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ABSTRACT Staphylococcus arlettae is one coagulase-negative species in the bacte-
rial genus Staphylococcus. Here, we describe the closed complete genome sequence
of S. arlettae strain P2, which was obtained using a hybrid approach combining Ox-
ford Nanopore long-read and Illumina MiSeq short-read sequencing data.

Staphylococcus arlettae is a species of the genus Staphylococcus and was reportedly
first isolated from skin or nares of poultry or goats (1). S. arlettae has since been

additionally isolated from veterinary (2–6) and clinical (7–10) samples. Other S. arlettae
isolation sites include soil (11), cell phone surfaces (12), and a disused biological safety
cabinet (13).

The S. arlettae strain selected for whole-genome sequencing reported here was
isolated from a biological laboratory in a university in Sapporo, Japan. Microbes on the
laboratory floor surface were swabbed using a sterilized moistened swab. The swab was
used to streak an LB plate, and one colony, which appeared on the plate after incubation
overnight at 37°C, was purified by colony streaking onto a fresh LB plate. The
procedure was performed thrice. Analysis of the 16S rRNA gene of the resulting
isolate (named P2) revealed that it shared 99.9% identity with the 16S rRNA
sequence of S. arlettae strain CVD059 (9). Although draft genome sequences of S.
arlettae strains, including CVD059, have already been reported by some groups (2,
14), none have been shown as closed sequences, motivating us to determine the
first closed genome of an S. arlettae strain.

Before DNA extraction, strain P2 was inoculated in LB broth, and cells were cultured
at 37°C until early stationary phase (the doubling time of P2 was approximately 38 min).
High-molecular-weight genomic DNA was prepared from a harvested bacterial pellet
using the MagAttract high-molecular-weight (HMW) DNA kit (Qiagen) according to the
manufacturer’s instructions. The obtained genomic DNA was subjected to long-read
and short-read sequencing at the Oral Microbiome Center at Taniguchi Dental Clinic in
Japan. Default parameters were used for all software, unless otherwise specified.

Long-read sequencing was performed using a GridION X5 system (Oxford Nanopore
Technologies [ONT]); 1.0-�g unfragmented genomic DNA was used for library con-
struction using a ligation sequencing kit (ONT). The prepared library was applied to a
FLO-MIN106 R9.41 flow cell (ONT). The long-read sequences, which were base called
using Guppy v.3.0.3 (ONT), generated 59,502 reads (756 Mb) with an average length of
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12,711 bp during a 10-h runtime (numbers are those for reads after quality filtering,
with an average Phred quality value of �8.0 using NanoFilt v.2.3.0 [15]; the raw data
contained 104,000 reads, with an average length of 8,957 bp).

For short-read sequencing, the paired-end (2 � 156-bp) Nextera DNA library (pre-
pared using Nextera DNA Flex library prep kit [Illumina]) was sequenced on a MiSeq
instrument. Raw sequencing data were processed using the FASTQ preprocessing
program fastp v.0.19.5 (16) for the purpose of trimming adapters and low-quality data,
yielding 1.05 million short reads with an average length of 152.8 bp.

For complete de novo genome assembly, both long-read and short-read data were
processed using Unicycler v.0.4.4 (17), followed by a final polishing step using Pilon
v.1.23 (18), generating a single circular contig for the chromosome with a length of
2,629,900 bp (G�C content of 33.7%) and another circular contig for a plasmid with a
length of 22,364 bp (G�C content of 30.1%). To confirm that both circular contigs have
no structural misassembly, we used the software program SV-Quest (K. Uesaka, unpub-
lished data), which maps the short-read sequences back to the two contigs, detecting
no signals for structural gaps and other inconsistencies. Automatic annotation was then
performed using the annotation pipeline DFAST v.1.1.0 (19), provided by DDBJ, which
predicted 2,550 coding sequences as well as 22 rRNA genes and 60 tRNA genes.
Compared with CVD059, P2 had a chromosome that was 45 kbp shorter, which showed
a symmetrical identity of 93.8% and gapped identity of 99.2%. CVD059 is reported to
have 2,439 coding sequences (9). There has been no report that CVD059 contains a
plasmid.

To our knowledge, this represents the first closed genome sequence report for an
S. arlettae strain registered to a public database, providing an essential basis for
detailed comparative analysis of S. arlettae genomes in the future.

Data availability. The closed complete chromosomal and plasmid sequences were
deposited at DDBJ/EMBL/GenBank under accession numbers AP019698 and AP019699,
respectively. The versions described in the manuscript are the first versions, AP019698.1
and AP019699.1, respectively. Raw sequencing data were deposited in the DDBJ SRA
database under the accession numbers DRX167894 and DRX167895.
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