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A B S T R A C T   

A COVID-19 vaccine is our best bet for mitigating the ongoing onslaught of the pandemic. However, vaccine is 
also expected to be a limited resource. An optimal allocation strategy, especially in countries with access in-
equities and temporal separation of hot-spots, might be an effective way of halting the disease spread. We 
approach this problem by proposing a novel pipeline VacSIM that dovetails Deep Reinforcement Learning models 
into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine. Whereas the Rein-
forcement Learning models suggest better actions and rewards, Contextual Bandits allow online modifications 
that may need to be implemented on a day-to-day basis in the real world scenario. We evaluate this framework 
against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in 
five different States across India (Assam, Delhi, Jharkhand, Maharashtra and Nagaland) and demonstrate up to 
9039 potential infections prevented and a significant increase in the efficacy of limiting the spread over a period 
of 45 days through the VacSIM approach. Our models and the platform are extensible to all states of India and 
potentially across the globe. We also propose novel evaluation strategies including standard compartmental 
model-based projections and a causality-preserving evaluation of our model. Since all models carry assumptions 
that may need to be tested in various contexts, we open source our model VacSIM and contribute a new rein-
forcement learning environment compatible with OpenAI gym to make it extensible for real-world applications 
across the globe. 2   

1. Introduction 

Vaccines have played a crucial role in combating infectious diseases 
for hundreds of years [1]. The successful eradication of smallpox, a 
transmittable disease responsible for causing huge casualties, happened 
due to the gradual and effective widespread use of vaccines [2]. 
Avoidance of millions of deaths and side effects caused by diseases like 
polio and tetanus was because of vaccination efforts which prove their 
impact and significance for global health. Despite this impact, if such a 

vital resource is not optimally distributed and allocated to the regions 
and communities where its need is the most, this can lead to huge re-
percussions that could aggravate the situation and can increase the risk 
of escape variants in mixed and partially vaccinated communities [3]. 
All countries across the globe have eagerly waited for the launch of an 
effective vaccine against SARS-CoV-2. In India, the vaccine allocation 
process started on a first-come-first-serve basis, from January 2021 with 
the launch of the CoWIN3 portal by the Government of India. As po-
tential candidates continue to introduce their products in the market, 
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there is an urgent need for optimal distribution strategies that would 
mitigate the pandemic at the fastest rate possible [4,5]. At the current 
rate of vaccination estimated to be 2.2 million doses per day, India may 
only be able to cover 30% of its population by end of this year, triggering 
concerns about a third wave hitting India, especially its rural parts, in 
the absence of herd immunity.4 Here we summarize the key factors that 
will need to be considered for effective mitigation: 

● Scarcity of supply: Despite large scale production efforts, it is ex-
pected that the vaccine will still be a scarce resource as compared to 
the number of people who would need it. In addition to the vaccine 
itself, there may also be scarcity in the components leading to its 
delivery, e.g. syringes. Many researchers estimated that 60–70% of 
the population would require vaccination to achieve herd immunity. 
This implies that India would need 1.89 billion syringes to deliver the 
vaccine en-masse.5  

● Need for Equitable distribution and Digital inclusion: A truly 
equitable distribution will not just be defined by the population or 
incidence of new cases alone, although these will be strong factors. 
Other factors ensuring equity of distribution include quantum of 
exposure, e.g. to the healthcare workforce that needs to be protected. 
In this paper, we assume that the exposure is proportional to the 
number of cases itself, although the proposed methodology allows 
more nuanced models to be constructed. There may also be unseen 
factors such as vaccine hoarding and political influence, which are 
not accounted for in this work. Another issue that has recently come 
into light is regarding the increased inaccessibility of vaccines in 
India, which are largely booked through the online CoWIN portal, 
owing to the significant digital divide in the country’s population.  

● Transparent, measurable and effective policy: The design of 
policy would need to be guided by data, before, during and after the 
vaccine administration to a section of the population. Since the viral 
dynamics are rapidly evolving, the policy should allow changes to be 
transparent and effects to be measurable in order to ensure maximum 
efficacy of the scarce vaccine resource. On the larger scale of states 
and nations, this would imply continuous monitoring of incidence 
rates vis-a-vis a policy action undertaken. 

Although the aforementioned factors seem straightforward, the 
resulting dynamics that have emerged during the actual roll-out of the 
vaccine are far too complex for optimal decision making by humans. The 
daunting nature of such decision-making can be easily imagined for 
large and diverse countries such as India, especially where health is a 
state subject. Artificial intelligence for learning data-driven policies is 
expected to aid such decision making as there would be limited means to 
identify optimal actions in the real world. A ‘near real-time’ evaluation 
as per the demographic layout of states and consequent initiation of a 
rapid response to contain the spread of COVID-19 [6] will be required. 
Furthermore, these policies will need to be contextualized to the many 
variables governing demand or ‘need’ for the vaccine distribution to be 
fair and equitable [7]. Ground testing of these scenarios is not an option, 
and countries will have to face this challenge. 

