevent and
treat bone loss [22]. Melatonin is capable of regulating bone density by reducing oxida-
tive stress in osteoclasts, promoting osteoclast cell differentiation and activity, and by
increasing osteoblast-induced osteoprotegerin expression, preventing osteoclast precursors
from differentiating into osteoclasts and inhibiting the process of bone resorption [22].
This apparently protective mechanism of melatonin against bone resorption suggests
important therapeutic potential in bone-wasting diseases such as osteoporosis [22] and
osteolysis [11,29]. Notably, by regulating inflammatory pathways and circadian rhythms,
melatonin can stimulate the regeneration of cartilage and inhibit the release of proinflam-
matory cytokines or osteolytic factors including interleukin (IL)-1β, IL-8, tumor necrosis
factor alpha (TNF-α), COX-2, matrix metalloproteinases (MMPs), and RANKL in joints
by modulating the expression of key circadian clock genes, including BMAL, CRY, and/or
DEC2 [30,31]. Figure 1 illustrates the therapeutic effects of melatonin in the bone microen-
vironment. An important aspect to be considered for the potential therapeutic use of
melatonin is its ability to promote apoptosis in mature osteoclasts and thus significantly re-
duce their lifespans, as well as suppress osteoclastic bone resorption [11]. This is discussed
in the following section.
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Figure 1. Melatonin suppresses proinflammatory cytokine production, tumor-secreted osteolytic factor expression, and
bone metastatic tumor growth.

3. Melatonin Shows Potential for Osteoporosis—Preclinical and Clinical Evidence

Osteoporosis is a progressive bone disease, in which low bone mass and structural
deterioration of bone tissue increases bone fragility and subsequent risk of fracture [32].
Although antiosteoporotic drugs (including bisphosphonates, selective estrogen receptor
modulators, and calcitonin) inhibit bone resorption and assist with post-fracture bone heal-
ing [33–35], these medications fail to assist with bone formation [35] and they are associated
with varying risks of adverse events, some of which are significant (e.g., osteonecrosis of
the jaw, atypical fracture, and venous thromboembolic events) that greatly increase the risk
of discontinuation [36]. New treatment strategies for osteoporosis are therefore needed
that are as effective or more so, with the ability to promote bone formation without the side
effects of existing medications.

Promisingly, the combination of melatonin with the bisphosphonate alendronate in
OVX rats was associated with much less severe gastric damage than in OVX rats treated
with alendronate alone [37]. Moreover, histological analyses of trabecular bone sections
from the melatonin + alendronate group revealed similar bone matrix and architecture
to that in the sham-operated controls, while the alendronate- or melatonin-treated rats
had similar increases in trabecular thickness and reductions in apoptotic cells [37]. Thus,
melatonin protected against OVX-induced gastric injury that was worsened by alendronate
and melatonin provided similar supportive effects to those of alendronate concerning
preservation of bone mass.

Melatonin has potential for the treatment of osteoporosis and may also help to prevent
this disease. For instance, melatonin and calcium carbonate treatment of osteoporotic
rats was associated with increased antioxidative stress activities, improved lumbar verte-
brae and femur bone densities, and upregulated serum calcium and bone mineral levels,
compared with osteoporotic rats administered melatonin or calcium carbonate alone [38].
Preclinical [27,39–60] and clinical evidence [61–64] indicate an antiosteoporotic role for
melatonin (see Table 1). Melatonin modified bone remodeling induced by ovariectomy
in rats, in which a pharmacological dose of melatonin (25 µg/mL drinking water) given
for up to 60 days after surgery prevented postsurgical increases in urinary deoxypyridi-
noline (a marker of bone resorption) and increased serum phosphorus and bone alkaline
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phosphatase (BAP) levels compared with untreated rats [39]. In further experiments, by
the same researchers, where OVX rats were administered melatonin (25 µg/mL drink-
ing water) with or without estradiol (10 µg/kg subcutaneously (s.c.); 5 days/week) for
up to 60 days, melatonin potentiated estradiol-induced inhibition of OVX-induced bone
resorption and impaired estradiol-induced increases in serum phosphorus [40]. Both mela-
tonin and estradiol lowered serum BAP activity; melatonin also augmented spinal bone
area values and bone mineral content of the whole of the skeleton and tibia, with the
highest values seen in rats given both melatonin and estradiol [40]. In rats treated with
methylprednisolone (5 mg/kg s.c., 5 days/week) for 10 weeks, the addition of melatonin
(25 µg/mL drinking water) augmented bone protective effects and lowered still further
the circulating levels of C-telopeptide fragments of collagen type I (CTX, an index of bone
resorption) observed with methylprednisolone alone [41]. In a mouse model of OVX-
induced osteoporosis, orally administered melatonin completely reversed the architectural
deterioration and functional defects in bone by specifically increasing bone formation [44].
As the study researchers suggest, their finding that bone mass is regulated via the pineal-
derived melatonin-MT2 receptor pathway needs further exploration to clarify whether
more selective receptor agonist therapy or oral melatonin treatment activates MT2 and
can treat postmenopausal osteoporosis [44]. Melatonin may also be appropriate in the
treatment of type 2 diabetic osteoporosis, with evidence of low to high doses of melatonin
improving bone microstructure and promoting bone formation in the osteoblastic cell
line MC3T3-E1 (at concentrations of 1, 10, and 100 µM) exposed for 48 h to high glucose
(25.5 mM) and in a diabetic rat model (10 and 50 mg/kg) [56]. The study findings identified
that high glucose induces ferroptosis (an iron- and ROS-dependent form of regulated cell
death) by increasing ROS/lipid peroxidation/glutathione depletion in type 2 diabetic
osteoporosis [56]. Importantly, melatonin inhibited ferroptosis of osteoblasts and improved
the osteogenic capacity of MC3T3-E1 cells by activating nuclear factor erythroid 2-related
factor 2 (Nrf2) and heme oxygenase-1 (HO-1) signaling in vitro and in vivo [56]. Mela-
tonin also protects MC3T3-E1 cells against high glucose-induced changes (reduced viability,
apoptosis and calcium influx) by inhibiting protein kinase RNA-like endoplasmic reticulum
kinase (PERK)-eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor
4 (ATF4)-C/EBP homologous protein (CHOP) signaling, a major endoplasmic reticulum
stress pathway that is needed for cell survival [57]. Melatonin may also be helpful for
treating glucocorticoid-induced osteoporosis, as melatonin treatment reportedly rescued
MC3T3-E1 cells from dexamethasone-induced inhibition of osteoblast differentiation and
mineralization via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and
bone morphogenetic protein (BMP)/Smad signaling pathways [58].
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Table 1. Summary of preclinical and clinical evidence demonstrating bone-protective effects of melatonin.

Preclinical

Cellular or Animal Model Dosage Administration Outcomes Ref.

BMMSCs 10 µmol/L Culture
Melatonin promoted osteogenesis in BMMSCs by upregulating miR-92b-5p

expression, which enhanced the differentiation of BMMSCs into mature
osteoblasts by targeting ICAM-1.

[54]

MC3T3-E1 cells, human bone
MSCs 1 mM Culture

Melatonin promoted osteogenic differentiation and mineralization in
inflammatory conditions; this process required Wnt4, via activation of β-catenin

and p38-JNK MAPK signaling.
[65]

BMMSCs 100 µmol/L Culture Melatonin inhibited ROS generation during osteogenesis of BMMSCs in the
presence of TNF-α and promoted the osteogenic differentiation of BMMSCs. [55]

MC3T3-E1 cells
Diabetic rats

Cells:
1, 10, or 100 µM

Rats:
10 or 50 mg/kg

Culture
Animals:

Intraperitoneal injection

Melatonin inhibited ferroptosis and improved the osteogenic capacity of
MC3T3-E1 cells by activating Nrf2/HO-1 signaling in vitro and in vivo. [56]

MC3T3-E1 cells 100 nM Culture
Melatonin protects MC3T3-E1 cells against high glucose-induced changes

(reduced viability, apoptosis and calcium influx) by inhibiting the
PERK-eIF2α-ATF4-CHOP signaling pathway.

[57]

MC3T3-E1 cells 1 µM Culture
Melatonin treatment rescued MC3T3-E1 cells from dexamethasone-induced
inhibition of osteoblast differentiation via the PI3K/AKT and BMP/Smad

signaling pathways.
[58]

OVX rats 25 µg/mL Oral (melatonin in drinking
water)

Melatonin and alendronate provided similar supportive effects on preservation
of bone mass in OVX rats, with no additive effect on bone remodeling when these
treatments were combined. However, melatonin prevented alendronate-induced

gastric side effects.