Reinforcement Learning (RL) algorithms have shown significant 
progress for decision making in medicine and public health [8–11]. In 
this paper, we introduce VacSIM, a novel feed-forward reinforcement 
learning approach for learning effective policy combined with near 
real-time optimization of vaccine distribution and demonstrate its po-
tential benefit through the example of five states presenting contrasting 
contexts in India. Since real world experimentation was out of the 
question, the change in projected cases obtained via a standard epide-
miological model was used to compare the VacSIM policy with a naive 
approach of incidence-based allocation. Finally, our novel model is 

open-sourced and can be easily deployed by policymakers and re-
searchers, thus can be used in any part of the world, by anyone, to make 
the process of distribution more transparent. 

2. Methods 

To get an optimal distribution of vaccine, we proposed a novel 
pipeline where we joined Deep Reinforcement Learning models with a 
Contextual Bandits model in a feed-forward way which makes the 
optimization process more robust, context-specific and easily deploy-
able in real-time. In the following sections, we are adding some back-
ground information on Reinforcement Learning Algorithms in order to 
provide a sense of our pipeline. 

2.1. Q learning 

Policy learning algorithms can be broadly categorized into two types: 
off-policy and on-policy. Off-policy learning algorithms are preferred as 
these allow the agent to learn the optimal policy regardless of the agent’s 
actions (under the current policy). This not only facilitates faster 
learning (convergence) but also avoids learning of a sub-optimal policy 
by the agent as it can explore continuously. One of the most popular off- 
policy algorithms in RL is Q-learning. Q-Learning uses the Bellman 
Equation for iterative updating: 

Q∗(s, a) = E[r + γmaxa′ Q
∗(s′

, a′

)] (1)  

where r is the immediate reward and γ is the discount factor. Given that 
an agent follows a policy π, then Qπ(s,a) denotes the expected return or 
reward obtained by the agent if it chooses action a at state s and then 
keeps on following the policy π. Q(s, a) estimates how favourable it is to 
choose action a at state s according to the current policy. The optimal Q 
function, Q*(s, a) denotes the maximum return or reward that can be 
achieved by first choosing action a at state s and then following the 
optimal policy. As evident from equation (1), Q*(s, a) is the sum of the 
immediate reward and the maximum reward possible thereafter from 
state s′ discounted by γ (same as γ discounted maximum Q value for state 
s′). However, Q-Learning becomes impractical for environments where 
there may be a large (potentially infinite) set of actions to choose from. 
An example of a large environment with continuous action space [11] is 
optimization of number or syringes or medication dosage. 

2.2. Deep Q-network 

Deep Q-Networks (DQNs) are useful in the presence of large envi-
ronments with elaborate state and action spaces. Here Q-learning is 
extended to DQN by using a deep neural network used to map input 
states to (action, Q-value) pairs [12,13]. Most real-world scenarios such 
as healthcare resource allocation have complex state-action spaces, and 
thus need advanced approaches such as DQNs. A DQN minimizes the loss 
at each iteration i as given below: 

Li(θi) = Es,a,r,s′ ∼ ρ(.)[
(
(yi − Q(s, a; θi))

2] (2)  

where yi = r + γ maxa′ Q(s′, a′; θi− 1) is the Temporal Difference (TD) 
target; yi - Q is the TD error and ρ represents behaviour distribution. 

In our work, we employ DQN to better parameterize real-world 
conditions and make our model more efficient in terms of time and 
memory requirements. 

2.3. Actor-critic using Kronecker-Factored Trust Region (ACKTR) 

Q-learning and DQN are both value-based algorithms, where the goal 
is to learn a single deterministic action from a discrete set of actions by 
finding the maximum Q value. There are no trainable parameters in 
value-based methods that control the probabilities of action. Thus, a 

4 https://api.covid19india.org/.  
5 https://www.nature.com/articles/d41586-021-00728-2. 
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value-based method cannot solve an environment where the optimal 
policy is stochastic requiring specific probabilities. To overcome this 
challenge, we need to learn a stochastic map from state to action. In 
Policy Gradients [14,15], we usually use a neural network (or other 
function approximators) to directly model the action probabilities πθ(a| 
s). Each time the agent interacts with the environment, we tweak the 
parameters θ of the neural network so that “good” actions (actions 
giving maximum reward) will be sampled more likely in the future. We 
repeat this process until the policy network converges to the optimal 
policy π*. 

Formally, the objective of Policy Gradients is to maximize the total 
future expected rewards E[Rt], where Rt represents the sum of future 
discounted rewards. Whereas, in Q-learning and DQN the “policy” fol-
lowed the action that maximized the Q value at each step, actor-critic 
methods combine Policy Gradient methods with a learned value func-
tion. With actor-critic methods [16], we learn two different functions: 
the policy (or “actor”), and the value (or the “critic”). In this paper, we 
used the ACKTR algorithm (on-policy algorithm) [17] with the Policy 
Gradient method which follows an actor-critic architecture: one deep 
neural network to estimate the policy and another network to estimate 
the advantage function (a measure of how good or bad a certain action is 
at a given state). ACKTR uses the Kronecker-factored approximation 
[18,19] to optimize both the actor and critic. 