[37]

Raw264.7 cells 0.1 or 1 µmol Culture Melatonin inhibits RANKL-induced osteoclastogenesis by increasing the
expression of Rev-erbα and reducing miR-882 expression in Raw264.7 cells. [27]

BMMSCs 100 µmol/L Culture
Melatonin promoted BMMSC osteogenic differentiation and inhibited

osteoporosis pathogenesis by suppressing the expression of circ_0003865 and
increasing the expression of miR-3653-3p.

[59]
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Table 1. Cont.

Clinical

Study Population Route of Administration Dosing Schedule Outcomes ClinicalTrials.gov. Identifier Ref.

Perimenopausal women
(n = 18) Oral Nightly placebo or melatonin

(3 mg) for 6 months.

At 6 months, serum markers of bone resorption
(NTX) and formation (OCN) were not

significantly changed from baseline in either
group, although the NTX:OCN ratio trended

downward over time with melatonin (placebo
showed no such trend). Melatonin also reduced

osteoclast to osteoblast ratios.

NCT01152580 [61]

Postmenopausal women with
osteopenia*

(n = 81)
Oral

Nightly placebo or melatonin
(1 mg or 3 mg) for 12 months.

All study participants also
received a daily supplement
of 800 mg calcium and 20 µg

vitamin D3.

After 1 year of treatment, femoral neck BMD
was increased by 0.5% with 1 mg/day
melatonin and by 2.3% with 3 mg/day

melatonin, compared with placebo. At 12
months, trabecular thickness was increased
from baseline in the (combined) melatonin

group by 2.2% compared with placebo, while
volumetric BMD at the lumbar spine was

increased by 3.6% in the 3 mg/day melatonin
group compared with placebo. Biochemical

markers of bone turnover were not affected by
melatonin, although 24-h urinary calcium was
decreased by 3.7% in the (combined) melatonin

group compared with placebo.

NCT01690000 [62]

Postmenopausal women with
osteopenia *

(n = 23)
Oral

Nightly placebo or MSDK
supplementation: melatonin

(5 mg), strontium (citrate),
vitamin D3 and vitamin K2.

Over 1 year, compared with placebo, MSDK
treatment increased lumbar spine BMD by 4.3%

and left femoral neck BMD by 2.2%, and
showed a trend towards an increase in hip BMD

from baseline. The 10-year vertebral fracture
risk probability fell by 6.48% with MSDK

treatment, but increased by 10.8% with placebo.
MSDK increased serum bone formation markers

and reduced bone turnover.

NCT01870115 [64]

* Osteopenia was defined as low bone mass with a T-score between −1 and −2.5 in either the hip or spine. BMMSCs, bone marrow mesenchymal stem cells; ICAM-1, intracellular adhesion molecule-1; JNK, c-Jun
N-terminal kinase; MAPK, mitogen-activated protein kinase; ROS, reactive oxygen species; TNF-α, tumor necrosis factor alpha; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; PERK,
protein kinase RNA-like endoplasmic reticulum kinase; eIF2α; eukaryotic initiation factor 2 alpha; ATF4, activating transcription factor 4; CHOP, C/EBP homologous protein; PI3K, phosphatidylinositol-3-kinase;
AKT, protein kinase B; BMP, bone morphogenetic protein; OVX, ovariectomized; RANKL, receptor activator of nuclear factor-kappa B ligand; NTX, N-terminal telopeptide; OCN, osteocalcin; BMD, bone
mineral density.

ClinicalTrials.gov
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Further evidence suggesting that melatonin has the potential to promote bone regen-
eration comes from studies in mice, in which intraperitoneal (i.p.) melatonin increased
the formation of mouse cortical bone formation in vivo [42]. Promisingly, melatonin treat-
ment increases bone mass around implants. In adult Beagle dogs, topical application of
lyophilized powdered melatonin (1.2 mg) and recombination human growth hormone
(4 IU) to osteotomy sites before dental implants synergistically enhanced new bone forma-
tion around the implants within 5 weeks of insertion [43], while in OVX rats, melatonin
(50 mg/kg, i.p.) increased the generation of new bone around prostheses, enhanced os-
teoblast proliferation and increased implant fixation strength [48]. Interestingly, a composite
adhesive hydrogel system (GelMA-DOPA@MT) that releases melatonin in a sustained
fashion in a local area has shown that it reduces apoptosis in osteoblasts and increases
bone mass around the implant in OVX rats treated with this composite system [51], which
suggests that it may correct implant loosening in patients with osteoporosis. Bone loss
(aseptic loosening or periprosthetic osteolysis) is a significant complication following total
joint replacement and a major cause of implant failure. Importantly, wear particles stim-
ulate bone marrow mesenchymal stem cells (BMMSCs) in the bone-prosthesis interface
and impair their osteogenic potential [52]. Interestingly, melatonin can reportedly improve
the matrix mineralization and expression of osteogenic markers in BMMSCs exposed to
titanium (Ti) wear particles in vitro, and ameliorate Ti particle-induced osteolysis in a
murine calvarial osteolysis model [52]. Melatonin-treated BMMSCs exhibited increases
in levels of silent information regulator type 1 (SIRT1) and intracellular antioxidant en-
zymes, particularly superoxide dismutase 2 (SOD2), highlighting the importance of the
SIRT1/SOD2 signaling pathway in bone mass and wear particle-induced osteolysis around
prostheses [52]. Currently, no therapeutic agents exist that are capable of protecting against
inflammatory bone loss diseases. Melatonin has shown potential in this scenario. In a
series of experiments involving osteogenic precursor cells (human bone MSCs and MC3T3-
E1 preosteoblasts), melatonin promoted osteogenic differentiation and mineralization in
inflammatory conditions; a process in which Wnt4 was essential, via activation of β-catenin
and p38-c-Jun N-terminal kinase (JNK) MAPK signaling [65]. Moreover, melatonin has
been found to effectively reduce accumulation of reactive oxygen species (ROS) during
osteogenesis of BMMSCs in the presence of TNF-α, by upregulating antioxidase expression
and downregulating oxidase expression [55].

Melatonin may protect against natural age-related osteoporosis, according to a study
that used naturally aged male mice [66]. Orally administered melatonin in drinking water
from 4 to 20 months of age improved bone strength and trabecular bone density of the
femur, apparently via the MT2 receptor, which was detected in osteoblasts and osteoclasts
in the femur bones [66]. In aged rats, micro-CT data have recorded increases in BMD,
bone volume/tissue volume (BV/TV), trabecular number (Tb.N) and trabecular thickness
(Tb.Th), as well as reductions in the Structure Model Index (SMI) and trabecular separa-
tion/spacing (Tb.Sp) values after melatonin administration [45]. That study also reported
that melatonin was associated with reductions in calcium and phosphorus losses in urine,
increases in serum BAP and osteocalcin (OCN) levels and increases in bone formation
and bone mineralization rates [45]. Melatonin also upregulated osteogenic differentiation
gene expression and downregulated adipogenic differentiation gene expression [45]. In
another study, micro-CT scans of OVX mice found that compared with high-dose melatonin
(100 mg/kg/day), low-dose melatonin (10 mg/kg/day) produced more marked increases
in BMD, higher BV/TV and Tb.N values, and greater reductions in Tb.Sp values [53].
Serum levels of the bone formation marker N-terminal propeptide of type I procollagen
(PINP) were consistent with micro-CT data [53]. Thus, even at a low dose, melatonin
appears to be effective against osteoporosis. Some preclinical evidence suggests that the
addition of rapamycin enhances the anti-osteoporotic effects of melatonin in age-dependent
osteoporosis [67]. In OVX rats, melatonin combined with rapamycin was more effective
than melatonin alone in improving osteoporotic bone microarchitecture and bone quality
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and strength [67]. The beneficial effects of melatonin on age-dependent bone loss were
achieved through regulation of the osteoprotegerin (OPG)/RANKL signaling pathway [67].

In mice with retinoic acid-induced osteoporosis, melatonin prevented bone destruction
by suppressing levels of bone loss, repairing the trabecular microstructure, and promot-
ing bone formation, all of which the study researchers speculated involves extracellular
signal-regulated kinase (ERK)/Smad activation and NF-κB signaling [47]. Melatonin has
indicated promise as a treatment for postmenopausal osteoporosis, by preserving antioxi-
dant function and osteogenic potential of BMMSCs from OVX rats, in which intravenous
(i.v.) injections of melatonin via the tail vein ameliorated bone microarchitecture in the
femur [60]. Interestingly, melatonin apparently promotes the osteogenic differentiation of
BMMSCs by upregulating microRNA-92b-5p expression, which then enhances the differen-
tiation of BMMSCs into mature osteoblasts by targeting intracellular adhesion molecule-1
(ICAM-1) [54]. In another study, melatonin promoted the osteogenic differentiation of
BMMSCs and prevented the progression of osteoporosis by significantly decreasing the
expression of circ_0003865, which subsequently increased levels of osteogenic marker
genes (ALP, RUNX2 and OPN) and marked induction of osteogenic differentiation [59].
Moreover, melatonin-induced silencing of circ_0003865 increased the expression of miR-
3653-3p, which substantially increased ALP, RUNX2, and OPN expression and promoted
BMMSC osteogenic differentiation [59].