2.4. Bandit algorithms: multi-armed bandits and contextual bandits 
problem 

Reinforcement algorithms being computationally expensive and 
time-consuming, cannot be used in real-time decision making. Contex-
tual Bandits [20] algorithms on the other hand, are space and 
time-efficient. These are extension of multi-armed bandits algorithms. 
Multi-armed bandits can be simply be understood as a gambler with a 
fixed amount of money taking a sequence of actions on multiple slot 
machines while trying to optimize the overall reward. The K machines 
have reward probabilities, θ1, …, θK. Action(A),Reward(R) tuples 
describe a multi-armed bandit, where at each time step t, an agent takes 
an action a on one slot machine and receives a reward r. The goal is to 
maximize the cumulative reward. This also corresponds to minimization 
of the potential loss by not picking the sub-optimal action, in case 
optimal actions with best reward are known, e.g. vaccination of a 
high-risk individual. The optimal reward probability θ* of the optimal 
action a* is: 

θ∗ = Q(a∗) = max
a∈S

{Q(a)} = max
1<i<K

{θi} (3)  

where Q(a) is the expected reward. 
The Loss function or Regret [21] is a conceptual function to under-

stand and optimize the performance of the Bandits problem. Since we 
don’t know if an action played was the most ‘reward-fetching’, rewards 
against all the actions that can be played are sampled, and the difference 
between the action chosen and the action against the maximum reward 
is defined as ‘regret’. Therefore, minimizing regret achieves the goal of 
maximizing reward. The total regret we might have by not selecting the 
optimal action up to the time step T: 

Lt = E[
∑t=T

t=1
(θ∗ − Q(a)] (4) 

Thus, a multi-armed bandit algorithm returns the best set of actions, 
provided the context is fixed. However, a multi-armed bandit algorithm 
does not account information from the changing context, a common 
occurrence in real-world scenarios such as the evolving pandemic. 
Therefore the agents may end up playing the same action multiple times 
even though the context may have changed, thus getting stuck at a sub- 
optimal condition. To circumvent this problem, Contextual Bandits al-
gorithm is proposed which contextualizes the choice of the bandit to its 
current environment. Contextual Bandits, represented as a tuple Action 

(A),Context(C),Reward(R), play an action based on its current context, 
given a corresponding reward, hence are more relevant to real world 
environments such as the vaccine distribution problem addressed in this 
work. Given, for time t = 1 … n, a set of contexts C and a set of possible 
actions A and reward/payoffs R are defined. At a particular instant, 
based on a context ct ∈ C, an action at ∈ A is chosen and a reward or a 
payoff 

R = E[r|c, a] (5) 

is obtained. For an optimal action a* ∈ A such that the expectation of 
reward against this action is maximum, 

r∗ = max
at∈A

E(r|c, at) (6) 

the regret can be expressed as 

Z = [r∗ − E(r|c, at)] (7) 

and cumulative regret can be expressed as 

Z∗ =
∑n

t=1
Z (8) 

Contextual Bandits model was implemented using the python pack-
age of Vowpal Wabbit [22]. 

2.5. VacSIM: A feed forward approach 

In VacSIM, we concatenated the Deep Reinforcement Learning 
models (i.e. ACKTR or DQN) and Contextual Bandits model in a feed- 
forward manner to create an off-policy learning framework. This was 
incorporated to select the optimal policy through the Contextual Bandits 
approach from the ones generated by the Deep Reinforcement Learning 
models, as shown in Fig. 1. This was done to address the following 
challenges that need to be tackled in real world problems such as 
optimal vaccine distribution:  

● Solving in real-time: A vaccine distribution problem is expected to 
be fast-paced. Thus, an overwhelming amount of brainstorming with 
constrained resources and time would be required to develop an 
effective policy for the near future. This calls for the development of 
a prompt and an easily reproducible setup.  

● Lack of ground truth: This is one of the key challenges in this paper. 
Since the roll-out of the vaccine will not give us the liberty of testing 
various hypotheses, a lack of ground truth data is generally expected. 
This is analogous to zero-shot learning problems, thus precluding a 
simple supervised learning-based approach.  

● Absence of evaluation with certainty: Lack of ground testing 
naturally implies nil on-ground evaluation. In that case, it often be-
comes challenging to employ evaluation metrics that offer a signif-
icant amount of confidence in results. In order to solve this problem, 
we rely upon the simulated decrease in the number of susceptible 
people as the vaccine is administered.  

● Model scaling: We have ensured that the learning process of the 
models simulates the relationship between different objects in the 
real world environment accurately, and at the same time can be 
scaled down in response to computational efficiency and resource 
utilization challenges. This is done by choosing the right set of as-
sumptions that reflect the real world scenario. 

We pipelined the Deep Reinforcement Learning models with a 
Contextual Bandits approach where recommendations for vaccine dis-
tribution policy(generated by the RL models) were used as training data 
for the Contextual Bandits. These models were trained separately using 
the same reward function defined in equation (6).Reinforcement 
Learning approaches replicate human decision-making processes. 
However, the absence of evaluation makes them less trustworthy, 
especially when real lives may be at stake. To this end, we also presented 
two different novel model evaluation techniques in this paper: 
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1. Estimating future impact of vaccination by projecting COVID-19 
cases, using SEIR models [23].  