Results of a mouse study suggest that restoring melatonin levels in melatonin-deficient
mice prevents scoliosis and improves bone density [46]. Similarly, serum melatonin lev-
els are low in patients with multiple sclerosis (MS) and are not only associated with
disease severity, but are also inversely correlated with serum procalcitonin levels (procal-
citonin is involved in calcium homeostasis) [68]. Patients with osteoporosis and chronic
renal failure on maintenance hemodialysis have been found to have lower serum mela-
tonin levels and higher serum levels of advanced oxidation protein products, malondi-
aldehyde, and proinflammatory cytokines (IL-1, IL-6, and TNF-α) compared with their
non-osteoporotic counterparts [69]. In a mouse model of MS induced by experimental
autoimmune encephalomyelitis (EAE), melatonin treatment (10 mg/kg/day, i.p.) normal-
ized bone metabolites and reduced the risk of osteoporosis by increasing serum levels
of calcium, 25-hydroxyvitamin D and OCN, and melatonin treatment reduced serum
procalcitonin levels [68]. Another mouse study found that melatonin protects against
postmenopausal bone loss by increasing osteoblast citrate production and enhancing the
closely related process of matrix mineralization [50]. The study researchers suggested that
as citrate secretion in osteoblasts increases via the upregulation of zinc transporter (ZIP-1)
with subsequent accumulation of intracellular zinc, it is worth investigating the possibil-
ity of promoting citrate secretion in osteoblasts through dietary zinc supplementation in
osteoporosis treatment [50].

Clinical trials have pointed to the benefits of oral melatonin supplementation on
bone, reflected by reduced bone turnover and increases in serum bone formation markers,
increases in BMD, and a fall in the long-term likelihood of vertebral fracture risk [61,62,64].
However, some controversy surrounds the clinical trial evidence as to the efficacy and safety
of melatonin in humans. First of all, the scarcity of double-blind, randomized, placebo-
controlled trials makes it difficult to draw firm conclusions as to the effects of melatonin
supplementation, especially since the lack of numbers affects the statistical power [4].
In regard to safety, trials have been criticized for their weak methodology around the
reporting of adverse events and for not including a priori consideration of which adverse
events should be determined as relevant [4]. Moreover, just one clinical trial has considered
the safety of melatonin as the primary outcome; in that trial, orally administered melatonin
at 10 mg/day for 4 weeks in healthy volunteers did not produce any adverse outcomes
that might compromise its daily use at this dose over a 4-week period [13]. Reviews
of the clinical evidence generally agree that short-, intermediate-, and long-term oral
melatonin supplementation (for days, weeks-to-months, and years, respectively) is safe and
associated with only mild, transient adverse effects such as dizziness, sleepiness, nausea,



Int. J. Mol. Sci. 2021, 22, 9435 10 of 19

and headache; no dose has been linked to serious adverse effects [12,14]. Nonetheless,
melatonin has been linked to endocrine disturbances including reproductive parameters
and glucose metabolism, as well as cardiovascular dysfunction (variability in heart rate
and blood pressure), apparently in response to dosage, timing of dosing and possibly
melatonin-antihypertensive drug interactions [12]. Following dosing schedules that imitate
normal circadian rhythms is advisable for avoiding or managing most of the adverse
effects associated with melatonin [12]. As discussed in the following section, disruption of
circadian rhythms is critical for bone oncogenesis and metastatic disease.

4. Melatonin Shows Potential in Bone Cancer Treatment and Osteolytic
Bone Metastasis

Disrupting circadian rhythms with exposure to artificial light at night (LAN) can pro-
mote the risk of cancer growth and progression, largely through the alteration of nocturnal
melatonin biosynthesis [70]. Tibias of Foxn1nu athymic nude female mice (which produce
marked night-time circadian melatonin signals) were injected with estrogen receptor-
positive human breast cancer cells (to mimic bone metastatic disease) and the mice were
housed in bright light for 12 h each day followed by either 12 h of complete darkness or
12 h of dim artificial light (LAN, 0.2 lux) [71,72]. Whereas, the mice assigned to 12 h of
darkness produced high levels of endogenous nocturnal melatonin, this was suppressed
in the mice assigned to 12 h of dim light, which developed highly osteolytic, fully devel-
oped breast cancer tumors in bone according to measurements of tumor bioluminescence
using the in vivo imaging system (IVIS), X-rays, and micro-computed tomography (CT)
images [71,72]. Moreover, the tumors in the mice experiencing 12 h of dim light at night
were treatment-resistant to doxorubicin, but when doxorubicin was delivered to these
mice in a chronotherapeutic schedule in circadian alignment with nocturnal melatonin,
bone tumors grew more slowly, bone damage was decreased and new bone formation
was observed [71]. Blocking the MT1/2 receptors with the melatonin receptor antagonist
luzindole prevented nocturnal melatonin from effectively inhibiting metastatic tumor
growth in the bone [72]. Other evidence supports the contention that artificial light at
night drives intrinsic resistance to chemotherapy including doxorubicin, paclitaxel, and
tamoxifen [73–75]. Clearly, disrupting circadian rhythms deregulates bone homeostasis
and influences oncogenesis.

Melatonin has shown marked in vitro and in vivo activity against osteosarcoma (one
of the most common primary malignant bone tumors), and is considered to have promis-
ing potential as an adjuvant with conventional chemotherapy in anti-osteosarcoma regi-
mens [76]. The high propensity for osteosarcoma to metastasize, particularly to the lung,
is linked to treatment failure and high mortality [76,77]. The prognosis is very poor for
patients with osteosarcoma and pulmonary metastases, even after treatment by metasta-
sectomy and chemotherapy [78], with more than half of these cases relapsing [77]. Thus,
current best treatment strategies for osteosarcoma need to be greatly improved. A greater
understanding of the intracellular pathways related to the metastatic transfer of osteosar-
coma cells has focused attention on melatonin as a novel, non-toxic addition to conventional
chemotherapy for osteosarcoma, capable of direct oncostatic effects on the neoplastic cell
and indirect tumoricidal effects via immunostimulation [79], as well as augmentation of
anti-osteosarcoma cancer agents and amelioration of chemotherapy-related side effects [76].
As shown in Table 2, melatonin suppresses osteosarcoma cells by modulating various
signaling pathways and mechanisms. In human osteosarcoma Saos-2 cells, melatonin
dose-dependently inhibits cellular activity, exerts cytostasis by increasing cell accumulation
in the G1 phase but decreasing those in the S phase, and induces apoptosis [80]. Mela-
tonin also appears to be promising for metastatic osteosarcoma. For instance, melatonin
inhibited osteosarcoma metastasis in a mouse model of osteosarcoma by downregulating
SOX9-mediated signaling [60] and, in another study, melatonin inhibited the migratory
potential and invasiveness of human osteosarcoma HOS and U2OS cells, and suppressed
C-C motif chemokine ligand 24 (CCL24) levels in U2OS cells by inhibiting the JNK path-
way, preventing osteosarcoma invasion [81]. Melatonin has also shown promise in another
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common primary malignant bone tumor, Ewing’s sarcoma, inducing apoptosis in Ewing’s
sarcoma cells via upregulation of the death receptor Fas and its ligand Fas L [82].

Novel treatments are needed that can target the intracellular signaling pathways
regulating the invasion-metastasis cascade. In relation to this, melatonin has shown
promising therapeutic potential by decreasing osteoclast differentiation, bone resorption
activity and promoting apoptosis in mature osteoclasts [11]. Moreover, melatonin can
downregulate the p38 mitogen-activated protein kinase (MAPK) pathway and thus inhibit
RANKL production in lung and prostate cancer cells, preventing cancer-associated osteo-
clast differentiation [11]. Promisingly, mouse models of lung and prostate bone metastases
administered twice-weekly melatonin displayed marked reductions in tumor volumes and
numbers of osteolytic lesions, as well as numbers of TRAP-positive osteoclasts in tibia bone
marrow and tumor tissue RANKL expression [11]. Table 2 lists cancer-secreted factors that
are inhibited by melatonin. Although these factors are associated with osteolytic metastasis,
it remains to be confirmed as to whether melatonin-induced inhibition of these factors is
associated with osteolytic metastasis.
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Table 2. Melatonin treatment reduces cancer-associated osteolytic factors.