2. Learning Bayesian Network to verify the underlying structure of 
COVID-19 trajectory indicators. 

3. Results 

3.1. Model setup 

We extracted the State-wise time series data of COVID-19 charac-
teristics from the website of Ministry of Health and Family Welfare of 
India.6 and used them in the experiments as described in Fig. 2. In order 
to determine vaccine allocation in the near future, we require future 
scenarios of COVID-19. Thus, in order to train VacSIM, we projected 
Susceptible, Confirmed, Recovered cases from 1 December 2020 to 26 
December 2020 using SEIR model (refer supplementary for model de-
tails). The five States chosen for this study, i.e., Assam, Delhi, Jhark-
hand, Maharashtra and Nagaland are representative of possible 
scenarios for the vaccine distribution problem, i.e., high incidence 
(Maharashtra and Delhi), moderate incidence (Assam) and low inci-
dence (Jharkhand and Nagaland). In choosing the five different States, 
we hope to generalize our predictions to other States across the spectrum 
while minimizing the bias introduced into the learning by a widely 
variant COVID-19 incidence across the country. 

In order to avail vaccine for the highly vulnerable population and to 
combat COVID-19 infection spread, we selected the context comprising 
of features listed in Table 1. 

The implementation of VacSIM pipeline is detailed henceforth. 

3.2. Deep Reinforcement Learning models 

Open-AI [26] stable-baselines framework was used to construct a 
novel and relevant environment suited to our problem statement for 
ACKTR and DQN to learn in this environment. 

3.2.1. Input 
We considered the observation space(s) as a grid over context vectors 

with the latter describing the context vector of states. These include 
Population, Age Distribution, Ventilators, Overall ICU Beds, Overall 
Hospital Beds, Predicted Susceptible Cases, Total Predicted Cases, Pre-
dicted Death Rate, and Predicted Recovery Rate at a given time. The 
predicted rates were estimated by using standard SEIR projections.The 
Action space describes the quantum of vaccines distributed to each of 
the states across India, represented as discrete buckets. For example, a 
bucket size of 1000 implies a batch of 1000 vaccines rolled out to a 
particular state of India. Formally, the action space a was defined as, a =
{b0, b1, b2, b3, …, bi, …, bn− 1} 

bi = i ∗
Total Available Vaccine

n
(9)  

where n is defined as bucket size and considered as a hyper parameter. 

3.2.2. Training 
Following are the assumptions used while building the environment:  

● The nature of the vaccine is purely preventative and not curative, i. 
e., it introduces immunity when administered to a susceptible person 
against future COVID infection but plays no role in fighting against 
existing infections (if any). 

Fig. 1. VacSIM architecture: A novel feed forwarded pipeline for policy learning of COVID-19 vaccine optimal distribution. The actions and rewards obtained from 
the Deep Reinforcement Learning models were fed forward into the training of Contextual Bandit algorithm so that faster optimal online decisions could be calculated 
for further dates taking in context, the ever changing demographics of the states. 

6 https://mohfw.gov.in/. 

R. Awasthi et al.                                                                                                                                                                                                                                

https://mohfw.gov.in/


Intelligence-Based Medicine 6 (2022) 100060

5

● The vaccine has 100% efficacy, i.e. all people who are vaccinated 
will necessarily develop immunity in 45 days [27] against future 
SARS-CoV-2 infection. This assumption is easily modifiable and is 
expected to have little consequence in deciding the optimal alloca-
tion unless data reveal differential immunity response of certain 
populations within India. However, we leave scope for it to be 
modified as per the situation by taking this as a hyper-parameter for 
VacSIM. 

Reward Function: The reward function was designed to maximize 
the decrease in the susceptible population count with the minimum 
amount of vaccine, considering it to be a limited resource. 

Ri = 100 ∗ exp(− (Ai − Si)
2 / 10− 4) (10)  

where Ri is the reward given by the environment; Si is the fraction of 
susceptible population in a particular State and Ai is the fraction of 
vaccine distributed to the State by the model. 

The Explore-Exploit Trade-off: We tap into the explore-vs-exploit 
dilemma, allowing the model to reassess its approach with ample op-
portunities and accordingly, redirect the learning process. We set the 
exploration rate at 10% for DQN. However, this too is flexible and can be 
treated as a hyper-parameter. Here we reason that the local context is 
most strongly influenced by its own past values, hence we trained our 

model independently for the selected 5 States from 1 December to 26 
December, in order to maintain spatial independence.10,000 and 2000 
iterations Fig. 3 were used to learn DQN and ACKTR respectively. It-
erations for training were decided based on the stability of the reward 
function curve. Where Iterations refers to one complete exploration of 
environment by a model agent. 

Hyper-parameters: A complete list of the hyper-parameters is given 
in Table 2. 

3.2.3. Output 
The output of the Deep Reinforcement Learning models was a dis-

tribution set dictating the share of each recipient in the batch of vaccines 
dispatched at the time of delivery. 

3.3. Contextual bandits model 

The output of the Deep Reinforcement Learning model is spanned 
over 26 days (1 December-26 December 2020). The distribution sets so 
obtained were scaled to bucket sizes ranging from 100 to 1000 with an 
increment step of 100. The actions of the five States associated with each 
bucket size were normalized to get the percentage distribution ratio for 
all States. Normalized here refers to the percentage ratio of a given 
distribution set of a State for a given bucket size and the sum of the 
distribution sets of the five States over that bucket size for a given date. 