Type of Cancer Osteolytic
Factors Dosage Model Outcomes Ref.

Pancreatic, cervical,
lung

VEGF
HIF-1α

Cells:
1 nM or 1 mM

Cell lines:
PANC-1, HeLa and A549

At the high concentration (1 mM), melatonin inhibited VEGF mRNA and
protein levels, as well as HIF-1α protein, in all three human cancer cell lines. [83]

Prostate HIF-1α Cells:
1 mM

Cell lines:
DU145, PC-3, and LNCaP

Melatonin-induced inhibition of HIF-1α protein expression, HIF-1α
transcriptional activity and the release of VEGF in all three cell lines correlated

with dephosphorylation of p70S6K and its direct target RPS6.
[84]

Bladder COX-2

Cells:
1 mM

Cell lines:
T24, UMUC3

and 5637
When combined with curcumin, melatonin enhanced the inhibitory effects of
curcumin on COX-2 activity and enhanced the antiproliferative, antimigratory

and proapoptotic activities of curcumin in bladder cancer cells.

[85]

Animal:
10 mg/kg

Animal:
BALB/c nude mice

Osteosarcoma SOX9

Cells:
0.5 mM

Cell lines:
HOS and U2-OS

Melatonin suppressed osteosarcoma cell migration and invasion and also
significantly inhibited osteosarcoma metastasis in a mouse model of

osteosarcoma. These effects were achieved by downregulating
SOX9-mediated signaling.

[86]
Animal:

100 mg/kg
Animal:

BALB/c nude mice

Gastric adenocarcinoma MMP-2
MMP-9

Cells:
0.1, 0.5 or 1.5 mM

Cell lines:
MGC80-3 and SGC-7901

Melatonin suppressed IL-1β-induced EMT in human gastric adenocarcinoma
cells by targeting IL-1β/NF-κB/MMP-2/MMP-9 signaling. [87]

Osteosarcoma CCL24 Cells:
2 mM

Cell lines:
HOS and U2OS

Melatonin inhibited the migratory potential and invasiveness of osteosarcoma
HOS and U2OS cells. Melatonin also suppressed chemokine CCL24 levels in

U2OS cells through the inhibition of the JNK pathway.
[81]

Oral MMP-9 Cells:
100 and 250 µg/mL

Cell line:
SAS

Areca nut extract components (betel quid chewing) may contribute to tumor
invasion and metastasis by stimulating MMP-9 mRNA expression and secretion

of oral cancer cells, which was inhibited by melatonin.
[88]

Osteosarcoma MMP-9
HIF-1αTGF-β

Cells:
50, 100, 200, 500 and

1000 nM

Cell line:
MG-63

Melatonin inhibits TGF-β1-induced EMT in osteosarcoma MG-63 cells by
suppressing HIF-1α/Snail/MMP-9 signaling. [49]

Prostate MMP-13

Cells:
1 mM

Cell lines:
DU145 and PC-3

Melatonin inhibited the migratory and invasive properties of prostate cancer
cells, as well as MMP-13 expression, via the MT1 receptor and PLC, p38, and

c-Jun signaling. Melatonin also inhibited prostate cancer metastasis and
MMP-13 expression in an orthotopic prostate cancer model.

[89]
Animal:

20 or 60 mg/kg
Animal:

SCID mice
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Table 2. Cont.

Type of Cancer Osteolytic
Factors Dosage Model Outcomes Ref.

Breast IL-6 Animal:
5 mg/kg

Animal:
Female rats with

DMBA-induced breast
cancer

Combined zinc and melatonin therapy helped to prevent tumor growth by
significantly disrupting the metabolism of several elements (iron, magnesium,
zinc and copper), and by suppressing IL-6 levels and reducing tissue damage

that encourages tumor growth.

[90]

Lung, prostate RANKL

Cells:
0.1, 0.3 or 0.7 mM

Cell lines:
A549 and PC-3

Melatonin inhibited RANKL production in lung and prostate cancer cells by
downregulating the p38 MAPK pathway, which consequently prevented
cancer-associated osteoclast differentiation. In animal models of lung and
prostate bone metastasis, melatonin treatment markedly reduced tumor

volumes and numbers of osteolytic lesions.

[11]
Animal:

20 or 60 mg/kg
Animal:

BALB/c nude mice

Breast Integrin β

1Elf-5
Cells:
5 mM

Cell lines:
MCF-7 and MDA-MB-231

MEMP HT (5 mg melatonin, 0.5 mg estradiol, and 50 mg progesterone [half the
recommended dose] hormone therapy) showed anticancer activity in ER+ and
triple negative breast cancer cells. These effects were largely attributed to the

melatonin component and MEMP HT working through MEK1/2- and
MEK-5-dependent intracellular signaling cascades in each cancer cell line,

modulating intracellular signaling proteins that encourage the inhibition of
cellular proliferative and migratory activities.

[91]

Pancreatic stellate cells
COX-2

IL-6
TNF-α

Cells:
1000, 100, 10 or 1 µM

Cells:
Primary PSCs from Wistar

rat pups (3–5 days after
birth)

Pharmacological concentrations of melatonin increased ROS production and
reduced levels of glutathione in PSCs under hypoxic conditions. Melatonin

downregulated NF-kB phosphorylation and COX-2, IL-6, and
TNF-α expression.

[92]

Gastric TGF-β1

Cells:
2 or 4 mM

Cell line:
MFC Melatonin inhibited gastric cancer cell proliferation in vitro by increasing

TGF-β1 expression and also increased TGF-β1 levels in gastric cancer tumor
tissues in vivo.

[93]
Animal:

25, 50, or 100 mg/kg
Animal:

H-2Kk mice

VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-inducible factor 1-alpha; mRNA, messenger RNA; COX-2, cyclooxygenase-2; MMP, matrix metalloproteinase; IL-1β, interleukin 1 beta; EMT,
epithelial-to-mesenchymal transition; NF-κB, nuclear factor kappa B; CCL24, C-C motif chemokine ligand 24; JNK, c-Jun N-terminal kinase; TGF-β1, transforming growth factor beta-1; MT1 receptor, high-affinity
G-protein-coupled melatonin receptor; PLC, phospholipase C; DMBA, 7,12-dimethylbenz(a)anthracene; RANKL, receptor activator of nuclear factor-kappa B ligand; MAPK, mitogen-activated protein kinase;
ER+, estrogen receptor-positive; PSCs, pancreatic stellate cells; ROS, reactive oxygen species.
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5. Conclusions

Emerging research indicates that melatonin inhibits the expression of osteolytic fac-
tors produced by tumor cells and suppresses tumor growth, pointing to the potential of
melatonin for the treatment of osteolytic metastasis. In clinical applications, melatonin
treatment of postmenopausal women with osteopenia indicates improvements in bone
health, which can improve osteoporosis. We predict from the molecular evidence that
this endogenous hormone has tremendous potential, by enabling existing antiresorptive
osteoporotic drugs to effectively treat osteolytic metastasis. This aspect remains to be
explored in future preclinical work.
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Abbreviations

AC Adenylate cyclase
BM Bone marrow
BMD Bone mineral density
BV/TV Bone volume/tissue volume
Ca2+ Calcium
cAMP Cyclic adenosine monophosphate
cGMP Cyclic guanosine monophosphate
CREB cAMP response element-binding protein
DAG Diacylglycerol
EAE Experimental autoimmune encephalomyelitis
GC Guanylate cyclase
HSPCs Hematopoietic stem and progenitor cells
IL Interleukin
IP3 Inositol triphosphate
LAN Light at night
MAPK Mitogen-activated protein kinase
micro-CT Micro-computed tomography
MS Multiple sclerosis
MSCs Mesenchymal stem cells
MSDK Melatonin, strontium (citrate), vitamin D3 and vitamin K2
MT1/2 High-affinity G-protein-coupled melatonin receptors
OCN Osteocalcin
NFATc1 Nuclear factor of activated T cell cytoplasmic 1
NF-κB Nuclear factor kappa B
NTX N-terminal telopeptide
PKA Protein kinase A
PKG Protein kinase G
PLC Phospholipase C
PPARγ Peroxisome proliferator-activated receptor gamma
RANKL Receptor activator of nuclear factor-kappa B ligand
ROR Retinoid-related orphan receptor
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s.c. Subcutaneous
SMI Structure Model Index
Tb.N Trabecular number
Tb.Sp Trabecular Separation/Spacing
Tb.Th Trabecular thickness
TNF Tumor necrosis factor
Wk Week
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