3.3.1. Training 
We considered 1 December-26 December data along with distribu-

tion sets and the corresponding set of rewards obtained from the Deep 
Reinforcement Learning models as training data for Contextual Bandits. 

3.3.2. Number of actions and features 
The action space and the features in the Context space are the same 

as those in the Deep Reinforcement Learning model. 

3.3.3. Testing 
Using the Context, actions and the corresponding set of rewards as 

the training dataset, we tested the model day-wise for a period of five 
days (27 December-31 December) with each day having 10 possible 
bucket sizes, i.e. 100 to 1000 for each State as output. 

3.3.4. Output 
The unadjusted actions (which were not normalized) obtained after 

testing the model were first adjusted bucket-wise for each State for a 
particular date by taking the percentage ratio of the unadjusted action of 
that State and the sum of unadjusted actions of all five States. 

We consider that the vaccine is distributed on 31 December 2020. 
The consequent distribution of vaccines among the five States for each 

Fig. 2. Flexible model setup for optimization of vaccine distribution policy in India using the VacSIM approach where components can be easily replaced with 
alternatives and adopted for diverse settings. 

Table 1 
Features present in context space used in our models.  

S. 
No. 

Feature Description 

1 Predicted Death Rate The percentage ratio of the predicted deaths in 
the State to the total predicted cases in that State 
calculated using projections obtained from a 
fitted standard Compartmental model, i.e. a 
Susceptible, Exposed, Infected and Recovered 
(SEIR) model. 

2 Predicted Recovery 
Rate 

The percentage ratio of the predicted recoveries 
in the State to the total predicted cases in that 
State using projections obtained from the SEIR 
model. 

3 Population of a State We extracted the population for each State from 
the 2011 census data conducted by the 
government of India [24]. 

4 Predicted Susceptible 
Cases of a State 

We estimated the susceptible population as the 
difference between the population of a particular 
State and the total number of predicted infected 
cases of that State. 

5 Hospital Facilities in a 
State 

We used overall Hospital Beds, overall ICU Beds 
and Ventilators data in our models [25]. 

6 Age Distribution of a 
State 

In order to prioritize vulnerable population, we 
considered people with age greater than 50.  

R. Awasthi et al.                                                                                                                                                                                                                                



Intelligence-Based Medicine 6 (2022) 100060

6

bucket size was then evaluated. Our models learn well for the bucket 
range 200–500. The vaccine distribution for the same in case of the 
VacSIM policies is shown in Table 3. It was observed that both ACKTR +
CB and DQN + CB yielded similar results, which is conceptually ex-
pected as both were aimed at reducing the overall susceptible popula-
tion as optimally as possible. 

3.4. Model evaluation through projection scenario using SEIR models 

SEIR model is a differential equation-based epidemiological model 
used to simulate infection future trajectory. In the SEIR model, the total 
population N divides into 4 compartments S,E,I & R. Term S represents 
the susceptible individuals, E includes the latent phase of covid where 
the individual is infected but not infectious. I represent infected in-
dividuals and R represents the recovered individuals. Since there is no 
way that the evaluation of distribution policy can be done in the absence 
of a real world distribution, we defined the Naive baseline distribution 
policy as % of vaccine given to a State = % of Infected People in that 
State and compared it with our model’s learned distribution. With 
10,00,000 doses and 5 States, we simulated the distribution of the 
available vaccine on 31 December for the Naive and VacSIM policies. 
The number of resulting (projected) infections for 45 days after the 
vaccine distribution was calculated using the SEIR Model. For each 
bucket size (200,300,400,500), day-wise total cases of all five States 
were summed up for both models (ACKTR/DQN) and then their differ-
ences were measured with total cases for all five States arising after 
Naive distribution as shown in Fig. 4. Our results indicate that the 
ACKTR based policy additionally reduces a total of 8845, 7787, 4703 
and 5103 projected infected cases, with bucket sizes 200, 300, 400 and 
500 respectively, in the next 45 days. Likewise, DQN based policy 
additionally reduces a total of 9039, 6686, 5355 and 4698 projected 

infected cases, with bucket sizes 200, 300, 400 and 500 respectively. 

3.5. Model evaluation through learning the causal structure of simulated 
data obtained 

The ultimate goal of vaccine distribution is to reduce mortality and 
morbidity. Since our model relies entirely upon simulations, in the 
absence of a real-time vaccine data, we checked if the data generated by 
such an approach follow the cause-and-effect relationships as expected 
in the real world data. A Bayesian network is a special class of proba-
bilistic graphical models which is useful for modeling causal relation-
ships. Being a graph with directed edges without cycles, the parent-child 
relationships can be interpreted as cause and effect relationships under 
strong constraints. The directed acyclic graph (DAG) G is defined as a 
triple, N = {X, G, P} defined that can be over a set of random variables, 
X. It encapsulates the underlying joint probability distribution P that can 
be factored as the product of probabilities of each node v conditioned 
upon its parents par(v). 

P(X) =
∏

v∈V
P(xv|xpa(v)) (11)  

where v corresponds to the random variable v and par(v) are the set of 
parent variables. 

Structure-learning of Bayesian network was carried out using Hill 
Climbing algorithm [28] with Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) as scoring functions, and ensemble 
averaging over 501 bootstrapped networks. These models were learned 
using wiseR package [29]. 

State-wise time series data of death, recovery, infected people, sus-
ceptible people and the amount of vaccine obtained from our model 
were used to learn the structure. Blacklisting among nodes was done 
such that vaccine percentage cannot be the child node of COVID-19 
trajectory indicators (Susceptible, Recovery, Infected People, Death). 
The resulting structure shows a causal relationship between the vaccine 
amount (parent node) and susceptible count (child node), thus con-
firming the technical correctness of the VacSIM model through an 
external evaluation approach Fig. 5. 

4. Discussion 

Researchers worldwide have been working round-the-clock to find a 
vaccine against SARS-CoV-2, the virus responsible for the COVID-19 
pandemic. Now that it is available, the distribution of the vaccines has 

Fig. 3. Day-wise rewards at every iteration were recorded for all the states. The Mean and SD obtained over 26 day projections are shown as confidence bands. (Top) 
Smoothed and Increasing Reward Curve of DQN (Bottom) Smoothed and Increasing Reward Curve of ACKTR. 

Table 2 
Hyper-parameters used during Policy learning.  

S. 
No. 

Hyperparameter Name Hyperparameter 
Value 

1 Batch Size: number of vials in one round of 
distribution. 

1000000 

2 Exploration Rate of DQN 10% 
3 Vaccine efficacy 100% 
4 Number of days to reach full efficacy 45 
5 Bucket size 1000 
6 Number of recipients per day 5  
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numerous logistical challenges (supply chain, legal agreements, quality 
control and application to name a few) which might slow down the 
distribution process. To circumvent these challenges, a strong decision 
support system is needed [30]. Reinforcement Learning (RL) based de-
cision models [31] have been built during COVID-19. In this paper, we 
have developed a novel distribution policy model, VacSIM using Rein-
forcement Learning. We have pipelined an Actor-Critic using 
Kronecker-Factored Trust Region (ACKTR) model/Deep Q-Networks 
(DQN) model and Contextual Bandit model in a feedforward way such 
that the output (Action and Rewards) of ACKTR/DQN model are fed into 
the Contextual Bandit model in order to provide a sensible Context 

comprising of actions and rewards. Contextual Bandits then optimize the 
policy considering demographic metrics such as the population of the 
State, Overall Hospital Beds, Overall ICU Beds, Ventilators and time 
series-based characteristics of the COVID-19 spread (susceptible popu-
lation, recovery rate, death rate, total infected cases) as Context. While 
distributing the vaccine, identifying the part of the population who 
needs it the most is a challenging task, and in our case, we addressed it 
by the usage of the aforementioned Context. Rather than using the 
present-day count of infected and susceptible people, we have used 
SEIR-based projection, which makes our predicted policy more robust 
and trustworthy. The percentage of vaccine distribution was the final 

Table 3 
VacSIM model output on different bucket size.  

Model Bucket Size Assam Delhi Jharkhand Maharashtra Nagaland 

ACKTR + CB 200 15.5 8 17.5 58 1 
300 15.5116 7.9208 17.4917 57.7558 1.3201 
400 15.5172 8.1281 17.734 57.3892 1.2315 
500 15.5206 8.055 17.6817 57.3674 1.3752 

DQN + CB 200 15.8974 8.2051 16.9231 58.4615 0.5128 
300 15.9864 8.1633 17.0068 58.1633 0.6803 
400 16.1616 8.3333 17.1717 57.5758 0.7576 
500 16.129 8.2661 17.1371 57.6613 0.8065  

Fig. 4. Additional projected infection cases prevented in next 45 days by following VacSIM driven approach instead of Naive approach.  
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output of VacSIM. From VacSIM, Maharastra, the most vulnerable state 
for COVID-19, has received the maximum amount of vaccine, which 
showed the model could understand the context. Finally we proposed 
two approaches to evaluate such models 1) SEIR-based Simu-
lation-based approach, 2) Bayesian Network-based Causality driven 
approach. In simulation-based approaches, we have projected the 
COVID-19 cases after the vaccination. Our results indicate that the 
VacSIM additionally reduces the 9039 cases compared to the 
naive-based approach. And from the Bayesian network, we found that 
vaccine distribution is most causally associated with susceptibility, 
which again showed that VacSIM output followed the design of model 
set-up and variability of context. Our model design and evaluation are 
entirely novel. Any other resource allocation algorithm like Genetic 
Algorithm, Simulated annealing, Hill climbing is reward independent. A 
comparison of policy with these algorithms are shown in our dashboard 
(http://vacsim.tavlab.iiitd.edu.in:8000/). VacSIM outperformed these 
models when compared using SEIR based simulation approach. It is 
necessary to update models with new influences on a regular basis in 
order to capture varying trends occurring with emerging variants of 
COVID-19. In order to do so for different settings, our model is 
extendable and context independent, therefore will require 
re-parameterization to adapt to the new setting and learn optimal policy 
accordingly. Finally, we have provided open-source code for our pipe-
line which will enable testing of our claims by other researchers. 

5. Limitations and future work 

VacSIM may have some limitations shared by all Reinforcement 
Learning models, i.e. the transparency of their learning process and the 
explainability of their decisions. The development of VacSIM has been 
carried out while observing the pandemic in the past few months. 
However, the dynamic nature of pandemic may require a change in 
actions, thus calling for common sense working alongside artificial in-
telligence. A third limitation is the potential dependency between 
COVID-19 trajectory variables across states as these may not be 
completely independent especially after the lifting of lockdown. How-
ever, parametrizing these dependencies is a challenge and we reason 
that local context of the states is most strongly influenced by its own past 
values. As mentioned before, the availability of authentic data that is 
granular in terms of features covered is a major challenge in any kind of 
modelling work associated with the pandemic. By virtue of the same, we 
have given utmost priority to achieving herd immunity and decreasing 

the susceptible population as much as possible, given that proper data 
capturing of those features is available. The same is reflected through 
our choice of reward function in this work. For future work, if a more 
reliable and extensive data source is available describing the informa-
tion of different cohorts of the Indian population on a more atomic level 
(such as information regarding the comorbidities of a certain region), 
then such relevant features should be taken into account while designing 
the reward function. Similarly, designing reward functions with features 
which are important for the efficient distribution of scarce resources like 
ventilators, drugs on the availability of extensive reliable data sources 
can be done through our framework depending on the observation and 
action space. 

It should also be noted that while we assume certain vaccine char-
acteristics, such as efficacy and gap between both doses, these are 
hyperparameters that can be changed depending on the availability of 
exact reliable data. To date, there does not exist a single well-proven 
statistic for the dose-wise efficacy of Covaxin and Covishield (vaccines 
available in India currently). Even the gap between both doses has been 
changed repeatedly by the Government, the latest being 12–16 weeks7 

for Covishield. In the emergence and spread of various mutations of 
COVID-19 virus, and responding variants of vaccines entering the 
market, such assumptions have been taken to make the pipeline as 
generalised as possible, so that when required, different pieces of in-
formation can be plugged into our framework and adjusted to identify 
the efficiency for different resources and context. Given these limita-
tions, we have attempted to carefully design the VacSIM pipeline and 
associated reward function by making realistic assumptions which can 
be helpful in testing such a framework before moving to on-ground 
deployment. 

To truly facilitate our ultimate goal of on-ground deployment of 
VacSIM, Plug-n-Play(PnP) pipeline can be created that gives policy-
makers the flexibility to provide varying input contexts, such as those 
collected on the district level. This platform would be helpful in testing 
our framework’s efficiency in a variety of settings, across many data 
points, observation spaces and even reward functions. In conclusion, we 
believe that artificial intelligence has a role to play in the optimal dis-
tribution of resources such as vaccines, syringes, drugs, personal pro-
tective equipment (PPEs), ICUs etc. The second wave of COVID-19 in 
India has also highlighted the importance of the same and our open 

Fig. 5. Ensemble averaged causal structure of the Bayesian network obtained from 501 bootstraps, using Hill Climbing optimizer for AIC (left) and BIC (right) as 
scoring functions. Vaccine Percentage obtained from the model was observed as a parent node of Susceptible cases, thus indicating the causality preserving nature of 
VacSIM simulations. 

7 https://www.bmj.com/content/372/bmj.n18. 
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source VacSIM framework is a potential step towards enabling use of 
artificial intelligence by researchers and policymakers. 

6. Conclusion 

We provide a novel, open-source and extensible solution vaccine 
allocation problem that policymakers and researchers may refer to while 
making decisions. This feedforward network can be adapted and used 
for optimal allocation of various essential resources in varying scenarios 
and context as the Reinforcement Learning part of VacSIM can always be 
retrained to adapt to spatial and temporal variations by accommodating 
the latest values of variables like recovery rate and age distribution. 
Since there is some evidence that COVID-19 infections tend to show 
oscillatory patterns on shorter timescales [32], the key goal of our 
approach to inform an agile response to the problem of vaccine distri-
bution has been fulfilled through this work. Although the present results 
are on five states, VacSIM will be extended to all the states of India. 

Availability of data and material 

All the data and source code are available at https://github. 
com/tavlab-iiitd/VacSIM. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Declaration of competing interest 

Not Applicable. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ibmed.2022.100060. 

References 

[1] Greenwood B. The contribution of vaccination to global health: past, present and 
future. Phil Trans Biol Sci Jun. 2014;369 [Online]. Available: https://www.ncbi. 
nlm.nih.gov/pmc/articles/PMC4024226/. 1645. 

[2] [Online]. Available: Smallpox vaccines https://www.who.int/news-room/f 
eature-stories/detail/smallpox-vaccines. 

[3] Rella SA, Kulikova YA, Dermitzakis ET, Kondrashov FA. Rates of SARS-CoV-2 
transmission and vaccination impact the fate of vaccine-resistant strains. Sci Rep 
Jul. 2021;11(1):15729. bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature 
Research Journals Number: 1 Primary_atype: Research Publisher: Nature 
Publishing Group Subject_term: Population genetics;Viral infection Subject_term_ 
id: population-genetics;viral-infection. [Online]. Available: https://www.nature.co 
m/articles/s41598-021-95025-3. 

[4] White DB, Angus DC. A proposed lottery system to allocate scarce COVID-19 
medications: promoting fairness and generating knowledge. JAMA Jul. 2020;324 
(4):329–30. publisher: American Medical Association. [Online]. Available: https:// 
jamanetwork.com/journals/jama/fullarticle/2767751. 

[5] Khamsi R. If a coronavirus vaccine arrives, can the world make enough? Nature 
Apr. 2020;580(7805):578–80. number: 7805 Publisher: Nature Publishing Group. 
[Online]. Available: https://www.nature.com/articles/d41586-020-01063-8. 

[6] D. Foster, C. Mcgregor, and S. El-masri, “A survey of agent-based intelligent 
decision support systems to support clinical,” in Management and research”, 1st 
intl. Workshop on multi-agent systems for medicine, computational biology, and 
bioinformatics. 

[7] Deo S, Manurkar S, Krishnan S, Franz C. COVID-19 vaccine: development. Access 
Distr. Indian Context 2020;378:16. 

[8] Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for 
clinical decision support in critical care: comprehensive review. J Med Internet Res 
Jul. 2020;22(7) [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/artic 
les/PMC7400046/. 

[9] Saria S. Individualized sepsis treatment using reinforcement learning. Nat Med 
Nov. 2018;24(11):1641–2. number: 11 Publisher: Nature Publishing Group. 
[Online]. Available: https://www.nature.com/articles/s41591-018-0253-x. 

[10] A. Raghu, M. Komorowski, L. A. Celi, P. Szolovits, and M. Ghassemi, “Continuous 
state-space models for optimal sepsis treatment: a deep reinforcement learning 
approach,” p. 17. 

[11] Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial 
Intelligence Clinician learns optimal treatment strategies for sepsis in intensive 
care. Nat Med Nov. 2018;24(11):1716–20. 

[12] Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, 
Sendonaris A, Osband I, Dulac-Arnold G, Agapiou J, Leibo J, Gruslys A. Deep Q- 
learning from demonstrations. Proc AAAI Conf Artif Intell Apr. 2018;32(1). 
number: 1. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/vie 
w/11757. 

[13] arXiv:1509.06461 [cs] van Hasselt H, Guez A, Silver D. Deep reinforcement 
learning with double Q-learning. arXiv: 1509.06461. [Online]. Available: htt 
p://arxiv.org/abs/1509.06461; Dec. 2015. 

[14] Williams RJ. Simple statistical gradient-following algorithms for connectionist 
reinforcement learning. Mach Learn May 1992;8(3):229–56. https://doi.org/ 
10.1007/BF00992696 [Online]. Available:. 

[15] arXiv:1506.02438 [cs] Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High- 
dimensional continuous control using generalized advantage estimation. arXiv: 
1506.02438. [Online]. Available: http://arxiv.org/abs/1506.02438; Oct. 2018. 

[16] arXiv:1602.01783 [cs] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, 
Harley T, Silver D, Kavukcuoglu K. Asynchronous methods for deep reinforcement 
learning. arXiv: 1602.01783. [Online]. Available: http://arxiv.org/abs/1602.01 
783; Jun. 2016. 

[17] arXiv:1708.05144 [cs] Wu Y, Mansimov E, Liao S, Grosse R, Ba J. Scalable trust- 
region method for deep reinforcement learning using Kronecker-factored 
approximation. arXiv: 1708.05144. [Online]. Available: http://arxiv.org/abs/1 
708.05144; Aug. 2017. 

[18] arXiv:1705.01064 [math, stat] Ly A, Marsman M, Verhagen J, Grasman R, 
Wagenmakers E-J. A tutorial on Fisher information. arXiv: 1705.01064. [Online]. 
Available: http://arxiv.org/abs/1705.01064; Oct. 2017. 

[19] arXiv:1412.1193 [cs, stat], Jun. 2020 Martens J. New insights and perspectives on 
the natural gradient method. arXiv: 1412.1193. [Online]. Available: http://arxiv. 
org/abs/1412.1193. 

[20] arXiv:1807.09809 [cs, stat] Collier M, Llorens HU. Deep contextual multi-armed 
bandits. arXiv: 1807.09809. [Online]. Available: http://arxiv.org/abs/1 
807.09809; Jul. 2018. 

[21] arXiv:1802.09127 [cs, stat] Riquelme C, Tucker G, Snoek J. Deep bayesian bandits 
showdown: an empirical comparison of bayesian deep networks for thompson 
sampling. arXiv: 1802.09127. [Online]. Available: http://arxiv.org/abs/1802.091 
27; Feb. 2018. 

[22] [Online]. Available: Vowpal Wabbit https://vowpalwabbit.org/. 
[23] Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology. Math 

Biosci Feb. 1995;125(2):155–64 [Online]. Available: http://www.sciencedirect. 
com/science/article/pii/0025556495927565. 

[24] Census of India Website. Office of the registrar general & census commissioner, 
India [Online]. Available: https://censusindia.gov.in/2011-common/introductio 
nToNpr.html. 

[25] [Online]. Available: Development Data Lab http://www.devdatalab.org/shrug. 
[26] OpenAI. Gym: a toolkit for developing and comparing reinforcement learning 

algorithms [Online]. Available: https://gym.openai.com. 
[27] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, 
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